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Abstract

The effect of spatial correlations on the spread of infectious diseases was investigated using a stochastic susceptible-infective-

recovered (SIR) model on complex networks. It was found that in addition to the reduction of the effective transmission rate,

through the screening of infectives, spatial correlations have another major effect through the enhancement of stochastic

fluctuations, which may become considerably larger than in the homogeneously mixed stochastic model. As a consequence, in finite

spatially structured populations significant differences from the solutions of deterministic models are to be expected, since sizes even

larger than those found for homogeneously mixed stochastic models are required for the effects of fluctuations to be negligible.

Furthermore, time series of the (unforced) model provide patterns of recurrent epidemics with slightly irregular periods and realistic

amplitudes, suggesting that stochastic models together with complex networks of contacts may be sufficient to describe the long-

term dynamics of some diseases. The spatial effects were analysed quantitatively by modelling measles and pertussis, using a

susceptible-exposed-infective-recovered (SEIR) model. Both the period and the spatial coherence of the epidemic peaks of pertussis

are well described by the unforced model for realistic values of the parameters.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Deterministic models of epidemic spread have been
used for decades and developed into a mature branch of
applied mathematics. Indeed these models proved
successful in understanding some of the mechanisms
determining the time evolution and the spread of a
variety of infectious diseases, spawning the development
of strategies of epidemic control (Anderson and May,
1991; Hethcote, 2000; Murray, 2003). When applied to
immune-for-life diseases such as measles, these models
account for the observed undamped oscillations regis-
tered in the pre-vaccination era through the introduction
e front matter r 2004 Elsevier Ltd. All rights reserved.
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of seasonal forcing terms (Aron and Schwartz, 1984;
Bolker, 1993; Dietz, 1976; Keeling and Grenfell, 1997,
2002). Indeed, the seasonally forced susceptible-infec-
tive-recovered (SIR) model describes the pre-vaccina-
tion data for measles semi-quantitatively, due to the
prominence of epidemic annual/biennial cycles, corre-
sponding to moderate annual forcing (Earn et al., 2000).
Nevertheless, the importance of demographic sto-

chasticity in the dynamics and persistence of childhood
diseases has long been acknowledged, not in the least
because of stochastic extinction. In the work published
in the 1950s, Bartlett (Bailey, 1975; Bartlett, 1957) has
shown how a stochastic version of the deterministic SIR
model exhibits small amplitude fluctuations, modulated
by the underlying deterministic period. In the linear
regime, for sufficiently large populations, these fluctua-
tions are Gaussian and scale as the square root of the
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population size (Bailey, 1975), while for smaller
population sizes the relative fluctuations are larger and
may lead to stochastic extinction (Anderson and May,
1986; Bartlett, 1957). More recently, several authors
have stressed the need for realistic models, both forced
and unforced, to include stochastic effects (Aparicio and
Solari, 2001; Nåsell, 1999; Rohani et al., 1999, 2002) in
order to describe various aspects of incidence time
series, such as the observed different patterns of
recurrent epidemics. A more systematic treatment of
the shortcomings of deterministic models was given by
Lloyd (2004), who used different analytic techniques as
well as numerical simulations to investigate the depar-
tures from deterministic (or mean-field) behaviour of the
unforced and seasonally forced SIR models, as a
function of the population size. This analysis high-
lights serious deficiencies of deterministic descriptions
of dynamical (long-term) behaviour, especially for
seasonally forced models and ‘moderate’ size (o107)
populations.
Spatial structure is known to be another essential

ingredient of the dynamics of epidemic spread. Coarse-
grained metapopulation models have been considered to
describe phase-locking and decoherence of the observed
spatial patterns of infection, as well as their effects on
global persistence (Bolker and Grenfell, 1995; Finken-
stǎdt and Grenfell, 1998; Grenfell et al., 2001; Lloyd and
May, 1996; Rohani et al., 1999).
The breakdown of the ‘homogeneous mixing’ hypoth-

