
Appendix B

Eigenvalues

Eigenvalues are numbers that ‘represent’ a matrix; if we have an n× n matrix
A and can find a number λ and a nonzero vector x such than Ax = λx, then λ
is an eigenvalue and x is an eigenvector. Thus

Ax− λx = 0
Ax− λIx = 0

where I is the n×n identity matrix. We put this in so that λI is a matrix of the
same size as the matrix A (the expression A− λ would make no sense). Hence

(A− λI)x = 0

Clearly we want x #= 0 (or else this is all trivial). But if (A − λI)−1 exists
(i.e. det(A − λI) #= 0), then the only solution is x = 0. So there will only be
eigenvalues when det(A− λI) = 0.

Thus, for the matrix

J
∣∣
(N,0)

=
[

0 b− aN
0 aN − b

]

in chapter 3, we have

0 = det(J − λI) = det
([

0 b− aN
0 aN − b

]
− λ

[
1 0
0 1

])

= det
[
−λ b− aN
0 aN − b− λ

]

= λ(aN − b− λ)

How did we get this last line? Eigenvalues of a 2× 2 or a 3× 3 matrix have
a formula. For the former we have

det
[

a b
c d

]
= ad− bc ,
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and for the latter we have

det




a b c
d e f
g h j



 = aej + bfg + cdh− ceg − afh− bdj .

In general eigenvalues are quite hard... unless we have a row or column
where all but one entry is zero. In this case we’re allowed to reduce the size
of the matrix by extracting that entry. But not only do we get to extract the
entry, we get to eliminate everything else in that row and column!

Thus

det





a b c 0
d e f 0
g h j 0
k m n p



 = p det




a b c
d e f
g h j



 .

So not only does the p come out of the determinant (because everything else in
the last column was zero), reducing the remaining determinant to a much more
manageable 3 × 3 determinant, but the last row is simply gone. That is, k, m
and n are out of the picture.

(Technical note: If you’re extracting anything that’s not one of the entries
along the main diagonal then you may or may not need an extra minus sign
when you extract it. We don’t do any such extracting here, so you don’t need
to worry about it, but if you’re interested, check out any undergraduate linear
algebra textbook.)

Assuming you have matrices with lots of zeros, you can reduce very high
order matrices down to 3× 3 or 2× 2 matrices using this method. Fortunately,
the Jacobian matrix almost always has lots of zeros and the things that aren’t
are usually on the diagonals anyway, so life is a lot easier than it otherwise
would be.
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