
MAT1332: Calculus for the Life Sciences II - Part 2

Dr. Robert Smith?

18 Partial Derivatives

For functions with two or more variables, we don’t just have one derivative, but rather a derivative for each
variable. Partial derivatives keep all other variables fixed and look at the rate of change of only the variable
of interest
Eg)

f(x, y) = x2 + 3xy + y4 + 6

∂f

∂x
= 2x+ 3y

∂f

∂y
= 3x+ 4y3

Eg) Use the chain rule and product rule for g(x, y) = x2exy to find ∂g
∂x and ∂g

∂y .

∂g

∂x
= (2x+ x2y)exy

∂g

∂y
= x3exy

Eg) h(x, y) = cos(xy)
y2+1

. Find ∂h
∂x and ∂h

∂y .

∂h

∂x
=
− sin(xy)y

y2 + 1
=
−y sin(xy)

y2 + 1

∂h

∂y
=

(y2 + 1)(− sin(xy)x)− cos(xy)(2y)

(y2 + 1)2

=
−x(y2 + 1) sin(xy)− 2y cos(xy)

(y2 + 1)2

Eg) k(x, y, z) = eyz(x2 + z3). Find all partial derivatives.

∂k

∂x
= 2xeyz

∂k

∂y
= zeyz(x2 + z3)

∂k

∂z
= yeyz(x2 + z3) + 3z2eyz

Geometric Interpretation: for one-variable functions, dfdx is the slope of the tangent line at x. The equation
of the tangent line is (y − y0) = f ′(x0)(x− x0).
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It’s similar for two variables, but now instead of a tangent line, we have a tangent plane. If z = f(x, y),
then the tangent plane is

(z − z0) =
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0)

Note: The tangent plane might not exist if the limit does not exist. But then the tangent line might not
exist either.

Eg) Find the equation of the tangent plane to the surface z = 4x2 + y2 at the point (1,2,8).

∂z

∂x
= 8x

∂z

∂y
= 2y

z − 8 = 8(1)(x− 1) + 2(2)(y − 2)

= 8(x− 1) + 4(y − 2)

= 8x− 8 + 4y − 8

z = 8x+ 4y − 8

Eg) Find the equation for the tangent planes to z = x2 + sin(xy) when
a) (x, y)=(1,0) b) (x, y)=(0,1) c)(x, y)=(-1,π)

Solution:
a)
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z(1, 0) = 12 + sin(0) = 1

∂z

∂x
= 2x+ cos(xy)y

∂z

∂x
(1, 0) = 2(1) + cos(0)0 = 2

∂z

∂y
(1, 0) = cos(xy)x

∂z

∂y
= cos(0)(1) = 1

z − 1 = 2(x− 1) + 1(y − 0)

z − 1 = 2x− 2 + y

z = 2x+ y − 1

b)
z(0, 1) = 02 + sin(0) = 0

∂z

∂x
= 2(0) + 1 cos(0) = 1

∂z

∂y
= (0) cos(0) = 0

z − 0 = 1(x− 0) + 0(y − 1)

z = x

c)
z(−1, π) = (−1)2 + sin(−π) = 1

∂z

∂x
= 2(−1) + π cos(−π) = −2 + π(−1) = −2− π

∂z

∂y
= (−1) cos(−π) = −1(−1) = 1

z − 1 = (−2− π)(x+ 1) + 1(y − π)

z − 1 = −(2 + π)x− 2− π + y − π
z = −(2 + π)x+ y − 1− 2π

18.1 Linearisation

We can approximate difficult functions by their tangent plane at the point of interest. If we’re close to this
point then the tangent plane is close to the function.
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Definition 18.1. Suppose f(x, y) is differentiable at (x0, y0). The linearization of f(x, y) at (x0, y0) is

L(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0)

The approximation f(x, y) ≈ L(x, y) is the standard linear appoximation of f(x, y) at (x0, y0).