esis at a finer spatial scale is yet another cause of
departure from mean-field behaviour, namely through
the screening of infectives, that has been recognized in
individually based cellular automata simulations of the
short term dynamics of epidemic bursts (Keeling,
1999; Kleczkowski and Grenfell, 1999; Rhodes and
Anderson, 1996a, b). Less well known is the fact that
spatial correlations may greatly enhance the stochastic
fluctuations.
In this paper, we perform long-term stochastic

simulations of individually based cellular automata on
small world networks with SIR and SEIR node
dynamics. By contrast to spatially structured metapo-
pulation models, based on a coarse-grained distribution
of the global population over a few interacting patches
(Bolker and Grenfell, 1995; Finkenstǎdt and Grenfell,
1998; Grenfell et al., 2001; Lloyd and May, 1996;
Rohani et al., 1999) in our model the nodes of the
network represent individuals. The links are then
connections along which the infection spreads. A small
world network (Watts and Strogatz, 1998) is an attempt
to represent realistically the network of contacts
between individuals, where local links predominate but
social and geographical mobilities imply a fraction of
random connections through which long-range trans-
mission may occur. The spread of infectious disease
through a structured population was indeed one of the
applications envisioned by the creators of the small
world network model (Watts, 1999). Although for
sexually transmitted diseases, other types of contact
networks have been shown to be more realistic (Liljeros
et al., 2001), for most transmission mechanisms a small
world network is the simplest model compatible with the
available data incorporating long-range infection.
We start by assessing the effect of network topology

on the long-term dynamics of a simple spatially
extended model, implementing SIR node dynamics on
a cellular automaton living on a square lattice with small
world interaction rules (Section 2.2). We find the
characteristic long-term dynamics related, in a quanti-
tative fashion, to the structure of the network of
contacts. In particular, the increase in spatial correla-
tions (i) enhances the fluctuations around the endemic
state; (ii) decreases the effective transmission rate
through the screening of infectives and susceptibles;
and (iii) increases the period of the incidence oscillations
as a result of the lower effective transmission rate. These
changes do not follow their mean-field relations reveal-
ing the presence of an important spatial structure
(Sections 2.3 and 3.2).
In Section 3 we test the model in a more realistic

setting, using SEIR node dynamics, a birth rate of
1
61
year�1 and the values reported in the literature

(Anderson and May, 1991) for the latency and recovery
time of two childhood diseases, measles and pertussis.
For measles, the pre-vaccination pattern is accurately
reproduced by simple deterministic models with seaso-
nal forcing. This is not the case for pertussis, where it is
well known that stochasticity plays an important role. A
stochastic version of the standard seasonally forced
susceptible-exposed-infective-recovered (SEIR) model
generates, for pertussis in the pre-vaccination era, a
temporal pattern consistent with the observed dynamics,
and for the vaccination era, epidemics with a pro-
nounced 3.5-year period (Rohani et al., 1999) in line
with the epidemiological data. These results were
obtained by assuming different amplitudes of seasonal
forcing for measles and pertussis.
In Section 3.2 we consider the incidence time series

given by the cellular automaton when the epidemiolo-
gical parameters are taken for measles. As with any
unforced model, the characteristic annual/biennial
cycles of pre-vaccination records cannot be obtained
without fine tuning of the model’s parameters, infec-
tiousness and probability of long-range infection.
However, in the small world region, the amplitudes of
the fluctuations are shown to be compatible with
incidence records for populations with similar sizes. In
order to compare the infectiousness parameter with the
values in the literature we have investigated the
behaviour of our model in the limit where the links
between the nodes are completely random. Apart from
providing a way to relate the basic reproductive rate
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with the infectiousness parameter in our model, this
analysis reveals the mechanism behind recurrent epi-
demics in unforced spatially extended models, showing
how fluctuations decrease along with the spatial
correlations as we approach the homogeneously mixed
stochastic model.
In Section 3.3 we show how the unforced SEIR model

on small world networks produces sustained oscillations
with periods and amplitudes compatible with the
pertussis data both before and after mass vaccination
for realistic values of life expectancy, latency and
recovery time. Analysis of the homogeneously mixed
limit shows that the infectiousness parameter is also
within the reported range for pertussis (Anderson and
May, 1991).
Our results for the SIR and SEIR models support the

