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Control

Malaria control primarily consists of
• chemoprophylaxis 

– drugs, vaccines, etc
• vector control

– insecticides, larvacides, etc
– aim is to reduce vector 

population density and 
survival.



Indoor Residual Spraying

• Malaria vectors are endophilic, resting inside 
houses after feeding

• Indoor Residual Spraying 
(IRS) involves spraying 
houses or dwellings on 
the inside and under eaves 
on the outside

• Kills mosquitos after they’ve 
fed

• Duration of effective action 
is 2-6 months.



Effectiveness of IRS

• When implemented well, it can be effective
• IRS has been responsible for suppression of 

at least one vector of malaria transmission, 
An. funestus

• However, in recent 
years it has received 
relatively little 
attention.



Limitations of a spraying program

• Spraying too frequently:
– toxicity in individuals and the environment
– waste of limited resources

• Spraying infrequently:
– unchecked mosquito reproduction

• Further constraint:
– Due to resource limitations and 

logistics, spraying may not occur 
at regular intervals.



Crucial questions

How effective 
does an 

insecticide 
have to be for 

overall 
mosquito 

reduction?

Can we 
determine the 

optimal 
spraying 

frequency for a 
given 

insecticide?

If spraying occurs at 
non-fixed times, and 

we know only the 
times of the previous 
two spraying events, 
can we determine the 
“next best” spraying 

time?



Impulsive differential equations

• Assume spraying is 
instantaneous

• That is, the delay in 
mosquito reduction is 
assumed to be 
negligible

• This results in a 
system of impulsive 
differential equations.
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Impulsive Differential Equations

• Assume drug effects

• That is, the time-to-
peak is assumed to 
be negligible

• This results in a 
system of impulsive 
differential equations.
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Impulsive effect

• According to impulsive theory, we can 
describe the nature of the impulse at time rk 
via the difference equation

Depends on the 
time of impulse
and the state
immediately 
beforehand.

Difference
equation



Impulsive DEs

• Solutions are 
continuous for
t ≠ rk

• Solutions undergo 
an instantaneous 
change in state 
when t = rk.

rk=impulse time



Putting it together

• The model thus consists of a system of 
ODEs (humans), together with ODEs and 
difference equations (mosquitos).



The model
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The differential equations

• At non-spraying times, the ODEs are

for t ≠ tk.

2 The Model

It can be assumed that mosquitos are either susceptible (M) or infected (N),
have birth rate ⇥ and that their death rate (µ) does not vary significantly if they
are infected. Individuals who have experienced infection may recover (without
substantial gain in immunity) at recovery rate h or may become temporarily
immune at acquired immunity rate �. See [4, 9, 10, 12, 13] for further details.
Temporarily immune individuals will become susceptible again at rate ⌅. The
rate of infection of a susceptible individual is ⇥H and the rate of infecting a
mosquito is ⇥M . The birth rate for humans is ⌃, the background death rate is
µH and ⇤ is the death rate due to malaria. Humans may be susceptible (S),
infected (I) or temporarily immune (R).

We assume that spraying reduces both susceptible and infected mosquitoes
by the same proportion r (satisfying 0 ⇤ r ⇤ 1) and that it occurs at distinct
times tk (k = 0, 1, 2, . . .). These times may be fixed or variable. We model
the e⇤ect of spraying by a system of impulsive di⇤erential equations. Impul-
sive di⇤erential equations consist of a system of ordinary di⇤erential equations
(ODEs), together with di⇤erence equations. Between ‘impulses’ tk, the system
is continuous, behaving as a system of ODEs. At the impulse points there is an
instantaneous change in state in some or all of the variables. This instantaneous
change can occur when certain spatial, temporal or spatio-temporal conditions
are met. We refer the interested reader to [1, 2, 3, 8] for more details on the
theory of impulsive di⇤erential equations.

Thus, the model is

dS

dt
= ⌃ � ⇥HSN + hI + ⌅R� µHS

dI

dt
= ⇥HSN � hI � �I � (µH + ⇤)I

dR

dt
= �I � ⌅R� µHR (2.1)

dM

dt
= ⇥� µM � ⇥MMI

dN

dt
= ⇥MMI � µN

for t ⌅= tk, with impulsive conditions given by

�M = �rM�

�N = �rN�

for t = tk, where �M = M+ �M�, M� ⇥ M(t�k ) and, equivalently, M+ ⇥
M(t+k ).