Eg) Find the linear approximation of f(x, y) = x2y + 2xey at (2,0).

f(2, 0) = 0 + 4 = 4

∂f

∂x
= 2xy + 2ey

∂f

∂x
(2, 0) = 0 + 2 = 2

∂f

∂y
= x2 + 2xey

∂f

∂y
(2, 0) = 4 + 4 = 8

L(x, y) = 4 + 2(x− 2) + 8(y − 0) = 2x+ 8y

Eg) a) Find the linear approximation of f(x, y) = ln(x− 2y2) at (3,1).
b) How close is this approximation to the original function at (3.05,0.95)?
a)

f(3, 1) = 0

∂f

∂x
=

1

x− 2y2

∂f

∂x
(3, 1) = 1

∂f

∂y
=
−4y

x− 2y2

∂f

∂y
(3, 1) = −4

L(x, y) = 0 + 1(x− 3)− 4(y − 1)

= x− 3− 4y + 4

= x− 4y + 1
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b)

f(3.05, 0.95) = ln(3.05− 2(0.95)2) = 0.2191

L(3.05, 0.95) = 3.05− 4(0.95) + 1 = 0.25

The error of approximation is |0.25− 0.2191| = 0.031.

19 Vector-Valued Functions

Thus far we’ve looked at real-valued functions f : Rn → R. We now consider functions whose output is
m-dimensional; that is, f : Rn → Rm.

Eg) f(x, y, z) = (x+ y2z, xyz), f : R3 → R2 Evaluate f at (1,2,0), (6,2,-1) and (3,-4,5).

f(1, 2, 0) = (1, 0)

f(6, 2,−1) = (2,−12)

f(3,−4, 5) = (83,−60)

19.1 Linearization of Vector-Valued Function

Consider the function h : R2 → R2 given by h(x, y) = (f(x, y), g(x, y)).

The linearization of h is the function M =

[
L1(x, y)
L2(x, y)

]
where L1 is the linearization of f(x, y) and L2 is the

linearization of g(x, y).

L1(x, y) = f(x0, y0) +
∂f

∂x
(x0, y0)(x− x0) +

∂f

∂y
(x0, y0)(y − y0)

L2(x, y) = g(x0, y0) +
∂g

∂x
(x0, y0)(x− x0) +

∂g

∂y
(x0, y0)(y − y0)

L(x, y) =

[
f(x0, y0)
g(x0, y0)

]
+

[
∂f
∂x (x0, y0)

∂f
∂y (x0, y0)

∂g
∂x(x0, y0)

∂g
∂y (x0, y0)

] [
(x− x0)
(y − y0)

]
The matrix

J(x0, y0) =


∂f

∂x

∂f

∂y

∂g

∂x

∂g

∂y


defined at (x0, y0) is called the Jacobian matrix.

Eg) Find the Jacobian for h(x, y) = (x2y − y3, 2x3y2 + y) at (1, 2).

J =

[
2xy x2 − 3y2

6x2y2 4x3y + 1

]
J(1, 2) =

[
4 −11
24 9

]
↑ ↑

(all x (all y

derivatives) derivatives)

Eg) Find the linear approximation of K(x, y) = (ye−x, sin(x) + cos(y)) at (0, 0). How close is this to the
actual value at (0.1,-0.1)?
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J =

[
−ye−x e−x

cos(x) − sin(y)

]
J(0, 0) =

[
0 1
1 0

]
K(0, 0) = (0, 1)

L(x, y) =

[
0
1

]
+

[
0 1
1 0

] [
x− 0
y − 0

]
=

[
0
1

]
+

[
y
x

]
=

[
y

x+ 1

]
K(0.1,−0.1) = (0.1e−0.1, sin(0.1) + cos(−0.1)) = (−0.09, 1.09)

L(x, y) =

[
−0.1
1.1

]

Therefore the approximation is quite close.

In general, if f : Rn → Rm, f(x1, x2, ..., xn) = (f1, f2, ..., fm) then J =


∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fm
∂x1

. . . ∂fm
∂xn

.

