
The model is

dS

dt
= π − βHSN + hI + δR− µHS

dI

dt
= βHSN − hI − αI − (µH + γ)I

dR

dt
= αI − δR− µHR (1)

dM

dt
= Λ− µM − βMMI

dN

dt
= βMMI − µN

for t 6= tk, with impulsive conditions given by

∆M = −rM−

∆N = −rN−

for t = tk, where ∆M = M+ −M−, M− ≡ M(t−k ) and, equivalently, M+ ≡
M(t+k ).

The disease-free equilibrium for the nonimpulsive model is given by

E0 = (S̄, Ī, R̄, M̄ , N̄)

=
(
π

µH
, 0, 0,

Λ
µ
, 0
)
.

The endemic equilibrium is given by

E1 = (S∗, I∗, R∗,M∗, N∗) ,

where

S∗ =
π

µH
+

δαI∗

µH(δ +muH)
− α+ µH + γ

µH
I∗

R∗ =
αI∗

δ + µH

M∗ =
Λ

µ+ βMI∗

N∗ =
βMΛI∗

µ(µ+ βMI∗)

and

I∗ =
[βHβMΛπ − (h+ α+ µH + γ)µ2µH ](δ + µH)

βM [(µH + γ)(βHΛ + µ)(δ + µH) + (βMΛ + µ)αµH + µh(δ + µH) + µαδ]
.

It can be seen that E0 attracts the region

Ω0 = {(S, I,R,M,N) : I = R = N = 0} .
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Theorem 1 The basic reproductive ratio for model (1) is given by

R0 =
βHβMΛπ

µ2µH(µH + α+ γ + h)
.

The disease-free equilibrium is stable if and only if R0 < 1. Furthermore, the
endemic equilibrium is positive if and only if R0 > 1.

Proof. The Jacobian matrix for model (1) is

J =


−βHN − µH h δ 0 −βHS

βHN −(h+ α+ µH + γ) 0 0 βHS
0 α −(δ + µH) 0 0
0 −βMM 0 −µ− βMI 0
0 βMM 0 βMI −µ

 .
At the disease-free equilibrium,

J

∣∣∣∣
I=N=0

=


−µH h δ 0 −βH S̄

0 −(h+ α+ µH + γ) 0 0 βH S̄
0 α −(δ + µH) 0 0
0 −βMM̄ 0 −µ 0
0 βMM̄ 0 0 −µ

 .
The eigenvalues of this matrix satisfy the characteristic equation

(−µH − λ)(−δ − µH − λ)(−µ− λ) det
[
−(h+ α+ µH + γ)− λ βH S̄

βMM̄ −µ− λ

]
= 0 .

The only change in sign from the eigenvalues can occur from this last determi-
nant, which satisfies

λ2 + λ(µ+ h+ α+ µH + γ) + µ(h+ α+ µH + γ)− βHβM S̄M̄ = 0 .

This equation will have negative roots if µ(h + α + µH + γ) − βHβM S̄M̄ > 0;
or, equivalently, if and only if

R0 ≡ βHβMΛπ
µ2µH(µH + α+ γ + h)

< 1 .

Finally, I∗ is clearly positive if and only if R0 > 1.

When spraying events are included, the system will undergo an instanta-
neous jump when IRS is applied. We thus analyse model (1) when impulses are
included. However, the mosquito dynamics shall prove to be far more important
in the model than those of humans.

If we define the total mosquito population by

Ψ = M +N , (2)

2



then we have the decoupled impulsive differential equation

dΨ
dt

= Λ− µΨ t 6= tk

∆Ψ = −rΨ t = tk .
(3)

Thus,

Ψ+ −Ψ− = −rΨ−

Ψ+ = (1− r)Ψ− . (4)

Hence, for tk ≤ t < tk+1,

Ψ′(t) + µΨ(t) = Λ
d

dt

(
eµtΨ

)
= Λeµt

eµtΨ− eµtkΨ(t+k ) =
Λ
µ
eµt − Λ

µ
eµtk

Ψ(t) =
Λ
µ

(
1− eµ(tk−t)

)
+ Ψ(t+k )eµ(tk−t) . (5)

It follows that

Ψ−k+1 =
Λ
µ

(
1− e−µ(tk+1−tk)

)
+ Ψ+

k e
−µ(tk+1−tk)

=
Λ
µ

(
1− e−µ(tk+1−tk)

)
+ (1− r)Ψ−k e

−µ(tk+1−tk) , (6)

using (4).
We thus have a recurrence relation for the total number of mosquitos imme-

diately before spraying. This relation depends on the birth and death rates of
mosquitos, the spraying times and the spraying effectiveness.

