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End-stage renal disease

• Many patients with AIDS develop end-stage 
renal disease

• One of the opportunistic infections that kills 
you 

• Basically, kidney failure
• In the US, this is particularly prevalent in 

African Americans
• Thus, we’ll focus on this subset of the 

population.



Antiretroviral drugs

• HAART has drastically changed the face of 
HIV

• Reduced the number of AIDS deaths
• Made HIV a disease it’s possible to live with
• Not clear what effect HAART has had on the 

prevalence of AIDS or end-stage renal 
disease...

• ...so we’ll investigate it ourselves.



Our questions

1. Has HAART had an impact on the 
prevalence of AIDS?

2. Has HAART had an impact on the 
prevalence of end-stage renal disease?

3. If aggressive treatment is initiated now, with 
different effects, what will the long-term 
outcome be?



Our approach

We’ll need to
• formulate a model
• fit parameters to data
• draw conclusions
• predict the future
This combines various strands of modelling 
while incorporating real-world data.



Impact of HAART on AIDS mortality?

• Mortality data from the CDC:
• These are the number of 

deaths due to AIDS for African 
Americans in the US

• To see it a bit more clearly, 
let’s plot it.

1991 10475

1992 11946

1993 15460

1994 17844
1995 18971
1996 15909
1997 10333
1998 8744
1999 9097
2000 8723
2001 9085
2002 8927
2003 9077
2004 9302
2005 8562
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Figure 9.1: The annual number of deaths due to AIDS for African Americans
in the United States

1991 14561
1992 15897
1993 60649
1994 71847
1995 81317
1996 92319
1997 105464
1998 117890
1999 112483
2000 121903
2001 181475
2002 193814
2003 204466
2004 214017
2005 225270

This is shown in Figure 9.2.
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HAART has clearly had an effect



What about prevalence?

• We expect prevalence to 
increase
– not as many people are dying
– other people are progressing 

from HIV to AIDS
• But perhaps not as sharply as it 

did before HAART
• Prevalence data from the CDC:
• Again, we’ll plot this.

1991 14561
1992 15897
1993 60649
1994 71847
1995 81317
1996 92319
1997 105464
1998 117890
1999 112483
2000 121903
2001 181475
2002 193814
2003 204466
2004 214017
2005 225270
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Figure 9.2: Prevalence of AIDS among African Americans in the United States.

It’s tough to draw any conclusions from these data. Prevalence has continued
to rise, but has it continued to rise as quickly, or has HAART slowed down the
rate of increase? Let’s be a bit formal about this and construct a null hypothesis.
This is a hypothesis that states that there’s been no change. If there has been a
change, then we’ll reject this hypothesis. Our null hypothesis is thus: HAART
has had no effect on the prevalence of AIDS. Note that we don’t specify anything
about whether HAART has increased or decreased the prevalence; it may have
done either (which would be interesting, regardless) or it may have had no effect.

How could we test our hypothesis? One way would be to fit curves to the
pre-HAART and post-HAART data separately and see what happens. The data
is approximately linear, so we only have to fit straight lines. If we do that, we
have the situation in Figure 9.3.

What do you think? Looks somewhat convincing. The slope of the first line
is steeper than the slope of the second line, so maybe HAART has slowed the
rate of increase of the prevalence. Of course, at this point we should be asking
ourselves how good the fit is, but the two lines have regression coefficients of
0.949 and 0.967, respectively. So these lines are good fits to these data.
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Formulating a null hypothesis

• Q. How can we tell if HAART has made a 
difference?

• A. Construct a null hypthesis and test 
against it:

• N0: HAART has had no significant impact on 
the prevalence of AIDS
(note that we are not assuming the 
prevalence goes up or down).



Testing the null hypothesis

• Q. How can we test the impact?
• A. Fit curves to pre- and post-HAART data 
• Compare with entire data set
• The data is approximately linear, so this will 

make life easier.



Prevalence pre- and post-HAART
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Figure 9.3: Linear fit to pre-HAART and post-HAART AIDS data.

However, that’s only half the story. We need to compare this to our null
hypothesis of no effect on the prevalence. To do this, we could fit a line to the
entire data set. See Figure 9.4.

Now what do you think? Is this a better or worse fit? The eye can’t tell, so
we have to rely on the regressional coefficient. In this case r=0.981, so this is
actually a better fit than either of the two lines in Figure 9.3! This means we
can’t reject the null hypothesis. In order words, HAART has had no significant
impact on the prevalence of AIDS among African Americans in the United
States.

Thus, we’ve answered our first question. This answer is actually different
from the results in Schwartz et al. (2005), where they concluded that prevalence
had changed, using the same data. This shows the importance of considering
the real-world impact of our models carefully. Two researchers can (and do!)
draw different conclusions from the same data, even when they’re “only” fitting
curves to the data.
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Initial thoughts

• The slope of the first line is steeper than the 
second

• Both lines are good fits: r = 0.949 and 
r = 0.967, respectively

• So it looks like HAART may have reduced 
the rate of increase of the prevalence
(as we’d hope)

• However, this is only half the story
• We still need to compare to the fit overall.