20 Phase Plane Analysis

Eg) Solve the following system with (x0, y0) = (1, 0).

x′ = −x
y′ = x

Method 1. Solve x equation first, then the y equation. We can do this because the equation is independent of y:

Solve the x equation first:

dx

dt
= −x

dx

x
= −dt

ln(x) = −t+ c

x = Ae−t

x(0) = A = 1

x = e−t
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Then solve the y equation:

dy

dt
= e−t

y = −e−t + c

y(0) = −1 + c = 0

⇒ c = 1

∴ y = 1− e−t

Method 2: Divide the second equation by the first.

y′

x′
=

dy
dt
dx
dt

=
dy

dx
= −1

∴ y = −x+ c

0 = −1 + c⇒ c = 1

y = 1− x

Now plot x-y coordinates where t is implicit, as seen in Figure 6. Which way do trajectories travel? Since
(x(0), y(0)) = (1, 0), that’s where they start. Or we have:
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(a) y′ > 0 indicates that y is increasing (b) x′ < 0 indicates that x is decreasing

Question: What happens at equilibrium?
Answer: (x, y)→ (0, 1)

Drawing solutions in the x-y plane, with time as an implicit variable is known as the Phase Plane.
Eg)

y′ = −x
x′ = y

(x(0), y(0)) = (3,−4)

Method 1: does not work because the equation for y depends on x and the equation for x depends on y.
Method 2:

dy

dx
= −x

y∫
ydy = −

∫
xdx

y2

2
= −x

2

2
+ c

x2 + y2 = 2c

9 + 16 = 2c⇒ c = 25/2

x2 + y2 = 25

which is a circle of radius 5

8



Direction?

Quadrant 1 x > 0, y > 0, y′ < 0, x′ > 0

Quadrant 2 x < 0, y > 0, y′ > 0, x′ > 0

Quadrant 3 x < 0, y < 0, y′ > 0, x′ < 0

Quadrant 4 x > 0, y < 0, y′ < 0, x′ < 0

Any of these will do.
Question: What happens eventually?

Answer: Solutions cycle indefinitely.

What do solutions look like in time? They oscillate.
Initial condition: x = 3, y = −4

Also, both are initially decreasing.
Thus we have almost compete understanding without solving the equations.

Question: Can we guess the solutions?
Answer:
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x = 5 cos(at+ b)

x(0) = 5 cos b = 3

x = 5 cos(at+ arccos 3/5)

y = 5 cos(at+ c)

y(0) = 5 cos c = −4

y = 5 cos(at+ π − arccos 4/5)

Therefore we know everything from the phase plane, except how fast the solutions travel.

21 Nullclines

Nullclines are solutions to either x′ = 0 or y′ = 0 Eg) y′ = −x and x′ = y
y-nullcline: y′ = 0⇒ x = 0
x-nullcline: x′ = 0⇒ y = 0
When the two equations meet, we have an equilibrium.

On the y-nullcline, y does not change (although x might, and usually does.)
On the x-nullcline, x does not change (although y might, and usually does.)
Check with Figure 7:

Eg) SIS epidemic:

S′ = bI − aSI
I ′ = aSI − bI
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We solve this before and it was a lot of work.

I ′

S′
= −1

dI

dS
= −1

I = −S + c

S + I = N

I = −S +N

Note: if I=0, then S=N; the whole population.

Question: What happens eventually? Which direction do trajectories go in?
Answer: Not necessarily what you think.
Nullclines:

S′ = 0⇒ (b− aS)I = 0

I ′ = 0⇒ −(b− aS)I = 0

These are the same equation with two solutions.

b− aS = 0

S =
b

a
Or

I = 0

S = N

Therefore we have two equilibria: (N, 0) and ( ba , N −
b
a)

Be careful: (N, 0) always exists. However, ( ba , N −
b
a) only exists if b

a < N . (Otherwise I < 0 which isn’t
biologically meaningful).

Case (i): b
a < N Case (ii): b

a > N

Equilibria: (N, 0) and ( ba , N −
b
a) Equilibria: (N, 0) only. (In the positive plane)
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Directions?
If S < b

a , then

S′ = (b− as)I = a(
b

a
− S)I

∴ if S <
b

a
,
b

a
− S > 0 so S′ > 0

⇒ S is increasing.

I ′ = (aS − b)I = a(S − b

a
)I

∴ if S <
b

a
, S − b

a
< 0, so I ′ < 0

⇒ I is decreasing.

