Can the viral reservoir of latently infected CD4⁺T cells be eradicated with antiretroviral HIV drugs?

Robert Smith?

Department of Mathematics and Faculty of Medicine
The University of Ottawa

Outline

- Mechanics of latently infected cells
- Mathematical model
- Impulsive differential equations
- Limiting results for infinite amount of drug
- More realistic dosing regimens
- Implications.

Antiretroviral HIV drugs

- If drugs are taken sufficiently often, the virus will be controlled
- However, it is not eradicated from the body
- Viral rebound occurs when drugs are stopped.

Viral reservoirs

This rebound occurs due to reservoirs, eg

- eyes
- brain
- testicles
- follicular dendritic cells
- latently infected cells

Viral reservoirs

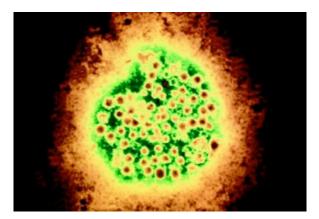
This rebound occurs due to reservoirs, eg

- eyes
- brain
- testicles
- follicular dendritic cells
- latently infected cells

It's been suggested that these are the primary reservoir for viral rebound.

Latently infected cells

- Virologically quiescent (Chun et al, J Clin Invest 2005)
- <1 latently infected cell per million resting CD4⁺ T cells (Chun et al, Nature 1997)
- 10³-10⁶ cells per patient (Ramratran *et al*, Nat Med 2000)
- Halflife of 6-44 months (Finzi et al, Nat Med 1999)
- Do not produce virus until activated (Blankson et al, Annu Rev Med 2002).



Current therapy

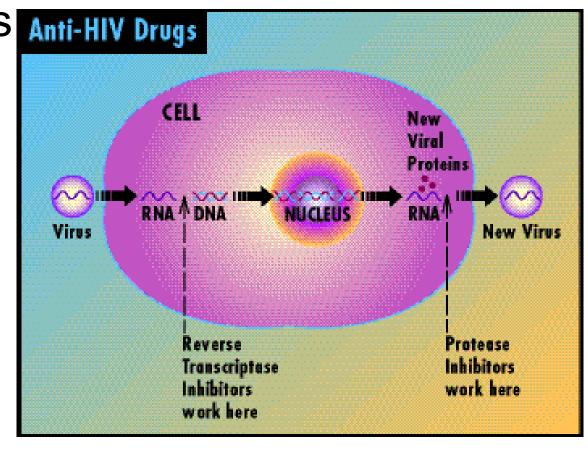
- Current HIV therapy consists of a combination of antiretroviral drugs
- These are primarily drawn from two major classes:
 - Reverse Transcriptase Inhibitors (RTIs)
 - Protease Inhibitors (PIs).

The two drug classes

 Reverse Transcriptase Inhibitors prevent viral infection of a T cell

Protease Inhibitors Anti-HIV Drugs

result in the creation of noninfectious virus, thus preventing new cells from becoming infected.



Assumptions

We assume that

- drugs have no effect on latently infected cells
 - (likely true for RTIs, not for PIs)
- latently infected cells live for maximal time: as long as susceptible cells
 - (and hence much longer than productively infected cells)
- This is the most extreme scenario.

Modelling latently infected cells

- We model latently infected cells via a separate compartment
- They become infected at rate α_L
- They are not productively infected until leaving the latent state at rate p_L .

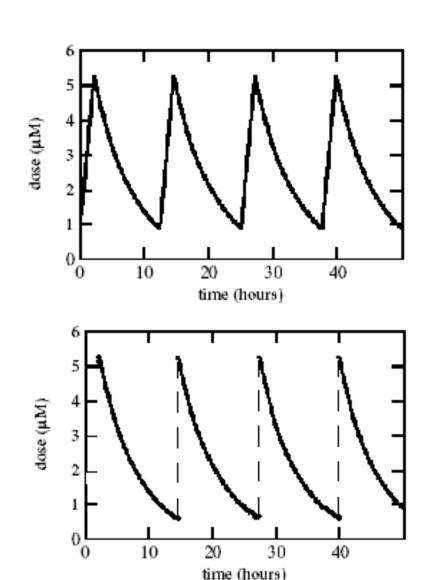
Modelling CD4⁺ T cells

- Susceptible cells may be inhibited with RTIs,
 Pls or both
- Infected cells may be inhibited by PIs
- Cells inhibited with RTIs cannot be infected while they remain in this state
- Drug effects wear off at different rates for each drug.