3

S=Susceptible humans
I=Infected humans
R=Recovered humans
M=Susceptible mosq.
N=Infected mosq.
π,Λ=birth rates
µ,µH=death rates
βH,βM=transmissibility
γ=malaria death rate
h=recovery rate
α=immunity rate
δ=loss of immunity



Spraying impulse

• At spraying times tk, the impulsive effect is

for t = tk
• Here, r is the effectiveness of the insecticide.

2 The Model

It can be assumed that mosquitos are either susceptible (M) or infected (N),
have birth rate ⇥ and that their death rate (µ) does not vary significantly if they
are infected. Individuals who have experienced infection may recover (without
substantial gain in immunity) at recovery rate h or may become temporarily
immune at acquired immunity rate �. See [4, 9, 10, 12, 13] for further details.
Temporarily immune individuals will become susceptible again at rate ⌅. The
rate of infection of a susceptible individual is ⇥H and the rate of infecting a
mosquito is ⇥M . The birth rate for humans is ⌃, the background death rate is
µH and ⇤ is the death rate due to malaria. Humans may be susceptible (S),
infected (I) or temporarily immune (R).

We assume that spraying reduces both susceptible and infected mosquitoes
by the same proportion r (satisfying 0 ⇤ r ⇤ 1) and that it occurs at distinct
times tk (k = 0, 1, 2, . . .). These times may be fixed or variable. We model
the e⇤ect of spraying by a system of impulsive di⇤erential equations. Impul-
sive di⇤erential equations consist of a system of ordinary di⇤erential equations
(ODEs), together with di⇤erence equations. Between ‘impulses’ tk, the system
is continuous, behaving as a system of ODEs. At the impulse points there is an
instantaneous change in state in some or all of the variables. This instantaneous
change can occur when certain spatial, temporal or spatio-temporal conditions
are met. We refer the interested reader to [1, 2, 3, 8] for more details on the
theory of impulsive di⇤erential equations.

Thus, the model is

dS

dt
= ⌃ � ⇥HSN + hI + ⌅R� µHS

dI

dt
= ⇥HSN � hI � �I � (µH + ⇤)I

dR

dt
= �I � ⌅R� µHR (2.1)

dM

dt
= ⇥� µM � ⇥MMI

dN

dt
= ⇥MMI � µN

for t ⌅= tk, with impulsive conditions given by

�M = �rM�

�N = �rN�

for t = tk, where �M = M+ �M�, M� ⇥ M(t�k ) and, equivalently, M+ ⇥
M(t+k ).

3
M=Susceptible mosq.
N=Infected mosq.



The nonimpulsive system

• Without spraying, we have two equilibria:

(disease-free and endemic)
• The basic reproductive ratio is

• The endemic equilibrium is positive iff R0>1.

3 Analysis of the nonimpulsive system

First, we shall analyse the system without impulses. The disease-free equilib-
rium for the nonimpulsive model is given by

E0 = (s̄, Ī , R̄, M̄ , N̄)

=
�

⌃

µH
, 0, 0,

�
µ

, 0
⇥

.

The endemic equilibrium is given by

E1 = (S�, I�, R�, M�, N�) ,

where

S� =
⌃

µH
+

⌅�I�

µH(⌅ + muH)
� � + µH + ⇤

µH
I�

R� =
�I�

⌅ + µH

M� =
�

µ + ⇥MI�

N� =
⇥M�I�

µ(µ + ⇥MI�)

and

I� =
[⇥H⇥M�⌃ � (h + � + µH + ⇤)µ2µH ](⌅ + µH)

⇥M [(µH + ⇤)(⇥H� + µ)(⌅ + µH) + (⇥M� + µ)�µH + µh(⌅ + µH) + µ�⌅]
.

It can be seen that E0 attracts the region

⇥0 = {(S, I, R,M,N) : I = R = N = 0} .