If S > b
a , (this only applies to case (i)), then

S′ = a(
b

a
− S)I

∴ if S >
b

a
,
b

a
− S < 0, so S′ < 0.

⇒ S is decreasing.

and

I ′ = b(S − b

a
)I

∴ if S >
b

a
, S − b

a
> 0, so I ′ > 0

⇒ I is increasing.

Case (i) Case (ii)

Biological interpretation: Stability depends on b
a . If the recovery rate b is high compared to the infection

rate a, then infected individuals recover quickly and the population moves to a population of susceptibles,
clearing infection.
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If the infection rate a is high compared to the recovery rate b, then infection stabilizes at an endemic equi-
librium.

What if we can’t solve the dy
dx equation?

Eg) Predator-prey dynamics:

y′ = (15− 3x)y

x′ = (−6 + 2y)x

Biological explanation: The prey population increases on its own, while the predator population decreases
on its own. The interaction is given by:

y-nullcline is given by (15− 3x)y = 0→ x = 5, y = 0
x-nullcline is given by (−6 + 2y)x = 0→ x = 0, y = 3

Note: the only equilibria are (0,0) and (5,3).
Question: Why aren’t (5,0) and (0,3) equilibria?
Answer: They don’t satisfy both equations.
We can’t solve for dy

dx since dy
dx = (15−3x)y

(−6+2y)x is too hard to solve.
But we can still get a lot of information by examining the derivatives as before by looking at each of the
quadrants:

Quadrant 1:
y′ = (15− 3x)y > 0 since x < 5
x′ = (−6 + 2y)x < 0 since y < 3
If we have small number of predators and few prey, then prey increases because there are few predators and
predators decrease because there is little food.
Quadrant 2:
y′ = (15− 3x)y < 0 since x > 5
x′ = (−6 + 2y)x < 0 since y < 3
If we have lots of predators and few prey, then prey decreases because they’re eaten and predators decrease
because there is little food.
Quadrant 3:
y′ = (15− 3x)y < 0 since x > 5
x′ = (−6 + 2y)x > 0 since y > 3
If we have lots of predators and lots of prey, then prey decreases because they’re eaten and predators increase
because they have lots of food.
Quadrant 4:
y′ = (15− 3x)y > 0 since x < 5
x′ = (−6 + 2y)x > 0 since y > 3
If we have few predators and lots of prey, then prey increases because there are few predators and predators
increase because there is lots of food.
Therefore the dynamics will oscillate.
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This was actually observed in Canada for lynx and hares by the Hudson’s Bay Company over a hundred year
period. Lynx feed only on hares and nothing keeps the hare population in check other than predation by lynx.

22 Stability in Linear Systems

Consider the linear system:

x′ = ax+ by

y′ = cx+ dy

The only steady state is (0, 0) The Jacobian is given by J =

[
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

]
=

[
a b
c d

]

det(I − λJ) = det

[
a b
c d

]
= (λ− a)(λ− d)− bc
= λ2 − (a+ d)λ+ ad− bc

λ =
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

2

=
1

2
[a+ d±

√
a2 + d2 − 2ad+ 4bc]

=
1

2
[a+ d±

√
(a− d)2 + 4bc]

If ∆ = (a− d)2 + 4bc < 0 then we are taking the root of a negative.
There are two cases: ∆ < 0,∆ > 0.
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22.1 Finding general solutions of linear systems

To find the general solution of

[
x′

y′

]
= J

[
x
y

]
, let’s start with a solution of the following form:

[
x
y

]
= eλt

[
v1
v2

]
[
x′

y′

]
= λeλt

[
v1
v2

]
[
x′

y′

]
= J

[
x
y

]
⇒ λeλt

[
v1
v2

]
= Jeλt

[
v1
v2

]
⇒ λ

[
v1
v2

]
= J

[
v1
v2

]
.

This implies λ is an eigenvalue of J with corresponding eigenvector

[
v1
v2

]
The general form for 2 x 2 matrices is:

[
x
y

]
= c1e

λ1t

[
v1
v2

]
+ c2e

λ2t

[
w1

w2

]
.