conclusion that, for some purposes, successful modelling
of disease spread must take into account the fact that
populations are finite and discrete, and must include a
realistic representation of the spatial degrees of freedom
or, more generally, of the interaction network topology.
It also stresses the importance of network connections in
real epidemics, an idea that has been acknowledged
recently in the context of threshold behaviour (May and
Lloyd, 2001; Pastor-Santorras and Vespigniani, 2001a).
Finally, it calls for a reassessment of the impact of
environmental forcing by studying its effects on a more
realistic autonomous model as the one that we propose.
In particular, fluctuation enhancement by spatial
correlations might remove some of the constraints on
the strength of seasonality and avoid fine tuning of
seasonal forcing amplitudes.
2. SIR node dynamics on a small world network

2.1. Deterministic and stochastic SIR models

In order to set the notation we start with a brief
description of the deterministic and stochastic SIR
models.
A community of N (fixed) individuals comprises, at

time t, S susceptibles, I infectives in circulation and R

recovered or removed (isolated, dead or immune).
Constant infection, b; recovery and birth/death rates
are assumed. g is the recovery rate while birth and death
rates, m; are assumed to be equal.
The basic differential equations in terms of the

densities, s and i, are

ds

dt
¼ �bsi � ms þ m; (1)

di

dt
¼ bsi � ðgþ mÞi: (2)
Endemic equilibrium occurs at i0 ¼ mð1=ðgþ mÞ �
1=bÞ and s0 ¼ ðgþ mÞ=b: By linearizing around this
point we obtain for the period of the damped oscilla-
tions, T � 2p=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðb� gÞ

p
:

In contrast with some SIR models we have considered
non-zero birth rates, m; that will turn out to be crucial to
describe the long-term dynamical behaviour of the
spatial version of the system (Sections 2.3 and 3).
The stochastic version of the SIR model considers the

probability that there are S susceptibles and I infectives
and three types of transitions:

Prfðs; iÞ ! ðs � 1=N; i þ 1=NÞg ¼ bsiDt; (3)

Prfðs; iÞ ! ðs; i � 1=NÞg ¼ giDt þ miDt; (4)

Prfðs; iÞ ! ðs þ 1=N; iÞg ¼ mDt � msDt: (5)

The stochastic change in the number of susceptibles in
time Dt is the sum of the loss due to infection, Poisson
distributed with mean NbsiDt; or death, also Poisson
distributed with mean NmsDt; and the gain due to the
arrival of new susceptibles, Poisson distributed with
mean NmDt: Similarly, the stochastic change in the
number of infectives is the sum of a Poisson distributed
gain due to infection, with mean NbsiDt; and a loss from
death or recovery Poisson distributed with mean Nðgþ
mÞiDt:
The endemic equilibrium is the same as that of the

underlying deterministic model. The equations for the
stochastic changes in s and i may be linearized about the
endemic equilibrium values and the variance of the
fluctuations is easily obtained s2s ¼ 1=s0 þ ð1� s0Þ=i0
and s2i ¼ 1=ði0ð1� s0ÞÞ þ ðs0ð1� s0ÞÞ=i20:
We note that in this regime the fluctuations about the

endemic state scale as the square root of the system size.
These fluctuations exhibit a temporal structure modu-
lated by the underlying deterministic dynamics and thus
oscillate (on average) with the period of the damped
oscillations of the corresponding deterministic model.
The amplitude of these fluctuations is, however, small
and the size of the recurrent epidemic peaks is often
underestimated by a homogeneously mixed stochastic
model.
2.2. Stochastic SIR model on a small world network

The SIR model is easily generalized to an epidemic
that takes place on a network. As for models of
epidemic spread on regular lattices (Grassberger,
1983), the model may be mapped onto percolation on
the same network (Moore and Newmann, 2000a). The
percolation transition corresponds to the epidemic
threshold, above which an epidemic outbreak is possible
(i.e. one that infects a non-zero fraction of the
population, in the limit of large populations) and the



ARTICLE IN PRESS
J. Verdasca et al. / Journal of Theoretical Biology 233 (2005) 553–561556
size of the percolating cluster above this transition
corresponds to the size of the epidemic.
In recent works, the role of the network topology for