Prevalence overall
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Figure 9.4: Linear fit to the entire AIDS data set.

9.2 Determining end-stage renal disease preva-
lence

Let’s look at end-stage renal disease data, courtesy of the United States Renal
Data System.1 The mortality data, showing the number of deaths in end-stage
renal disease patients, with AIDS nephropathy as primary cause of renal failure,
is

1The data reported here have been supplied by the United States Renal Data System
(USRDS). The interpretation and reporting of these data are the responsibility of the author
and in no way should be seen as an official policy or interpretation of the U.S. government.
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Impact of HAART on AIDS prevalence

• Is this a better or worse fit?
• The eye can’t tell, so we need to rely on the 

regressional coefficient
• In this case r = 0.981
• ...higher than either r from before!
• Thus, we can’t reject the null hypothesis
• It follows that HAART has had no significant 

impact on prevalence of AIDS among African 
Americans in the US
(It has drastically reduced mortality, though).



Impact on mortality?

• Mortality data from the US 
Renal Data System:

• These are the number of 
deaths due to end-stage renal 
disease for African Americans 
in the US

• Again, let’s plot it.

1991 88
1992 126
1993 159
1994 176
1995 255
1996 185
1997 120
1998 141
1999 149
2000 131
2001 126
2002 143
2003 135
2004 128



HAART has clearly had an effect
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Figure 9.5: The number of deaths in African American end-stage renal disease
patients with AIDS nephropathy as primary cause of renal failure in the United
States.

interested in asking whether HAART has had an impact, rather than specifying
what that impact is.

The regression coefficients for the two linear fits in Figure 9.7 are r=0.98887
and r=0.98683. The regression coefficient for the linear fit in Figure 9.7 is
r=0.99352. Thus, the line that fits the overall data is a better fit than each
of the lines which fit the two subsets. Once again we have to conclude that
HAART has had no impact on the prevalence of end-stage renal disease. And
once again, this answer is different from the results in Schwartz et al. (2005),
where they concluded that prevalence had changed, using the same data.

Thus, we’ve answered our second question.
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What about prevalence?

• We again expect prevalence to 
increase

• Prevalence data from the US 
Renal Data System:

• Again, we’ll plot this.

1991 14561
1992 15897
1993 60649
1994 71847
1995 81317
1996 92319
1997 105464
1998 117890
1999 112483
2000 121903
2001 181475
2002 193814
2003 204466
2004 214017
2005 225270



Prevalence of AIDS
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Figure 9.6: Prevalence of end-stage renal disease among African Americans in
the United States.

9.3 Model fitting

What have we done in the last two sections? We’ve made choices about which
models best fit the data. True, these were simple, linear models, but they’re
models nonetheless. We can use these linear fits to estimate parameters and
construct a more complex ODE model.

Let’s think about how to construct such a model. We need to know what
form the model will take, or else we won’t know what parameters we need to
estimate. There are many things we could try, but let’s start with the simplest
version. We only have two variables of interest: the prevalence of AIDS and the
prevalence of end-stage renal disease. The latter doesn’t cause the former, so it
means we can consider AIDS prevalence in isolation.

Let’s start with the easier case and deal with the prevalence of AIDS. Since
we now have some faith that it’s a linear fit, we can use that to construct a simple
linear differential equation. The prevalence is clearly increasing (see Figure 9.4),
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Formulating another null hypothesis

• N0: HAART has had no significant impact on 
the prevalence of end-stage renal disease

• Again, we’ll fit linear curves to pre- and post-
HAART, as well as the entire data set
(it helps that the data is approximately linear, 
of course).



Prevalence pre- and post-HAART

1990 1995 2000 2005
0

500

1000

1500

2000

2500

3000

time

e
n

d
!

s
ta

g
e

 r
e

n
a

l 
d

is
e

a
s
e

 p
re

v
a

le
n

c
e

HAART

Figure 9.7: Linear fit to pre-HAART and post-HAART end-stage renal disease
data.

so the derivative will be positive. Thus, we could assume the prevalence of AIDS
cases satisfies the differential equation

dA

dt
= g . (9.1)

This is just about the simplest differential equation ever and one we could
easily solve. But let’s leave that for a moment and figure out the parameters
we need. Clearly we need g, but we’ll also need an initial condition, A0. From
Figure 9.4, the intercept is A0 = 14959.04166 and the slope is g = 15133.20357.
(Of course, this assumes that time starts at 1991, so we’re really transposing
the x axis by 1991.)