Eg) Solve the following system with initial conditions x(0) = 5, y(0) = 1.

x′ = −6x+ 9y

y′ = 3x

15



J =

[
−6 9
3 0

]
det(J − λI) = det

[
−6− λ 9

3 −λ

]
= (6 + λ)λ− 27

= λ2 + 6λ− 27

= (λ+ 9)(λ− 3)

→ λ = −9, 3

λ1 = −9 :

[
−6 + 9 9

3 9

] [
v1
v2

]
=

[
0
0

]
[

3 9 0
3 9 0

]
v1 + 3v2 = 0

v2 = r

v1 = −3r

∴ the eigenvectors are given by

[
−3
1

]
r, r ∈ R, r 6= 0.

λ2 = 3 :

[
−6− 3 9

3 −3

] [
w1

w2

]
=

[
0
0

]
[
−9 9 0
−3 3 0

]
w1 − w2 = 0

w2 = s

w1 = s

∴ the eigenvectors are given by

[
1
1

]
s, s ∈ R, s 6= 0.

So we have

[
x
y

]
= c1e

−9t
[
−3
1

]
+ c2e

3t

[
1
1

]
.

Now we use the initial conditions to find the values of c1 and c2.

− 3c1 + c2 = 5

c1 + c2 = 1

⇒ c1 = −1, c2 = 2

The solution is given by

[
x
y

]
= −e−9t

[
−3
1

]
+ 2e3t

[
1
1

]
.

Exercise. Show that this solution satisfies both the ODEs and the initial condition.
Our solutions depend on the terms eλt.

If ∆ > 0 then,
if λ1, λ2 < 0 we have a stable equilibrium.
if λ1 or λ2 > 0 we have an unstable equilibrium.

If ∆ < 0 then our solutions are of the form e
a+d
2
t[a1 sin

√
−∆t+a2 cos

√
−∆t] and stability depends on e

a+d
2
t:

if Re(λ1) and Re(λ2) < 0 we have a stable equilibrium.
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if Re(λ1) or Re(λ2) > 0 we have an unstable equilibrium.
Thus everything depends on the eigenvalues of the Jacobian. This is why we needed linear algebra and
multivariable calculus.

Eg) Find the stability of the following system:

x′ = −4x

y′ = −5y

Solution:

J =

[
−4 0
0 −5

]
λ1 = −4, λ2 = −5

Check:

x′ = −4x⇒ x = Ae−4t

y′ = −5y ⇒ y = Be−5t

y′

x′
=
dy

dx
=

5y

4x
dy

5y
=
dx

4x

4 ln y = 5 lnx+ c

y = kx5/4

This is a stable sink.
Eg) Find the stability of the following system:

x′ = 4x

y′ = 2y
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Solution:

J =

[
4 0
0 2

]
λ1 = 4, λ2 = 2→ unstable equilibrium.

Check:

x′ = 4x⇒ x = Ae4t

y′ = 2y ⇒ y = Be2t

y′

x′
=
dy

dx
=

2y

4x
dy

y
=
dx

2x

2 ln y = lnx+ c

y = A
√
x

This is an unstable source.
Eg) Find the stability of the following system:

x′ = x

y′ = −3y

Solution:

J =

[
1 0
0 −3

]
λ1 = 1, λ2 = −3→ unstable equilibrium.

Check:
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x′ = x⇒ x = Aet

y′ = −3y ⇒ y = Be−3t

y′

x′
=
dy

dx
=
−3y

x
dy

−3y
=
dx

x

− 1

3
ln y = lnx+ c

y = Ax−3

This is a saddle.

Eg) Find the stability of the following system:

x′ = −2x− 3y

y′ = x

Solution:

J =

[
−2 −3
1 0

]
det(J − λI) = λ(2 + λ) + 3 = λ2 + 2λ+ 3

λ = −1±
√

2i

We cannot solve dy
dx = −x

2x+3y directly. So we will use nullclines.

x-nullcline: x′ = 0 : −2x− 3y = 0→ y = −2
3x

y-nullcline: y′ = 0 : x = 0→ x = 0
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Quadrant 1 : x′ < 0, y′ > 0

Quadrant 2 : x′ < 0, y′ < 0

Quadrant 3 : x′ > 0, y′ < 0

Quadrant 4 : x′ > 0, y′ > 0

This is a stable spiral.