SIS and SIR models with zero birth rate has been
considered in the calculation of epidemic thresholds
(May and Lloyd, 2001; Moore and Newmann, 2000a, b;
Pastor-Santorras and Vespigniani, 2001a) the stationary
properties of the endemic state (Pastor-Santorras and
Vespigniani, 2001b), and in the short-term dynamics of
epidemic bursts (Keeling, 1999; Kleczkowski and
Grenfell, 1999, Rhodes and Anderson, 1996). By
contrast, the effects of network topology on the long-
term dynamics of epidemic spread remain poorly
understood.
We shall consider a small world contact network. This

type of networks have topological properties that
interpolate between lattices and random graphs, and
were first proposed by Watts and Strogatz (1998) as
realistic models of social networks. A fraction of the
links is randomized by connecting nodes, with prob-
ability p, with any other node on the lattice; the number
of links is preserved by removing a lattice link when a
random one is established. The interpolation is non
linear: for a range of p the network exhibits small world
behaviour, where a predominantly local neighbourhood
(as in lattices) coexists with a short average path length
(as in random graphs). A small world network over a
regular network is defined, in a statistical sense, by the
small world parameter p. Another useful quantity to
characterize it is the clustering coefficient C, that
measures the locality of the network. The clustering
coefficient is defined as the averaged fraction of all the
possible links between neighbours of a given node that
are actually present in the network. Analysis of real
networks (Dorogotsev and Mendes, 2003) reveals the
existence of small worlds in many interaction networks,
including networks of social contacts.
In order to take into account spatial variations

ignored in homogeneously mixed stochastic models,
we consider a cellular automaton (CA) on a square
lattice of size N ¼ L2: The (random) variables at each
site may take one of three values: S, I or R. The lattice is
full, N ¼ S þ I þ R:We consider local interactions with
k ¼ 4n neighbouring sites on the square lattice (first
neighbours along the N, S, E and W directions, first
neighbours along the NE, NW, SW and SE directions,
second neighbours along N, S, E and W, and so on), as
well as random long-range interactions, with a small
world probability, p, with any other site on the lattice.
The total rate of infection b is the sum of the local and
long-range rates of infection, given in terms of the small
world parameter by bð1� pÞ and bp; respectively. We
have used different types of boundary conditions
(absorbing and helicoidal) and checked that the results
do not depend on them. The results depend quantita-
tively, but not qualitatively, on the number k of
neighbouring sites, provided that k is much smaller
than the size of the lattice.
Birth, death and infection occur stochastically, with

fixed rates (m; m; b) while recovery, characterised by a
disease dependent period, is deterministic (after ti ¼ 1=g
time steps). This disease-dependent period sets the time
scale of the model. At each Monte Carlo step, N random
site updates are performed following a standard algo-
rithm. One type of event, long and short-range infection,
death and birth, is chosen with the appropriate rate (bp;
bð1� pÞ; m; m; respectively) and then proceeds as follows.
For infection events, one site is chosen at random; if the
site is in the infective, I, or recovered, R, states no action
is taken. If the site is in the susceptible state, S, one other
site (one of its k ¼ 12 nearest neighbours for local
infection or any other site on the lattice for long-range
infection) is chosen at random; the first site becomes
infected iff the second site is in the infective state, I. For
a death event, a site is chosen at random and death
occurs regardless; the state is then changed into the
removed or recovered state, R. Finally, for birth events a
recovered site, R, is searched at random until it is found;
then it is changed into the susceptible, S state.
To account for the deterministic recovery, counters

are assigned to all sites and are set to �1; the counters of
the infective sites, I, are updated at each time step. After
ti ¼ 1=gMC steps (recovery time) the infectives recover,
that is the sites in the I state change into the R state.
2.3. Results for the stochastic SIR model on a small world

network

Apart from the network parameter p that determines
the fraction of long distance infection, the spatial SIR
model depends only on three additional parameters.
Two of them are the infectious period and life
expectancy, and the other, b; the infectiousness of the
disease. The first two are determined from medical and
demographic data (Anderson and May, 1991) and we
show that p and b may be obtained from fits to
epidemiological data. Thus the model provides quanti-
tative information on the structure of the network of
contacts underlying the spread of a particular disease.
In Fig. 1 we summarize the results for the persistence