The second case is a bit trickier. A proportion s of the population with AIDS
will progress to end-stage renal disease; those with end-stage renal disease will
die at rate δ, proportional to the end-stage renal disease prevalence. This leads
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Initial thoughts

• The slope of the second line is steeper than 
the first

• Both lines are even better fits: r = 0.98887 
and r = 0.98683, respectively

• So it looks like HAART may have increased 
the prevalence of end-stage renal disease
(not out of the question, as many more 
people are alive because of HAART).



Prevalence overall
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Figure 9.8: Linear fit to the entire end-stage renal disease data.

to the second equation

dN

dt
= sA− δN . (9.2)

We can’t solve this directly, of course, because it depends on the solution to
equation (9.1). However, we don’t need to solve the equations to estimate the
parameters. From Figure 9.8, we have N0 = 268.11 (remembering that we’re
starting at 1991) and the slope of the graph is 179.18.

How can we use the slope of the line to estimate parameters? The slope is
the derivative, so this says that

dN

dt
≈ 179.18

sA− δN = 179.18 .

Since A and N are variables, we can pick whichever values of them we like.
However, remember that the linear fit is just an approximation, so we should
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Impact on prevalence

• Once again, the eye can’t tell, so we need to 
rely on the regressional coefficient

• In this case r = 0.99352
• ...higher than either r from before!
• Thus, we can’t reject the null hypothesis
• It follows that HAART has had no significant 

impact on prevalence of either AIDS or end-
stage renal disease among African 
Americans in the US
(It has drastically reduced mortality, though).



Model fitting

• What we’ve done in each case is fit models 
to data

• True, they were simple, linear models, but 
we still made choices

• We can now use these linear fits to estimate 
parameters and construct a more complex 
differential equation model.



How to construct such a model?

• We have two variables of interest: AIDS 
prevalence and end-stage renal disease 
prevalence

• Since end-stage renal disease doesn’t 
cause AIDS, we can consider AIDS in 
isolation

• This makes our first equation much easier.



The equation for AIDS prevalence

• We now have faith that it’s a linear fit, so 
let’s construct a linear differential equation

• Prevalence is increasing, so the derivative 
will be positive

• Thus, we could write

• This is simple and we could solve it if we 
wanted to, but we won’t

• We need estimates for g and A(0). 

dA

dt
= g



Estimating g and A(0)

• Using our linear fit, we 
can estimate

• g = 15133
(the slope)

• A(0) = 14959
(the intercept)

• Technical note: Time 
really starts at 1991, so 
we need to transpose 
the x-axis by 1991.
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Figure 9.4: Linear fit to the entire AIDS data set.

9.2 Determining end-stage renal disease preva-
lence

Let’s look at end-stage renal disease data, courtesy of the United States Renal
Data System.1 The mortality data, showing the number of deaths in end-stage
renal disease patients, with AIDS nephropathy as primary cause of renal failure,
is

1The data reported here have been supplied by the United States Renal Data System
(USRDS). The interpretation and reporting of these data are the responsibility of the author
and in no way should be seen as an official policy or interpretation of the U.S. government.
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Equation for end-stage renal disease

• This is a bit trickier
• A proportion s of people with AIDS develop 

end-stage renal disease
• People with end-stage renal disease die at 

rate δ, proportional to the prevalence of 
end-stage renal disease

• Solving this is harder (and depends on A(t))
• We need estimates for s, δand N(0).

dN

dt
= sA− δN



Estimating N(0)

• Using our linear fit, we 
can estimate

• N(0) = 268
(intercept)

• slope = 179
• Slope is the derivative, so 

we can use this to 
estimate s and δ.
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Figure 9.8: Linear fit to the entire end-stage renal disease data.

to the second equation

dN

dt
= sA− δN . (9.2)

We can’t solve this directly, of course, because it depends on the solution to
equation (9.1). However, we don’t need to solve the equations to estimate the
parameters. From Figure 9.8, we have N0 = 268.11 (remembering that we’re
starting at 1991) and the slope of the graph is 179.18.

How can we use the slope of the line to estimate parameters? The slope is
the derivative, so this says that

dN

dt
≈ 179.18

sA− δN = 179.18 .

Since A and N are variables, we can pick whichever values of them we like.
However, remember that the linear fit is just an approximation, so we should
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Estimating s andδ

• Picking two points that are close to the linear 
fit, we have

dN

dt
= sA− δN = 179

s(20564)− δ(1287) = 179
s(117890)− δ(1521) = 179

[
s
δ

]
=

[
20564 −1287
117890 −1521

]−1 [
179
179

]

=
[

0.0048
0.2563

]
.



Summarising parameter estimates

We thus have
• A(0) = 14959
• N(0) = 268
• g = 15133
• s = 0.0048
• δ= 0.2563
Note that we didn’t solve either equation, even 
though one was easy and the other was 
doable.