Eg) Find the stability of the following system: x′ = 3x− y, y′ = x+ 2y.

J =

[
3 −1
1 2

]
det(J − λI) = (λ− 3)(λ− 2) + 1 = λ2 − 5λ+ 7

λ =
5±
√
−3

2

Re(λ) =
5

2
> 0 ∴ unstable.

Again, we cannot solve the equations directly. So we will use nullclines.
x-nullcline: x′ = 0 : 3x− y = 0→ y = 3x
y-nullcline: y′ = 0 : x+ 2y = 0→ y = −1

2x
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Quadrant 1: x′ > 0, y′ > 0
Quadrant 2: x′ < 0, y′ > 0
Quadrant 3: x′ < 0, y′ < 0
Quadrant 4: x′ > 0, y′ < 0

This is an unstable spiral.

Eg) Find the stability of the following system: x′ = −y, y′ = x.

J =

[
0 −1
1 0

]
det(J − λI) = λ2 + 1

λ2 + 1 = 0→ Re(λ) = 0→We have neither stability nor instability.

dy

dx
=

x

−y

−
∫
ydy =

∫
xdx

− y2

2
=
x2

2
+ k

x2 + y2 = c

This is a centre.

21



22.2 Complex Eigenvalues

Let’s run through the same sort of analysis that we did before and see what happens when we have complex
eigenvalues. Consider

x′ = Ax

where x is a vector and A is a real valued matrix.
We look for solutions of the form

x = Feλt

We find the eigenvalues by setting
det(A− λI) = 0

and the eigenvectors by solving
(A− λI)F = 0

Since A is real, any complex eigenvalues must occur in conjugate pairs. For example, if there is an eigenvalue

λ1 = α+ iβ

then there has to be a second eigenvalue of the form

λ2 = α− iβ

Suppose that the eigenvector F (1) that corresponds to the eigenvalue λ1 is of the form

F (1) = a+ ib

where a and b are both real vectors. Then one solution is

x = (a+ ib)e(α+iβ)t

and so

x = (a+ ib)eαt(cos(βt) + i sin(βt))

= a cos(βt)eαt − b sin(βt)eαt + ia sin(βt)eαt + ib cos(βt)eαt

We can get two solutions by taking real and imaginary parts. It might not be obvious but det(A− λI) = 0
is always a polynomial of degree n (where A is an n× n matrix). To solve an arbitrary polynomial, we need
complex numbers because we can then find exactly n roots over the complex field.

Eg) Solve
x′ = −y, y′ = x

We find the eigenvalues:
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(
x′

y′

)
=

(
0 −1
1 0

)(
x
y

)
det(A− λI) = det

(
−λ −1
1 −λ

)
= λ2 + 1 = 0

λ = ±i

We find an eigenvector for λ1 = i:

(
−i −1
1 −i

)(
f1
f2

)
=

(
0
0

)
f1 − if2 = 0 (both equations)

f1 = if2

Therefore, f =

(
i
1

)
is an eigenvector.

We find an eigenvector for λ2 = −i:

(
i −1
1 i

)(
f1
f2

)
=

(
0
0

)
f1 + if2 = 0

f1 = −if2

Therefore, f =

(
−i
1

)
is an eigenvector.

The general solution is

x = A

(
i
1

)
eit +B

(
−i
1

)
e−it

But suppose we want two real solutions? (Since A is real, this seems reasonable.)
Two independent solutions are

~u =

(
i
1

)
eit and ~v =

(
−i
1

)
e−it

We can put rearrange ~u and ~v:

~u =

[(
0
1

)
+ i

(
1
0

)]
(cos(t) + i sin(t))

=

(
0
1

)
cos(t)−

(
1
0

)
sin(t) + i

[(
1
0

)
cos(t) +

(
0
1

)
sin(t)

]
~v =

[(
0
1

)
+ i

(
−1
0

)]
(cos(t)− i sin(t))