Theorem 2 If spraying occurs at fixed times, satisfying tk+1 − tk = τ , then

Ψ̃−(r) =
Λ
µ
· 1− e−µτ

1 + (r − 1)e−µτ
. (7)

is a globally asymptotically stable fixed point of the recurrence relation

Ψ−k+1 =
Λ
µ

(
1− e−µ(t−tk)

)
+ (1− r)Ψ−k e

−µ(t−tk) ,

Proof. For completeness, define Ψ0 to be the pre-image of Ψ(0) under the
impulsive condition. That is, Ψ0 = 1

1−rΨ(0). Then we have

Ψ−1 =
Λ
µ

(
1− e−µ(t1−t0)

)
+ (1− r)Ψ0e

−µ(t1−t0)
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Ψ−2 =
Λ
µ

(
1− e−µ(t2−t1)

)
+ (1− r)Ψ−1 e−µ(t2−t1)

=
Λ
µ

(
1− e−µ(t2−t1)

)
+ (1− r)Λ

µ

(
1− e−µ(t1−t0)

)
e−µ(t2−t1)

+(1− r)2Ψ0e
−µ(t1−t0)e−µ(t2−t1)

=
Λ
µ

(
1− re−µ(t2−t1) − (1− r)e−µ(t2−t0)

)
+ (1− r)2Ψ0e

−µ(t2−t0)

Ψ−3 =
Λ
µ

(
1− e−µ(t3−t2)

)
+ (1− r)Ψ−2 e−µ(t3−t2)

=
Λ
µ

(
1− e−µ(t3−t2)

)
+ (1− r)Λ

µ

(
1− re−µ(t2−t1)

−(1− r)e−µ(t2−t0)
)
e−µ(t3−t2) + (1− r)3Ψ0e

−µ(t2−t0)e−µ(t3−t2)

=
Λ
µ

(
1− re−µ(t3−t2) − r(1− r)e−µ(t3−t1) − (1− r)2e−µ(t3−t0)

)
+(1− r)3Ψ0e

−µ(t3−t0)

Ψ−4 =
Λ
µ

(
1− re−µ(t4−t3) − r(1− r)e−µ(t4−t2) − r(1− r)2e−µ(t4−t1)

−(1− r)3e−µ(t4−t0)
)

+ (1− r)4Ψ0e
−µ(t4−t0)

...

Ψ−n =
Λ
µ

(
1−

n−1∑
i=1

r(1− r)n−i−1e−µ(tn−ti) − (1− r)n−1e−µ(tn−t0)

)
+(1− r)nΨ0e

−µ(tn−t0) .

For regular spraying, tn − ti = (n− i)τ , so we have

Ψ−n =
Λ
µ

(
1− re−µτ − (1− r)n−1re−µτ

1− (1− r)e−µτ
− (1− r)n−1e−µnτ)

)
+(1− r)nΨ0e

−µnτ

→ Λ
µ

(
1− re−µτ

1− (1− r)e−µτ

)
as n→∞, since 0 < r < 1.

Corollary 1 1. To reduce the total mosquito population below a desired thresh-
old Ψ̃, the minimum spraying effectiveness satisfies

r̃ = 1−
[
1− Λ

µΨ̃
(1− e−µτ )

]
eµτ .

2. To reduce the mosquito population below a desired threshold Ψ̃, the minimum
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spraying period satisfies

τ̃ = − 1
µ

ln

[
Λ− µΨ̃

Λ + µΨ̃(r − 1)

]
. (8)

Proof. 1. Since Ψ(t) ≤ Ψ− for tk ≤ t ≤ tk+1, the maximum within each cycle
occurs immediately before spraying is undertaken, so we can set Ψ̃ = Ψ−. By
Theorem 2, we have

Ψ̃ =
Λ
µ
· 1− e−µτ

1 + (r̃ − 1)e−µτ

1 + (r̃ − 1)e−µτ =
Λ
µΨ̃

(1− e−µτ )

r̃ = 1−
[
1− Λ

µΨ̃
(1− e−µτ )

]
eµτ .