Theorem 3.1 The basic reproductive ratio [7] for model (2.1) is given by

R0 =
⇥H⇥M�⌃

µ2µH(µH + � + ⇤ + h)
.

The disease-free equilibrium is stable if and only if R0 < 1. Furthermore, the
endemic equilibrium is positive if and only if R0 > 1.

Proof. The Jacobian matrix for model (2.1) is

J =

⇤

⌥⌥⌥⌥⇧

�⇥HN � µH h ⌅ 0 �⇥HS
⇥HN �(h + � + µH + ⇤) 0 0 ⇥HS

0 � �(⌅ + µH) 0 0
0 �⇥MM 0 �µ� ⇥MI 0
0 ⇥MM 0 ⇥MI �µ

⌅

����⌃
.

4

S=Susceptible humans I=Infected humans
R=Recovered humans M=Susceptible mosq.
N=Infected mosq.  π,Λ=birth rates α=immunity rate
µ,µH=death rates βH,βM=transmissibility
γ=malaria death rate h=recovery rate

(S̄, Ī, R̄, M̄ , N̄) =
�

⇥

µH
, 0, 0,

�
µ

, 0
⇥

, (S�, I�, R�,M�, N�)



Analysis of the impulsive system

• If we define the total mosquito population by

then we have the decoupled impulsive 
differential equation

• Thus

At the disease-free equilibrium,

J

⇤⇤⇤⇤
I=N=0

=

�

����⌦

�µH h ⌅ 0 �⇥H S̄
0 �(h + � + µH + ⇤) 0 0 ⇥H S̄
0 � �(⌅ + µH) 0 0
0 �⇥MM̄ 0 �µ 0
0 ⇥MM̄ 0 0 �µ

 

����↵
.

The eigenvalues of this matrix satisfy the characteristic equation

(�µH � ⇧)(�⌅ � µH � ⇧)(�µ� ⇧) det
⌃
�(h + � + µH + ⇤)� ⇧ ⇥H S̄

⇥MM̄ �µ� ⇧

⌥
= 0 .

The only change in sign from the eigenvalues can occur from this last determi-
nant, which satisfies

⇧2 + ⇧(µ + h + � + µH + ⇤) + µ(h + � + µH + ⇤)� ⇥H⇥M S̄M̄ = 0 .

This equation will have negative roots if µ(h + � + µH + ⇤) � ⇥H⇥M S̄M̄ > 0;
or, equivalently, if and only if

R0 ⇥ ⇥H⇥M⇥⌥

µ2µH(µH + � + ⇤ + h)
< 1 .

Finally, I⇥ is clearly positive if and only if R0 > 1.

Remark. It follows that there is a transcritical bifurcation at R0 = 1.

4 Analysis of the impulsive system

If we define the total mosquito population by

⇤ = M + N , (4.2)

then we have the decoupled impulsive di⌅erential equation
d⇤
dt

= ⇥� µ⇤ t ⌅= tk

�⇤ = �r⇤ t = tk .
(4.3)

Thus,

⇤+ �⇤� = �r⇤�

⇤+ = (1� r)⇤� . (4.4)

Hence, for tk ⇤ t < tk+1,

⇤⇤(t) + µ⇤(t) = ⇥
d

dt

�
eµt⇤

⇥
= ⇥eµt

eµt⇤� eµtk⇤(tk) =
⇥
µ

eµt � ⇥
µ

eµtk

⇤(t) =
⇥
µ

⌅
1� eµ(tk�t)

⇧
+ ⇤(tk)eµ(tk�t) . (4.5)
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Λ=mosq. birth rate
µ=mosq. death rate
r=spraying effectiveness
tk=spraying times



• For tk<t<tk+1, the solution is

• It follows that the endpoints satisfy the 
recursion relation

⇥�k+1 =
�
µ

�
1� e�µ(tk+1�tk)

⇥
+ ⇥+

k e�µ(tk+1�tk)

=
�
µ

�
1� e�µ(tk+1�tk)

⇥
+ (1� r)⇥�k e�µ(tk+1�tk).