(fraction of the simulations surviving a given number of
time steps) as a function of the small world parameter p

for a population of N ¼ 250; 000: The other model
parameters are kept fixed at m ¼ 0:0006 day�1; g ¼
0:0625 ¼ 1

16
day�1 and b ¼ 0:66 day�1: The persistence

is almost zero at low p, and approaches one over a
narrow range of p, for a population of this size. The
transition between extinction and persistence is a
percolation transition. The epidemic persists in finite
populations as a result of the finite birth rate that allows
the renewal of susceptibles.
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Fig. 1. Epidemic persistence transition. Fraction of the simulations

that survive for 20,000 days as a function of the small world parameter

p, for a discrete SIR model. Infection occurs between connected sites.

Each site has 12 connections, an average fraction 1� p of which are

neighbours on the lattice; the remaining fraction p is chosen randomly

at each time step. The persistence is almost zero, at low p (po0:07) and
approaches one over a narrow range of p close to 0.09, for a

population of 250,000. The abrupt change in persistence is a

percolation transition on the small world network.
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Fig. 2. Small world parameters and the epidemic persistence transi-

tion. Clustering coefficient (dashed line) for the underlying small world

network. The fraction of the simulations that survive for 20,000 days

(circles), and the root mean square amplitude of the epidemic peaks

(dotted line) is also shown. The clustering coefficient and the root

mean square amplitude of the peaks were measured relative to the

lattice values. The persistence transition occurs at the edge of the small

world regime.
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Fig. 3. Effective transmission rate vs the network parameter, p. The

effective transmission rate, beff N; is calculated as the average number
of new infectives per time step divided by the product of the

instantaneous densities of susceptibles and infectives. The drastic

reduction in beff N is due to the clustering of infectives and susceptibles

as p decreases and the spatial correlations increase. The model and the

parameters are the same as in Fig. 1.
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On regular lattices the transitions are isotropic
percolation transitions if a site cannot be re-infected
and directed percolation if re-infection (through birth of
susceptibles, mutation of infectious agents, etc.) occurs
(Dammer and Hinrichsen, 2003). In the presence of
random long-range interactions on the complex network
the transitions become mean-field with an anomalous
asymptotic region (Hastings, 2003). In addition, finite
size effects broaden the transition region considerably.
We note that by contrast with atomic systems, whose
sizes are effectively infinite, finite size effects cannot be
ignored in this context. A detailed study of these effects,
as well as the dependence of the thresholds on relevant
epidemiological parameters, will be published elsewhere.
In Fig. 2 we have plotted the clustering coefficient

(Watts and Strogatz, 1998) of the underlying small
world network for the parameters of Fig. 1. The
persistence and the root mean square amplitude of the
epidemic peaks of the SIR model are also shown. When
the clustering is large (as in lattices) the fluctuations are
large and stochastic extinction occurs. When p ¼ 1 the
fluctuations are small (as in homogeneously mixed
stochastic models) and the epidemic persists. The
persistence transition occurs in the region of intermedi-
ate clustering, i.e., at the edge of the small world regime
where the fluctuations are sufficiently small for stochas-
tic extinction to become rare.
The effective transmission rate, beff N; the average

number of new infectives per time step divided by the
product of the instantaneous densities of susceptibles
and infectives, is shown in Fig. 3. These rates differ from
those reported by Kleczkowski and Grenfell (1999) for
simulations spanning a single epidemic wave, in two
ways. First, we focus on the long-term dynamical regime
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and exclude from the analysis the transient correspond-
ing to the initial dynamical regime. In addition, the
effective transmission rates are calculated during the
simulation runs while those reported by Kleczkowski
and Grenfell (1999) were obtained by fitting simulated
time series to approximate mean-field solutions.
The significant variation of the effective transmission

rate with p is due to the clustering of infectives and
susceptibles and has to be taken into account in fittings
to effective mean-field models. This clustering, and
spatial correlations in general, also have drastic con-
sequences on the amplitude and on the period of the
incidence oscillations. The typical values of these
quantities for a given time series can be used for model
fitting and testing. We will return to this point in the
next section.
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Fig. 4. New infectives time series for homogeneously mixed and