2. Similarly, we have(
r − 1 +

Λ
µΨ̃

)
e−µτ̃ =

Λ
µΨ̃
− 1

τ̃ = − 1
µ

ln

[
Λ− µΨ̃

Λ + µΨ̃(r − 1)

]

It follows that we can find the minimal spraying effectiveness or the minimal
spraying period, in terms of the birth and death rates of mosquitos and the
spraying effectiveness.

Theorem 3 If spraying occurs at non-fixed times, then, assuming the two pre-
vious spraying events are known, the population of mosquitos can be reduced
below the threshold Ψ̃ if the next spraying event satisfies

tn+1 ≤ tn −
1
µ

ln

[
2− r − µΨ̃/Λ

1 + r(1− r)e−µ(tn−tn−1)

]
.

Proof. For n large,

Ψ−n ≈ Λ
µ

(
1−

n−1∑
i=1

r(1− r)n−i−1e−µ(tn−ti)

)
,

since (1 − r)n−1 ≈ 0 and e−µ(tn−t0) ≈ 0. If we assume e−µ(tn−tn−2) is small,
then, using (6), we have

Ψ−n <
Λ
µ

(
1− re−µ(tn−tn−1)

)
Ψ+
n+1 <

Λ
µ

(
1− re−µ(tn−tn−1)

)
+ (1− r)Ψ−n e−µ(tn+1−tn)

<
Λ
µ

(
1− re−µ(tn−tn−1)

)
+ (1− r)Λ

µ

(
1− re−µ(tn−tn−1)

)
e−µ(tn+1−tn) .

5



Define

Ψ̃ ≡ Λ
µ

(
1− re−µ(tn−tm−1)

)
+ (1− r)Λ

µ

(
1− re−µ(tn−tn−1)

)
e−µ(tn+1−tn) .

Thus,

Λ
µ

(1 + (1− r))− Ψ̃ = e−µ(tn+1−tn) Λ
µ

(
1 + r(1− r)e−µ(tn+1−tn)

)
e−µ(tn+1−tn) =

2− r − µΨ̃/Λ
1 + r(1− r)e−µ(tn−tn−1)

tn+1 = tn −
1
µ

ln

[
2− r − µΨ̃/Λ

1 + r(1− r)e−µ(tn−tn−1)

]
.

Hence, if spraying occurs at tn+1 or earlier, then the number of mosquitos will
be less than or equal to Ψ̃, immediately after the (n+ 1)th spraying event.

Thus, we can derive the “next best” spraying events for non-fixed spray-
ing, by assuming that the time between the current spraying and that of two
sprayings ago is sufficiently large.

Theorem 4 If non-fixed spraying occurs indefinitely, then there exists a mini-
mum spraying effectiveness r0, satisying 0 < r0 < 1, such that variable spraying
is only effective for r0 ≤ r ≤ 1. Furthermore, on this interval, the minimum
spraying interval for indefinite non-fixed spraying is always less than the mini-
mum spraying interval for regular spraying.

Proof. First, note that, for regular spraying, we have

τ̃ = − 1
µ

ln

[
Λ− µΨ̃

Λ + µΨ̃(r − 1)

]

τ̃
∣∣
r=0

= − 1
µ

ln

[
Λ− µΨ̃
Λ− µΨ̃

]
(9)

= 0

τ̃
∣∣
r=1

= − 1
µ

ln

[
Λ− µΨ̃

Λ

]

= − 1
µ

ln

[
1− µΨ̃

Λ

]
. (10)

However, Ψ = M +N , so, if there is no impulse, then, from (3), limt→∞Ψ(t) =
Λ/µ. Thus, we can assume that Ψ̃ < Λ/µ. Hence,

0 < 1− µΨ̃/Λ < 1 (11)

and thus τ̃
∣∣
r=1

> 0.
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If non-fixed spraying occurs indefinitely, then let τnf ≡ tn+1− tn = tn− tn−1.
The minimum spraying effectiveness then satisfies

τnf = − 1
µ

ln

[
2− r − µΨ̃/Λ

1 + r(1− r)e−µτnf

]
.

