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Thus, the proportion of the population that is successfully vaccinated, S, satisfies
S = X̄V /(X̄U + X̄V ) = εpµ/(µ + ω). In particular, X̄U = (π/µ)(1 − S) and
X̄V = (π/µ)S.
At the disease-free equilibrium, the Jacobian matrix is J =





µM 0 0 0 −βM M̄ −βM M̄ 0 0
0 −µM 0 0 βM M̄ βM M̄ 0 0
0 −βU X̄U −µ ω hU 0 δU 0
0 −(1− ψ)βV X̄V 0 −µ − ω 0 hV 0 δV
0 βU X̄U 0 0 −ξU ω 0 0
0 (1− ψ)βU X̄V 0 0 0 −ξV − ω 0 0
0 0 0 0 αU 0 −µ − δU ω

0 0 0 0 0 αV 0 −µ − δV − ω





.

Thus, det(J − )I ) = −(µM + ))(µ + ))(µ + ω + ))(µ + δU + ))(µ + δV +
ω + )) detM , where

M =




−µM − ) βM M̄ βM M̄

βU X̄U −ξU − ) ω

(1− ψ)βV X̄V 0 −ξV − ω − )



 .

Thus, the largest eigenvalue for J will be the largest eigenvalue for M . The vanish-
ing determinant condition gives −µMξU (ξV + ω) + (1 − ψ)βVβMω X̄V M̄ + (1 −
ψ)ξUβVβM X̄V M̄ + (ξV + ω)βUβM X̄U M̄ = 0. Hence,

(1− ψ)βVβM M̄(ξU + ω)

µMξU (ξV + ω)
X̄V + βUβM M̄

µMξU
X̄U = 1 .

Individuals who are vaccinated with disease-modifying vaccines have the poten-
tial to become infected and cause secondary infections. Such individuals may have a
reduced rate of infection, but will have an increased survival time. The reproduction
number in a population with vaccination is RV , in contrast to R0, the basic reproduc-
tion number in an unvaccinated population.

If there is no vaccine, S = 0, so X̄V = 0, X̄U = π/µ and hence the vanish-
ing determinant condition gives R0 = π*βUβM/µµ2MξU . If the entire population is
successfully vaccinated, S = 1 and ω = 0, so X̄V = π/µ, X̄U = 0 and hence the
vanishing determinant condition gives RV = (1 − ψ)(π*βVβM/µµ2MξV ). Thus, the
population reproduction number is RP = (1− S)R0 + SRV . See [4, 7, 13–15].

To estimate the minimum coverage levels pc for an imperfect disease-modifying
vaccine, when RP = 1, this last equation can be rearranged to produce

S = εpcµ
µ + ω

= 1− R0
RV − R0

.

Thus, the threshold disease-modifying vaccine coverage level is

pc = (µ + ω)(µ + γV + αV + hV )[µµ2M (µ + γU + αU + hU ) − βUβM*π ]
εµβM*π [(1− ψ)βV (µ + γU + αU + hU ) − βU (µ + γV + αV + hV )]

. (1.1)
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Fig. 1.1. Schematic representation of the model, representing both unprotected and “successfully
vaccinated” individuals, as well as mosquitos. The background mortalities for humans µ (in all
compartments) and mosquitos µM (in both compartments), as well as disease-induced mortality
for humans γU , γV (in the infected compartments) are not drawn in, for conciseness.

dXU
dt

= (1− εp)π − µXU − βU N XU + ωXV + hUYU + δU QU

dXV
dt

= εpπ − µXV − (1− ψ)βV N XV − ωXV + hV YV + δV QV

dYU
dt

= βU N XU − (µ + γU + αU + hU )YU + ωYV
dYV
dt

= (1− ψ)βV XV − (µ + γV + αV + hV )YV − ωYV
dQU
dt

= αUYU − (µ + δU )QU + ωQV

dQV
dt

= αV YV − (µ + δV )QV − ωQV .

The model is illustrated in Fig. 1.1.
With the notation ξk = µ + γk + αk + hk (k = U, V ), 1/ξK is the total duration

of the infectious period for unprotected and “successfully vaccinated” individuals, re-
spectively. It is expected that the recovery rates αV , hV will increase due to the vaccine,
but that the disease-induced death rate γV will decrease. It follows that the total dura-
tion of the infectious period for vaccinated individuals may either increase or decrease.
It is also expected that the rate of infection βV will not increase.

1.3 Analysis

The disease-free equilibrium satisfies M̄ = */µM , X̄U = [π(µ(1− εp) + ω)]/
[µ(µ + ω)], X̄V = εpπ/(µ + ω) and N̄ = ȲU = ȲV = Q̄U = Q̄V = 0.