spatially structured populations. Number of new infectives every 2

weeks, from SEIR simulations on N ¼ 1000
 1000 lattices. (a) The

results for measles in a homogeneously mixed population, p ¼ 1; and
transmission rate b ¼ 2:4day�1; exhibit sustained fluctuations with an
average period of two years. The amplitude of the fluctuations is

underestimated when compared with the amplitude of measles

incidence peaks from Birmingham (c). (b) The results for measles on

a network with p ¼ 0:2 and b ¼ 4:75 day�1 exhibit an average period
close to two years but the amplitude of the incidence oscillations is

larger in line with the real data (c).
3. SEIR node dynamics on a small world network

3.1. Stochastic SEIR model on a small world network

In this section, we show that epidemic models on
small world networks provide a natural basis for the
description of recurrent epidemic dynamics, by report-
ing realistic modelling of two childhood diseases,
measles and pertussis. We have obtained, using the
SEIR model, sustained oscillations with periods and
amplitudes compatible with the data for realistic values
of the model parameters. In recent works (Johansen,
1996; Kuperman and Abramson, 2001) a relation was
suggested between spatial structure and the onset of
recurrent epidemics, but in both models the periods of
the incidence oscillations are of the order of the time
elapsed between infection and loss of immunity, and
thus the conclusions are not relevant for immune for life
diseases. In particular, in Kuperman and Abramson
(2001), the homogeneously mixed model exhibits oscil-
latory behaviour which is destroyed by spatial correla-
tions through loss of global synchrony, so that the
reported effect is in a sense the opposite of what we find
here.
The spatial SEIR model is similar to the spatial SIR

model, but the recovery time is split into latent and
infectious periods. During the latent period an S has
become infected but yet cannot infect another suscep-
tible. The rules are as in the spatial SIR model with the
following modifications. Infection: S is infected iff the
second site is an infective in the infectious period, I; in
this case S is changed into the exposed E state. The
counters of the exposed and infective sites are updated.
After tl steps (latency) the exposed sites, E, change into
the infective state, I; the infectious period lasts for an
additional ti steps. Recovery is deterministic and occurs
after tl þ ti steps.
We have taken m ¼ 1
61
year�1 for the birth rate and a

population size of N ¼ 106 in all the simulations. For
measles, we have set ti ¼ 8 days, tl ¼ 6 days and b ¼

2:4 day�1 for the homogeneously mixed model, p ¼ 1;
and b ¼ 4:75 day�1 for the network model with p ¼ 0:2:
For pertussis we set ti ¼ 18 days, tl ¼ 8 days and b ¼

1:5 day�1 for the homogeneously mixed model, p ¼ 1;
and b ¼ 4:0 day�1 for the network model with p ¼ 0:2:
Given the length and variability of the infectious period
of pertussis, deterministic recovery was changed for
Poisson recovery. The end of the latency period was
kept deterministic.

3.2. Results for SEIR dynamics simulations of measles

We obtained new infectives time series on N ¼ 1000

1000 lattices. The time series for measles in homo-
geneously mixed populations, p ¼ 1; exhibit sustained
fluctuations (Fig. 4a) with an average period of two
years. However, the amplitude of the fluctuations is
underestimated when compared with the incidence
oscillations of measles in Birmingham (From data
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Fig. 5. New infectives time series for homogeneously mixed and

spatially structured populations. Number of new infectives every 2

weeks, from SEIR simulations on N ¼ 1000
 1000 lattices. (a) The

results for pertussis on a network with p ¼ 0:2 and b ¼ 4:0 day�1: The
time series is noisier than that for measles on the same network. After

mass vaccination both the period of the incidence oscillations and the

spatial coherence increase. (b) The results for pertussis on a

homogeneously mixed population, p ¼ 1; and transmission rate b ¼

1:5 day�1; exhibit sustained fluctuations with the same average period.
The behaviour of pertussis in the pre and post-vaccination periods is