=

(
0
1

)
cos(t) +

(
−1
0

)
sin(t) + i

[(
−1
0

)
cos(t)−

(
0
1

)
sin(t)

]
=

(
0
1

)
cos(t)−

(
1
0

)
sin(t)− i

[(
1
0

)
cos(t) +

(
0
1

)
sin(t)

]
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Any linear combination of ~u and ~v is also a solution so

1

2
(~u+ ~v) = Re(~u) and

1

2
(~u− ~v) = Im(~v)

are also solutions.
Thus two independent real solutions are(

0
1

)
cos(t)−

(
1
0

)
sin(t) and

(
1
0

)
cos(t) +

(
0
1

)
sin(t)

Eg) Solve

x′ = −x− y x(0) = 3

y′ = 4x− y y(0) = 4

Find the eigenvalues:

det(A− λI) = det

(
−1− λ −1

4 −1− λ

)
= (−1− λ)2 + 4

= λ2 + 2λ+ 5

λ =
−2±

√
4− 20

2
= −1± 2i

Find the eigenvectors corresponding to λ1 = −1 + 2i:

A− λ1I =

(
−2i −1 0

4 −2i 0

)
R2−2iR1−→

(
−2i −1 0

0 0 0

)
−2iv1 − v2 = 0

v1 = s, v2 = −2is

~v1 =

(
1
−2i

)
s, s 6= 0

∴ ~x1 =

(
1
−2i

)
e(−1+2i)t is a complex solution

=

[(
1
0

)
+ i

(
0
−2

)]
e−t(cos(2t) + i sin(2t))

= e−t
[(

1
0

)
cos(2t)−

(
0
−2

)
sin(2t)

]
+ ie−t

[(
0
−2

)
cos(2t) +

(
1
0

)
sin(2t)

]

But Re( ~x1) and Im( ~x1) are themselves solutions.

∴ ~w1 = e−t
[(

1
0

)
cos(2t)−

(
0
−2

)
sin(2t)

]
is a solution

~w2 = e−t
[(

0
−2

)
cos(2t) +

(
1
0

)
sin(2t)

]
is a solution

Therefore we have two solutions which is enough (no need to do λ = −1− 2i). A general solution is thus
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(
x
y

)
= c1e

−t
[(

1
0

)
cos(2t)−

(
0
−2

)
sin(2t)

]
+ c2e

−t
[(

0
−2

)
cos(2t) +

(
1
0

)
sin(2t)

]

Finally, we need to substitute the initial conditions:

(
x(0)
y(0)

)
= c1

(
1
0

)
+ c2

(
0
−2

)
=

(
3
4

)
c1 = 3, −2c2 = 4→ c2 = −2(

x
y

)
= 3e−t

[(
1
0

)
cos(2t)−

(
0
−2

)
sin(2t)

]
− 2e−t

[(
0
−2

)
cos(2t) +

(
1
0

)
sin(2t)

]
= 3e−t

(
cos(2t)
2 sin(2t)

)
− 2e−t

(
sin(2t)
−2 cos(2t)

)
=

(
3e−t cos(2t)− 2e−t sin(2t)
6e−t sin(2t) + 4e−t cos(2t)

)

23 Stability in nonlinear systems

Recall that the Jacobian came from the linearization of the system. Therefore, for nonlinear systems, the
stability of an equilibrium is the same as for the linearization, therefore we still look at the eigenvalues of J.
If λ1, λ2 are both real and negative - stable system

If λ1, λ2 are both real and positive - unstable system

If λ1, λ2 are both real and have different signs - saddle
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If λ1, λ2 are both complex and Re(λ) < 0 - stable spiral

If λ1, λ2 are both complex and Re(λ) > 0 - unstable spiral

For a non-linear system, we have:

One exception: A centre in a linear system may become a spiral - stable or unstable.

Eg) Find all equilibria for the following system and determine their stability:

x′ = xy2 + x− 3y2 − 3 (1)

y′ = x4y + y − 2x4 − 2 (2)
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Rearranging equation (1) :

x(y2 + 1)− 3(y2 + 1) = 0

(x− 3)(y2 + 1) = 0→ x = 3

Rearranging equation (2) :

(x4 + 1)y − 2(x4 + 1) = 0

(x4 + 1)(y − 2) = 0→ y = 2

∴ (3, 2)is the only equilibrium.