Solution of the decoupled system

Ψ=total mosq. population 
Λ=mosq. birth rate
µ=mosq. death rate
r=spraying effectiveness
tk=spraying times

⇥(t) =
�
µ

�
1� e�µ(t�tk)

⇥
+ ⇥+

k e�µ(t�tk)



• We have the following result:

• Furthermore,

Theorem: If spraying occurs at fixed times, satisfying ⇥ = tk+1 � tk, then

⇥̃�(r) =
�
µ

· 1� e�µ⇥

1 + (r � 1)e�µ⇥

is a globally asymptotically stable fixed point of the recurrence relation

⇥�k+1 =
�
µ

�
1� e�µ⇥

⇥
+ (1� r)⇥�k e�µ⇥

Proof: Smith? & Hove-Musekwa, 2008

Regular spraying

⇥�n =
�
µ

⇧
1�

n�1 

i=1

r(1� r)n�i�1e�µ(tn�ti) � (1� r)n�1e�µ(tn�t0)

⌃

+(1� r)n⇥0e
�µ(tn�t0) .

For regular spraying, tn � ti = (n� i)⇥ , so we have

⇥�n =
�
µ

�
1� re�µ⇥ � (1� r)n�1re�µ⇥

1� (1� r)e�µ⇥
� (1� r)n�1e�µn⇥)

⇥

+(1� r)n⇥0e
�µn⇥

⌅ �
µ

�
1� re�µ⇥

1� (1� r)e�µ⇥

⇥

as n⌅⇧, since 0 < r < 1.

Remarks. 1. Note that

lim
��0
n�⇥

⇥�n = 0 .

Thus, the total mosquito population shrinks to zero as spraying frequency in-
creases.

2. It follows from Theorem 4.1 that the impulsive periodic orbit given by
(4.5), with endpoints ⇥� and (1� r)⇥�, where ⇥� satisfies (4.7), is asymptot-
ically stable.

Corollary 4.1 1. To reduce the total mosquito population below a desired thresh-
old ⇥̃, the minimum percentage of mosquitos that must be eradicated after each
spraying satisfies

r̃ = 1�
⇤
1� �

µ⇥̃
(1� e�µ⇥ )

⌅
eµ⇥ .

2. To reduce the mosquito population below a desired threshold ⇥̃, the minimum
spraying frequency satisfies

⇥̃ = � 1
µ

ln

⌥
�� µ⇥̃

� + µ⇥̃(r � 1)

�
.

Proof. 1. Since ⇥(t) ⇤ ⇥� for tk ⇤ t ⇤ tk+1, the maximum within each cycle
occurs immediately before spraying is undertaken, so we can set ⇥̃ = ⇥�. By
Theorem 4.1, we have

⇥̃ =
�
µ

· 1� e�µ⇥

1 + (r̃ � 1)e�µ⇥

1 + (r̃ � 1)e�µ⇥ =
�

µ⇥̃
(1� e�µ⇥ )

r̃ = 1�
⇤
1� �

µ⇥̃
(1� e�µ⇥ )

⌅
eµ⇥ .

7

Ψ=total mosq. population 
Λ=mosq. birth rate
µ=mosq. death rate
r=spraying effectiveness
tk=spraying times



• This has the following implications:

Optimal spraying

Corollary 1: To reduce the total mosquito population below a desired threshold
⇥̃, the minimum insecticide e⇤ectiveness satisfies

r̃ = 1�
�
1� �

µ⇥̃
(1� e�µ⇥ )

⇥
eµ⇥

Corollary 2: To reduce the mosquito population below a desired threshold ⇥̃,
the minimum spraying period satisfies

⇥̃ = � 1
µ

ln

⇤
�� µ⇥̃

� + µ⇥̃(r � 1)

⌅
.

Ψ=total mosq. population 
Λ=mosq. birth rate
µ=mosq. death rate
r=spraying effectiveness
τ=spraying period



Dependence upon the spraying effectiveness
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• While the maximum may only be 
reduced slightly, the average 
mosquito population can be 
significantly reduced even for 
moderately effective insecticides. 

Crucial question #1
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Varying the spraying frequency
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• An insecticide which reduces 
mosquitos by 90% at each 
spraying will ultimately result in a 
15% reduction in the maximum 
mosquito numbers if sprayed 
every three months

• The same maximum reduction 
can be achieved by an insecticide 
with 55% effectiveness, if 
sprayed at 2.3 month intervals.