RTI=reverse transcriptase inhibitor PI=protease inhibitor

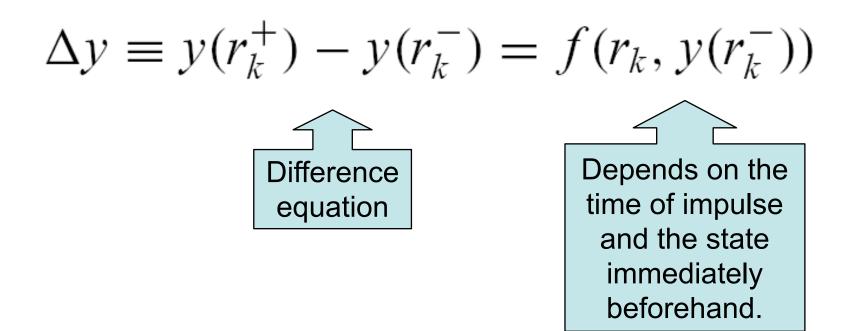
Impulsive Differential Equations

- Assume drug effects are instantaneous
- That is, the time-to-peak is assumed to be negligible
- This results in a system of impulsive differential equations.



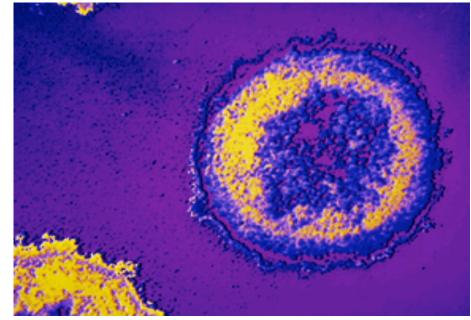
Impulsive effect

• According to impulsive theory, we can describe the nature of the impulse at time r_k via the difference equation



Impulsive DEs

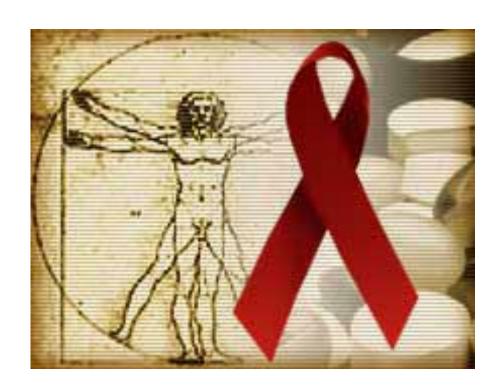
- Solutions are continuous for $t \neq r_k$
- Solutions undergo an instantaneous change in state when $t = r_{k}$
- Such approximations are reasonable when the cycle time is sufficiently large, compared to the time-to-peak.