6 R.J. Smith?

Thus, the proportion of the population that is successfully vaccinated, S, satisfies
S = X̄V /(X̄U + X̄V ) = εpµ/(µ + ω). In particular, X̄U = (π/µ)(1 − S) and
X̄V = (π/µ)S.
At the disease-free equilibrium, the Jacobian matrix is J =





µM 0 0 0 −βM M̄ −βM M̄ 0 0
0 −µM 0 0 βM M̄ βM M̄ 0 0
0 −βU X̄U −µ ω hU 0 δU 0
0 −(1− ψ)βV X̄V 0 −µ − ω 0 hV 0 δV
0 βU X̄U 0 0 −ξU ω 0 0
0 (1− ψ)βU X̄V 0 0 0 −ξV − ω 0 0
0 0 0 0 αU 0 −µ − δU ω

0 0 0 0 0 αV 0 −µ − δV − ω





.

Thus, det(J − )I ) = −(µM + ))(µ + ))(µ + ω + ))(µ + δU + ))(µ + δV +
ω + )) detM , where

M =




−µM − ) βM M̄ βM M̄

βU X̄U −ξU − ) ω

(1− ψ)βV X̄V 0 −ξV − ω − )



 .

Thus, the largest eigenvalue for J will be the largest eigenvalue for M . The vanish-
ing determinant condition gives −µMξU (ξV + ω) + (1 − ψ)βVβMω X̄V M̄ + (1 −
ψ)ξUβVβM X̄V M̄ + (ξV + ω)βUβM X̄U M̄ = 0. Hence,

(1− ψ)βVβM M̄(ξU + ω)

µMξU (ξV + ω)
X̄V + βUβM M̄

µMξU
X̄U = 1 .

Individuals who are vaccinated with disease-modifying vaccines have the poten-
tial to become infected and cause secondary infections. Such individuals may have a
reduced rate of infection, but will have an increased survival time. The reproduction
number in a population with vaccination is RV , in contrast to R0, the basic reproduc-
tion number in an unvaccinated population.

If there is no vaccine, S = 0, so X̄V = 0, X̄U = π/µ and hence the vanish-
ing determinant condition gives R0 = π*βUβM/µµ2MξU . If the entire population is
successfully vaccinated, S = 1 and ω = 0, so X̄V = π/µ, X̄U = 0 and hence the
vanishing determinant condition gives RV = (1 − ψ)(π*βVβM/µµ2MξV ). Thus, the
population reproduction number is RP = (1− S)R0 + SRV . See [4, 7, 13–15].

To estimate the minimum coverage levels pc for an imperfect disease-modifying
vaccine, when RP = 1, this last equation can be rearranged to produce

S = εpcµ
µ + ω

= 1− R0
RV − R0

.

Thus, the threshold disease-modifying vaccine coverage level is

pc = (µ + ω)(µ + γV + αV + hV )[µµ2M (µ + γU + αU + hU ) − βUβM*π ]
εµβM*π [(1− ψ)βV (µ + γU + αU + hU ) − βU (µ + γV + αV + hV )]

. (1.1)

1 Malaria Vaccines in Endemic Areas 7

 

 

Fig. 1.2. The relationship between the relative rate of infection, the relative duration of infection
and the vaccine efficacy. A disease-modifying vaccine which reduces the duration of infection
will always lead to a decrease in secondary infections, regardless of the efficacy of the vaccine.
More surprisingly, a vaccine which increases the duration of infection can still result in an over-
all decrease in secondary infections, but the outcome depends on the rate of infection and the
efficacy of the vaccine. There is a duration “shoulder,” such that vaccines that increase the dura-
tion of infection slightly will still result in a net decrease in secondary infections. However, as
the duration of infection increases, the number of secondary infections will increase, unless the
rate of infection is lowered accordingly. This is critical for low-efficacy vaccines.

Vaccination programs whose coverage levels exceed this proportion of the population
are likely to eradicate the disease.

Once a vaccine is introduced, the number of secondary infections will increase
if RP > R0 (i.e., if the population reproduction number after the introduction of a
vaccine is greater than the reproduction number currently). This occurs when

(1− S)R0 + SRV > R0
βV
βU

>
ξV

(1− ψ)2ξU
.

This is illustrated in Fig. 1.2.
Clearly, if the rate of infection and the duration of infection both decrease, then

there will always be a decrease in the number of secondary infections. More surpris-
ingly, for a given efficacy of the vaccine, there is a duration “shoulder,” such that a
small increase in the duration of infection will still decrease the number of secondary
infections, even if the rate of infection is unchanged. However, if the duration of in-
fection is increased beyond this shoulder, then it is crucial that the rate of infection be
decreased accordingly. This is critical for low-efficacy vaccines.

The “shoulder” occurs when the relative duration of infection satisfies

1/ξV
1/ξU

= 1
(1− ψ)2

for a given vaccine efficacy ψ . For example, a 20% efficacious vaccine could accomo-
date an increase in the duration of infection by as much as 1.5625 times the current