Crucial question #2
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Can we 
determine the 

optimal 
spraying 

frequency for a 
given 

insecticide?
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Spraying every 3 months: humans
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Non-fixed spraying

• If spraying times are not fixed, the optimal 
solution for the next spraying time depends 
upon the entire history of spraying

• This is unlikely to be known
• Instead, we determined the 

“next best” spraying event, 
assuming that only the two 
most recent spraying events 
are known.



The “next best” spraying event

• We thus have the following result:
Theorem: If spraying occurs at non-fixed times, then, assuming the two pre-
vious spraying events are known, the population of mosquitos can be reduced
below the threshold ⇥̃ if the next spraying event satisfies

tn+1 ⇥ tn �
1
µ

ln

�
2� r � µ⇥̃/�

1 + r(1� r)e�µ(tn�tn�1)

⇥

Proof: Smith? & Hove-Musweka, 2008.

Ψ=total mosq. population 
Λ=mosq. birth rate
µ=mosq. death rate
r=spraying effectiveness
tn=spraying times



Crucial question #3

If spraying occurs at 
non-fixed times, and 

we know only the 
times of the previous 
two spraying events, 
can we determine the 
“next best” spraying 

time?

tn+1 ⇥ tn �
1
µ

ln

�
2� r � µ⇥̃/�

1 + r(1� r)e�µ(tn�tn�1)

⇥

• The “next best” spraying depends 
upon
- the birth and death rates of 

mosquitos (Λ, µ)
- the time of the last two sprayings
- the effectiveness of the insecticide 

(r).



Minimum spraying effectiveness

• If non-fixed spraying occurs indefinitely, then 
there exists a minimum spraying 
effectiveness, r0, satisfying 0<r0<1

• Non-fixed spraying is only effective for r0≤r≤1
• Furthermore, on this interval, the minimum 

spraying interval for indefinite non-fixed 
spraying is always less than the minimum 
spraying interval for regular spraying.

r=spraying effectiveness



Regular spraying is always better
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Non-fixed spraying: mosquitos
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Non-fixed spraying: humans
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Impact of climate change

• Climate change is likely to increase the 
mosquito birth rate from Λ to Λ+Λ1

• To keep the same 
mosquito thresholds 
for regular spraying, 
we can calculate the 
revised spraying 
periods.



Spraying in light of climate change

• Our new threshold is

• Rearranging, we find

• Note in particular that

⇥̃ =
� + �1

µ

1� e�µ⇥

1� (1� r)e�µ⇥

⇥ =
1
µ

ln

�
1 +

rµ⇥̃
� + �1 � µ⇥̃

⇥

lim
�1�⇥

� = 0 .



Effect of increased birth rate on spraying frequency
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Results (summary)

• The optimal insecticide effectiveness for 
regular spraying can be derived 

• If only the previous two spraying events are 
known, the next-best spraying can be 
determined for non-fixed spraying

• Non-fixed spraying is always suboptimal 
• Insecticides must be sufficiently effective
• If climate change increases mosquito birth 

rates, the resulting spraying period for 
regular spraying will be lowered.



Generalisation

• The outcome does not depend on the form 
of the infection dynamics in humans

• These results can be extended to any model 
where the total mosquito population satisfies

⇤� = ⇥� µ⇤ t ⇥= tk
�⇤ = �r⇤ t = tk.

Ψ=total mosq. population 
Λ=mosq. birth rate
µ=mosq. death rate
r=spraying effectiveness
tk=spraying times



Future work

Future work will examine 
• the impact of spatial variation on the 

implementation of IRS
• the re-emergence of disease from point 

sources missed from 
the previous spraying

• more complex criteria 
for non-fixed spraying.



Conclusion

• Regular spraying is superior to non-fixed 
spraying

• Either can result in a significant reduction in 
the overall number of mosquitos, as well as 
the number of malaria cases in humans

• We thus recommend that the 
use of indoor residual 
spraying be re-examined for 
widespread application in 
malaria-endemic areas.