similar to that of the network model indicating that stochastic effects

dominate the behaviour of these time series.
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at http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.
htm) (Fig. 4c) with a similar population size (about
106 during the reported period).
As discussed in the previous section we found that the

fluctuations are enhanced as a result of clustering when
p decreases. Consequently, in a range of p around the
persistence transition we can account for the amplitude
of the incidence peaks, in sharp contrast with homo-
geneously mixed stochastic models. Conversely, reliable
values of the incidence peaks become in view of this a
measure of p, leaving only b to be fitted to experimental
data.
In Fig. 4b we plot new infectives time series, for SEIR

simulations on a network with p ¼ 0:2; and b corre-
sponding to incidence oscillations with an average
period of 2 years (other parameters as in Fig. 4a). The
amplitude of the incidence peaks is shown to increase
significantly, in line with the real data. As a further
check we report the average age at infection for both
models. We found that while the homogeneously mixed
model underestimates the average age at infection (� 3
years) the small world model, with p ¼ 0:2; increases it
by 20% in line with epidemiological data. Since the
incidence oscillations have similar periods in both
models this result provides additional support of the
network model.
We remark that the effect of spatial correlations on

the period is striking. We found that the period increases
by up to a factor of two as p decreases, as a consequence
of the reduced effective transmission rate, suggesting
that the contact network structure may play a role in the
triennial epidemic cycles observed in the pre-vaccination
measles records of cities such as Copenhagen and
Baltimore (Bolker and Grenfell, 1995). However, spatial
correlations have further implications, beyond the
screening of infectives and its consequences. We have
shown that stochastic fluctuations are significantly
enhanced, and that, as the homogeneous mixing
relations breakdown, the period and the average age at
infection change independently in this model.
Despite the fact that, for measles, seasonality cannot

be ignored, and that pre-vaccination incidence records
are well reproduced by simpler deterministic models
with seasonal forcing, the reported effects of spatial
correlations should also be taken into account. We
expect that adding seasonality to our model will produce
time series showing robust annual/bienneal peaks with
the observed incidences for a wide range of forcing
amplitudes.

3.3. Results for SEIR dynamics simulations of pertussis

While for measles seasonal forcing is the basic
ingredient to explain pre-vaccination long-term dy-
namics, this is not the case for pertussis, where
stochasticity plays an important role.
We have obtained, using SEIR simulations, new
infectives time series on N ¼ 1000
 1000 lattices for
pertussis. Given that the infectious period of pertussis
varies from 14 to 21 days we modelled the recovery of
pertussis stochastically. In Fig. 5a we plot new infectives
time series for pertussis on the same network as measles
(p ¼ 0:2), with b ¼ 4:0 day�1 corresponding to pre-
vaccination incidence oscillations with a broad 2.5 year
period. The root mean square amplitude of the incidence
peaks is compatible with reported epidemiological data
(Rohani et al., 1999). It is obvious from Figs. 4 and 5
that pertussis exhibits epidemic peaks that are much
noisier than those of measles. In our model, this is due in
part to the stochastic recovery process. However, the
effects of spatial correlations, that are significant close
to the epidemic persistence transition, are much less
evident for pertussis. This is confirmed by the results for
pertussis of the homogeneously mixed SEIR model, p ¼

1; that are plotted in Fig. 5b. This time series exhibits
sustained fluctuations (Fig. 5b) with an amplitude that is
similar to that of the network model (p ¼ 0:2), in
marked contrast with the results for measles (Fig. 4) for
the same contact network. Therefore, the importance of
the spatial correlations depends also on the particular
disease.

http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.htm
http://www.zoo.cam.ac.uk/zoostaff/grenfell/measles.htm
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Finally, in Fig. 5 we have plotted new infective time
series for pertussis after mass vaccination. We assumed a
vaccination coverage of 80% with 70% efficacy and
modelled it by reducing the birth rate to one-half of its
value in the pre-vaccination era. It is clear that the
unforced spatial SEIR model is capable of describing the
increase in the period of the recurrent epidemic peaks
reported after mass vaccination while increasing their
spatial coherence, in agreement with available data
(Rohani et al., 1999). In our model, this increased
coherence is due to the loss of stability of the endemic
equilibrium.
These results show that spatially extended SEIR

models on small world networks exhibit sustained
oscillations, that differ from the stochastic fluctuations
of homogeneously mixed stochastic models, under
various conditions relevant to the description of child-
hood diseases. In particular, both the observed periods
and the spatial coherence of the epidemic peaks of
pertussis, before and after mass vaccination, are
described by this spatially extended unforced model.
4. Discussion and conclusions