Predicting future outcome

• Now that we have our model, we can use it 
to predict the future

• Unfortunately, by definition, we don’t have 
actual evidence about the future
(and if we wait for the evidence to arrive, it 
won’t be the future any more)

• To compensate for this, we’ll make a range 
of predictions.



Initiating aggressive HAART now

• Currently, treatment hasn’t done much to 
slow the epidemic of end-stage renal 
disease

• However, treatment also hasn’t been applied 
as aggressively as it could

• Especially in disadvantaged groups like 
African Americans

• Can HAART eliminated end-stage renal 
disease?



Effects of treatment

• We can represent treatment by a factor (1-h)
• If h=0, then treatment has no effect on 

progression to end-stage renal disease
• If h=1, treatment completely suppresses 

progression to end-stage renal disease
• Our equation thus becomes

dN

dt
= s(1− h)A− δN



A range of blocking effects

• Let’s consider a number of values of h:
• h = 0.38, 0.65, 0.80, 0.95, 1
• We’ll run the original equation from 1991 til 

2007, then each of the new equations from 
2007 until 2035

• We’ll plot each of them on the same graph, 
so we can compare the effects.



Effects of aggressive HAART

renal disease would be uniformly decreasing, so eventually the disease would be
eliminated.

Of course, we’re likely to be somewhere in between the two. We don’t know
where, so let’s consider a number of possibilities: h = 0.38, 0.65, 0.80, 0.95, 1.
This way, we’ll get an idea of the effect of different treatment options.

To calculate this, we have two possibilities. We could use the explicit solution
found in Appendix G, or we could use ode45 in Matlab. Either is fine, although
in general the equations won’t be solvable, so the numerical solver is probably
more useful. The results are shown in Figure 9.9.
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Figure 9.9: HAART-blocking effects on disease progression.

What does this tell us? Most strikingly, it tells us that the only way to
eliminate end-stage renal disease is to have 100% effective therapy. All other
therapies will have an initial dip, then rise in numbers again. Even 95% effec-
tive therapy will eventually lead to an increase in prevalence. Only perfectly
efficacious therapy will eliminate the disease. Unfortunately, that’s impossible
to achieve, in practical terms.

However, that doesn’t mean our model doesn’t tell us anything useful. For
one thing, even therapy that was only 38% effective would not result in an

115



What does this tell us?

• The only way to eliminate 
end-stage renal disease is 
if HAART is 100% effective 
at blocking progression
(unlikely)

• All other therapies have an 
initial dip and then rise 
again

• Even 95% effective therapy 
will eventually lead to an 
increase in prevalence.

renal disease would be uniformly decreasing, so eventually the disease would be
eliminated.

Of course, we’re likely to be somewhere in between the two. We don’t know
where, so let’s consider a number of possibilities: h = 0.38, 0.65, 0.80, 0.95, 1.
This way, we’ll get an idea of the effect of different treatment options.

To calculate this, we have two possibilities. We could use the explicit solution
found in Appendix G, or we could use ode45 in Matlab. Either is fine, although
in general the equations won’t be solvable, so the numerical solver is probably
more useful. The results are shown in Figure 9.9.
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What does this tell us? Most strikingly, it tells us that the only way to
eliminate end-stage renal disease is to have 100% effective therapy. All other
therapies will have an initial dip, then rise in numbers again. Even 95% effec-
tive therapy will eventually lead to an increase in prevalence. Only perfectly
efficacious therapy will eliminate the disease. Unfortunately, that’s impossible
to achieve, in practical terms.

However, that doesn’t mean our model doesn’t tell us anything useful. For
one thing, even therapy that was only 38% effective would not result in an
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So what was the point?

• This doesn’t mean our model doesn’t tell us 
anything useful

• Even therapy that was only 38% effective 
would not result in an increase in prevalence 
for about 25 years

• If we’re looking for eradication, then we’d be 
disappointed

• But these delays give us time to come up 
with new strategies and hold back the 
disease.



What’s the take-home message?

• Our model tells us that putting all our energy 
into perfecting treatment might not be the 
best use of our time

• Unless we can have 100% effective 
treatment, we’re not going to eradicate the 
disease

• However, even fairly ineffective therapy can 
do a lot of good in the meantime.



Why model?

• In this way, modelling gives us useful 
information about whether to proceed or not, 
knowing likely outcomes

• And we did this with 
nothing more 
sophisticated than 
linear regression and 
simple ordinary 
differential equations.
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Lab work

• Use the mortality data on AIDS and end-
stage renal disease to fit lines to pre-
HAART and post-HAART data

• Compare this to a linear fit to the entire data
• Adjust the model to include the effect of 

HAART reducing the prevalence of AIDS
• Explore different effects: 20%, 50%, 80%
• Use the model to interpret biological 

outcomes as treatment approaches (or 
exceeds) 100%.


