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for ¢ # tg, with impulsive conditions given by
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for t = ¢, where AM = M*™ — M~, M~ = M(t;) and, equivalently, M =
M(th).
The disease-free equilibrium for the nonimpulsive model is given by
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The endemic equilibrium is given by

E, = (S, I",R*",M*,N*),
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It can be seen that Ey attracts the region

Q = {(S,I,R,M,N):I=R=N=0}.



Theorem 1 The basic reproductive ratio for model (1) is given by
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The disease-free equilibrium is stable if and only if Ry < 1. Furthermore, the
endemic equilibrium is positive if and only if Rg > 1.

Proof. The Jacobian matrix for model (1) is
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At the disease-free equilibrium,
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The eigenvalues of this matrix satisfy the characteristic equation
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The only change in sign from the eigenvalues can occur from this last determi-
nant, which satisfies
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This equation will have negative roots if pu(h + o + g + ) — BuBarSM > 0;
or, equivalently, if and only if
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Finally, I* is clearly positive if and only if Rg > 1. 0

When spraying events are included, the system will undergo an instanta-
neous jump when IRS is applied. We thus analyse model (1) when impulses are
included. However, the mosquito dynamics shall prove to be far more important
in the model than those of humans.

If we define the total mosquito population by

U=M+N, 2)



then we have the decoupled impulsive differential equation
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It follows that

U

1 = 1— e-#(tk+1—tk)) + \I;;Ci-e—u(tkﬂ—tk-)

Tl

(1 B e,u(tkﬂftk)) +(1- r)\ygefu(twrtk) , (6)

using (4).

We thus have a recurrence relation for the total number of mosquitos imme-
diately before spraying. This relation depends on the birth and death rates of
mosquitos, the spraying times and the spraying effectiveness.

Theorem 2 If spraying occurs at fized times, satisfying tp+1 —tx = 7, then
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18 a globally asymptotically stable fized point of the recurrence relation
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Proof. For completeness, define ¥y to be the pre-image of ¥(0) under the

impulsive condition. That is, ¥g = ;== ¥(0). Then we have
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For regular spraying, t, — t; = (n — i)7, so we have
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as n — 00, since 0 < r < 1.
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Corollary 1 1. To reduce the total mosquito population below a desired thresh-
old ¥, the minimum spraying effectiveness satisfies

T = 1—[1— AN(l—e_’”)]e’”.
v

2. To reduce the mosquito population below a desired threshold ¥, the minimum



spraying period satisfies
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Proof. 1. Since ¥(t) < U~ for ty <t < 41, the maximum within each cycle
occurs immediately before spraying is undertaken, so we can set ¥ = W~. By
Theorem 2, we have
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It follows that we can find the minimal spraying effectiveness or the minimal

spraying period, in terms of the birth and death rates of mosquitos and the
spraying effectiveness.

Theorem 3 If spraying occurs at non-fived times, then, assuming the two pre-
vious spraying events are known, the population of mosquitos can be reduced
below the threshold VU if the next spraying event satisfies
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Proof. For n large,
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Define
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Hence, if spraying occurs at ¢, 41 or earlier, then the number of mosquitos will
be less than or equal to ¥, immediately after the (n + 1) spraying event.

Thus, we can derive the “next best” spraying events for non-fixed spray-
ing, by assuming that the time between the current spraying and that of two
sprayings ago is sufficiently large.

Theorem 4 If non-fized spraying occurs indefinitely, then there exists a mini-
mum spraying effectiveness g, satisying 0 < ro < 1, such that variable spraying
is only effective for ro < r < 1. Furthermore, on this interval, the minimum
spraying interval for indefinite non-fixed spraying is always less than the mini-
mum spraying interval for reqular spraying.

Proof. First, note that, for regular spraying, we have
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However, ¥ = M + N, so, if there is no impulse, then, from (3), lim; o ¥(t) =
A/p. Thus, we can assume that ¥ < A/u. Hence,

0<1-—p¥/A<1 (11)

and thus %|T:1 > 0.



If non-fixed spraying occurs indefinitely, then let 7,¢ =t 11—t =t —tn—1.
The minimum spraying effectiveness then satisfies
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Clearly, the larger root exceeds unity and can hence be discounted. The smaller

root, ro = 1 — \/,u‘il/A satisfies 0 < rg < 1, by (11). It follows that spraying is
only effective in the range ro < r < 1.
Next, we have
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Since e™#"nf < 1, we have
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On the interval 0 < r < 1, =72 —=2r+3 > 0, 472 +2r > 0 and 2—r2 > 0. Thus,
a>0on0<r<1. It follows that f(r) is increasing on this interval.

Furthermore,
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Thus, 7 > ¢ for 0 < r < 1. 0O

It follows that non-fixed spraying is always worse than regular spraying —
even in the best-case scenario that such spraying is applied at regular intervals
— and is only defined for a sufficiently effective insecticide.

As global temperatures increase, one of the major impacts will be an increase
in the birth rate of mosquitos. If the mosquito birth rate is increased from A to
A + A1, then the recursion relation (6), with regular spraying, becomes
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since ¥ < % Thus, as the mosquito birth rate increases, the minimal effective

spraying period will always be reduced, for a fixed mosquito threshold U. In
particular, we have