If τnf = 0, then

− 1
µ

ln

[
2− r − µΨ̃/Λ
1 + r(1− r)

]
= 0

2− r − µΨ̃/Λ = 1 + r(1− r)
r2 − 2r + 1− µΨ̃/Λ = 0

r = 1±
√
µΨ̃/Λ

Clearly, the larger root exceeds unity and can hence be discounted. The smaller

root, r0 ≡ 1−
√
µΨ̃/Λ satisfies 0 < r0 < 1, by (11). It follows that spraying is

only effective in the range r0 ≤ r ≤ 1.
Next, we have

τnf

∣∣
r=1

= − 1
µ

ln

[
1− µΨ̃/Λ

1

]
= τ̃

∣∣
r=1

,

from (10).
Since e−µτnf < 1, we have

Λ− µΨ̃
Λ + µΨ̃(r − 1)

· 1 + r(1− r)e−µτnf

2− r − µΨ̃/Λ
< Λ(Λ− µΨ̃)f(r)

where

f(r) =
1 + r − r2

[Λ + µΨ(r − 1)][(2− r)Λ− µΨ]
.

We can write

f(r) =
1 + r − r2

r2ΛµΨ− r(Λ2 + 3ΛµΨ− µ2Ψ2) + 2Λ2 + 3ΛµΨ− µ2Ψ2

f ′(r) =
α

[r2ΛµΨ− r(Λ2 + 3ΛµΨ− µ2Ψ2) + 2Λ2 + 3ΛµΨ− µ2Ψ2]2
,

where

α = [−r2ΛµΨ− r(Λ2 − 3ΛµΨ + µ2Ψ2) + 2Λ2 − 3ΛµΨ + µ2Ψ2](1− 2r)
−(1 + r − r2)[−2rΛµΨ− (Λ2 − 3ΛµΨ + µ2Ψ2)]

= r2(−Λ2 + 4ΛµΨ− µ2Ψ2) + 2r(−Λ2 + ΛµΨ) + 3Λ2 + 2µ2Ψ2

= Λ2(−r2 − 2r + 3) + ΛµΨ(4r2 + 2r) + µ2Ψ2(2− r2) .

7



On the interval 0 < r < 1, −r2− 2r+ 3 > 0, 4r2 + 2r > 0 and 2− r2 > 0. Thus,
α > 0 on 0 < r < 1. It follows that f(r) is increasing on this interval.

Furthermore,

f(1) =
1

Λ(Λ− µΨ)
.

Consequently,

Λ− µΨ̃
Λ + µΨ̃(r − 1)

· 1 + r(1− r)e−µτnf

2− r − µΨ̃/Λ
< 1

and hence

τ̃ − τnf = − 1
µ

ln

[
Λ− µΨ̃

Λ + µΨ̃(r − 1)
· 1 + r(1− r)e−µτnf

2− r − µΨ̃/Λ

]
> 0 .

Thus, τ̃ > τnf for 0 < r < 1.

It follows that non-fixed spraying is always worse than regular spraying –
even in the best-case scenario that such spraying is applied at regular intervals
– and is only defined for a sufficiently effective insecticide.

As global temperatures increase, one of the major impacts will be an increase
in the birth rate of mosquitos. If the mosquito birth rate is increased from Λ to
Λ + Λ1, then the recursion relation (6), with regular spraying, becomes

Ψ−k+1 =
Λ + Λ1

µ

(
1− e−µτ

)
+ (1− r)Ψ−k e

−µτ .

This has solution

Ψ̃− =
Λ + Λ1

µ
· 1− e−µτ

1 + (r − 1)e−µτ
.

Rearranging, we have

τ̃ = − 1
µ

ln

[
Λ + Λ1 − µΨ̃

Λ + Λ1 + µΨ̃(r − 1)

]
.

It follows that

∂τ̃

∂Λ1
= − rΨ̃

(Λ + Λ1 − µΨ̃)(Λ + Λ1 − µΨ̃ + rµΨ̃)
< 0 ,

since Ψ̃ < Λ
µ . Thus, as the mosquito birth rate increases, the minimal effective

spraying period will always be reduced, for a fixed mosquito threshold Ψ̃. In
particular, we have

lim
Λ1→∞

τ̃ = 0 .
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