J =

[
y2 + 1 2xy − 6y

4x3y − 8x3 x4 + 1

]
J(3, 2) =

[
5 0
0 82

]
λ = 5, 82 ∴ unstable source.

Eg) Find all equilibria for the following system and determine their stability:

x′ = xy − 2x− 5y + 10 (3)

y′ = xy − 4x+ y − 4 (4)
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Rearranging equation (3) :

x(y − 2)− 5(y − 2) = 0

(x− 5)(y − 2) = 0→ x = 5, y = 2

Rearranging equation (4) :

x(y − 4) + y − 4 = 0

(x+ 1)(y − 4) = 0→ x = −1, y = 4

∴ the equilibria are (5, 4), (−1, 2)

J =

[
y − 2 x− 5
y − 4 x+ 1

]
J(5, 4) =

[
2 0
0 6

]
λ = 2, 6 ∴ unstable source.

J(−1, 2) =

[
0 −6
−2 0

]
det(J − λI) = λ2 − 12

λ = ±
√

12 ∴ unstable saddle.

Eg) Find all equilibria for the following system and determine their stability:

x′ = xy2 − x− 3y2 + 3 (5)

y′ = xy − 7x− 4y + 28 (6)
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Rearranging equation (5) :

x(y2 − 1)− 3(y2 − 1) = 0

x = 3, y = ±1

Rearranging equation (6) :

x(y − 7)− 4(y − 7) = 0

x = 4, y = 7

Equilibria : (3, 7), (4, 1), (4,−1)

J =

[
y2 − 1 2y(x− 3)
y − 7 x− 4

]
J(3, 7) =

[
48 0
0 −1

]
λ = 48,−1→ saddle

J(4, 1) =

[
0 2
−6 0

]
λ = ±

√
12i→ centre

J(4,−1) =

[
0 −2
−8 0

]
λ = ±4→ saddle

The result is two saddles and either a stable or an unstable spiral.

Be careful: solutions must be consistent. Neighbouring trajectories cannot have opposite directions.
Trajectories cannot cross or suddenly change direction, except at an equilibrium.
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Eg) Find all equilibria for the following system and determine their stability:

x′ = xy − 7x− 3y + 21 (7)

y′ = x2y2 − 4x2 − y2 + 4 (8)

Rearranging equation (7) :

x(y − 7)− 3(y − 7) = 0

(x− 3)(y − 7) = 0

x = 3, y = 7

Next, substitute these values into equation (8). When x = 3, we have

9y2 − 4(9)− y2 + 4 = 0

8y2 = 32

y = ±2

Thus (x, y) = (3, 2) and (x, y) = (3,−2) are both equilibria.
Finally, when y = 7, we have

49x2 − 4x2 − 49 + 1 = 0

48x2 = 48

x = ±1

Thus the remaining equilibria are (x, y) = (1, 7) and (x, y) = (−1, 7).
(Note: (1,2), (3,7) etc are not equilibria)
Nullclines:

x-nullclines: (x− 3)(y − 7) = 0

y-nullclines: (x− 1)(x+ 1)(y − 2)(y + 2) = 0
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J =

[
y − 7 x− 3

2x(y2 − 4) 2y(x2 − 1)

]
J(3, 2) =

[
−5 0
0 32

]
λ = −5, 32→ saddle

J(3,−2) =

[
−9 0
0 −32

]
λ = −9,−32→ sink

J(1, 7) =

[
0 −2
90 0

]
λ = ±

√
180i→ centre

J(−1, 7) =

[
0 −4
−90 0

]
λ = ±

√
360→ saddle

Exercise. Find all equilibria for the following system and determine their stability:

x′ = y2 − 4

y′ = x2 − 1

1. x′ = y2 − 4

y′ = x2 − 1

2. x′ = xy − y
y′ = 2x− xy

3. x′ = xy − 7x− 3y + 21

y′ = x2y2 − 4x2 − y2 + 4
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