We performed long-term stochastic simulations of
individually based cellular automata on small world
networks with SIR and SEIR node dynamics. This
model has the recognized basic ingredients for realistic
modelling, namely stochasticity, a discrete and reason-
ably sized finite population, epidemiological parameters
as given in the literature for two childhood diseases, and
spatial structure given by a plausible contact network.
Indeed, the small world network has the path length and
clustering properties shared by most real networks and
its Poisson degree distribution, where the node con-
nectivity is sharply peaked about the mean, is a
reasonable representation of the social contacts among
school children.
As expected, the long-term dynamics is dominated by

stochastic fluctuations around mean-field behaviour.
However, when the network’s clustering coefficient is in
the small world region, i.e., in the range of typical values
measured for social networks, the amplitude of the
stochastic fluctuations is enhanced significantly by
spatial correlations. In particular, away from the
boundary of the small world region, where the clustering
coefficient is high and the interactions are predomi-
nantly local, fluctuations lead to extinction on short
time-scales, for other parameters above the endemic
threshold of the homogeneously mixed model. For the
remaining range of the clustering coefficient, epidemics
persist for times that approach those of homogeneously
mixed populations providing suitable models to inves-
tigate the effects of spatial correlations on the long-term
dynamics of epidemic spread.
This has three major consequences. First, when
spatial structure is taken into account in stochastic
models the size of the population for which the
stochastic and deterministic descriptions agree is larger
than when homogeneous mixing is assumed, due to the
enhancement of fluctuations by the spatial correlations.
Second, for small world networks, the persistence
threshold corresponds to the region where the clustering
coefficient starts to decrease, along with the relative
fluctuations. Third, time series of the (unforced) model
provide patterns of recurrent epidemics with slightly
irregular periods and realistic amplitudes, suggesting
that stochastic models together with spatial correlations
are sufficient to describe the long-term dynamics when
seasonal forcing is weak or absent.
Annual and biennial regular temporal patterns are the

signature of seasonally forced models, but these may
also exhibit different dynamics, such as triennial cycles
and chaotic behaviour. Stochastic effects on seasonally
forced models can also produce slightly irregular,
realistic, time series. Then, how can the basic mechan-
ism(s) of recurrent epidemics be determined from the
case report data ? Our model reduces to the mean-field
stochastic model for p ¼ 1 and large N, but in the range
of epidemiologically relevant population sizes, finite size
effects are important and spatial correlations cannot be
ignored. The epidemic peaks obtained from our model
scale as Na; 12pao1; a � 1

2 being a measure of the effect
of spatial correlations. By contrast, seasonally forced
peaks scale as N. For a given disease and a given
seasonality, the peaks over several cities must scale with
the population N.
The different scaling forms of epidemic peaks

predicted by the two models could be used, in principle,
to discriminate the underlying mechanism of the
incidence oscillations characteristic of a given class of
diseases. Linear fits for measles in England and Wales
do rather well but two-parameter power law fits do
almost as well with a � 3

4
: However the importance of

seasonal forcing for this example is unquestionable,
and a sublinear fit may be the result of a de-phasing
effect.
In conclusion, we have shown that fine grained

discrete models based on contact structure are realistic
autonomous models, that are computationally feasible
for relevant population sizes. In the small world regime,
they exhibit sustained fluctuations with well-defined
period and amplitudes within the observed range. These
quantities may be used to fit the model’s free para-
meters, p and b: The fact that this can be done with
satisfactory quantitative agreement for the simplest
version of the model puts it on the level of the
traditional deterministic and stochastic models as a
basis for realistic modelling. The impact of other factors,
such as seasonal forcing, age structure and spatial
heterogeneity, should be reassessed based on this.
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