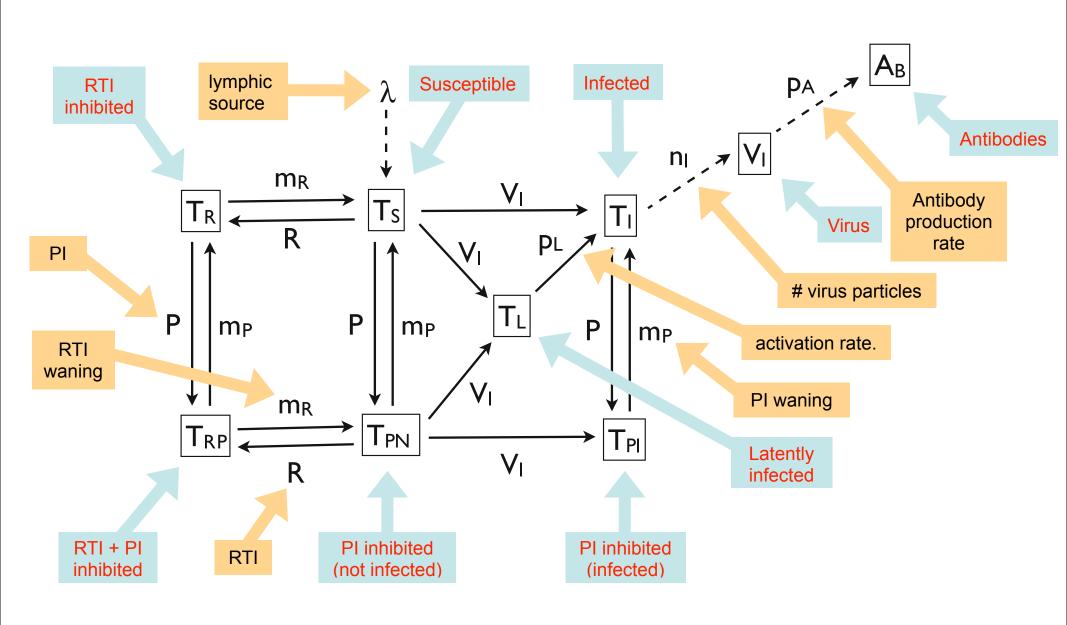
Thousands of HIV particles emerging from an infected T-cell

Putting it together

 The model thus consists of a system of ODEs (virus and T cells) together with an ODE and a difference equation (drugs).



The model (figure)



The model (equations)

$$\frac{dV_I}{dt} = n_I T_I - d_V V_I$$

$$\frac{dA_B}{dt} = p_A V_I - d_A A_B$$

$$\frac{dT_S}{dt} = \lambda - r_I T_S V_I - d_S T_S - r_R T_S R - r_P T_S P + m_R T_R + m_P T_{PN}$$

$$\frac{dT_I}{dt} = q_I T_S V_I - d_I T_I + p_L T_L - \delta_A A_B T_I - r_P T_I P + m_P T_{PI}$$

$$\frac{dT_L}{dt} = \alpha_L T_S V_I + \alpha_L T_{PN} V_I - d_L T_L - p_L T_L$$

$$\frac{dT_R}{dt} = r_R T_S R - d_S T_R + m_P T_{RP} - m_R T_R - r_P T_R P$$

$$\frac{dT_{RP}}{dt} = r_R T_{PN} R - d_S T_{RP} - m_P T_{RP} - m_R T_{RP} + r_P T_R P$$

$$\frac{dT_{PN}}{dt} = r_P T_S P - d_S T_{PN} - r_I T_{PN} V_I - r_R T_{PN} R - m_P T_{PN} + m_R T_{RP}$$

$$\frac{dT_{PI}}{dt} = q_I T_{PN} V_I - d_I T_{PI} - \delta_A A_B T_{PI} + r_P T_I P - m_P T_{PI}$$

 T_S =Susceptible T cells T_I =Infected T_R =RTI inhibited T_R =RTI + PI inhibited T_R =Inhibited (not infected) T_R =PI inhibited (infected) T_L =Latently infected T_R =antibodies T_R =Reverse T_R =RTI, PI waning rates T_R =activation rate T_R =antibody production rate T_R =drug inhibition rates T_R =antibody clearance rate

...with the (impulsive) dynamics of the drugs:

$$\frac{dR}{dt} = -d_R R \qquad t \neq t_k$$

$$\frac{dP}{dt} = -d_P P \qquad t \neq s_k$$

$$\Delta R = R^i \qquad t = t_k$$

$$\Delta P = P^i \qquad t = s_k.$$

Absence of drugs

There's a disease-free equilibrium

$$(V_I, A_B, T_S, T_I, T_L, T_R, T_{RP}, T_{PN}, T_{PI}) = \left(0, 0, \frac{\lambda}{d_S}, 0, 0, 0, 0, 0, 0\right)$$

and an endemic equilibrium of the form

$$(V_I, A_B, T_S, T_I, T_L, T_R, T_{RP}, T_{PN}, T_{PI}) = (\bar{V}_I, \bar{A}_B, \bar{T}_S, \bar{T}_I, \bar{T}_L, 0, 0, 0, 0)$$

 We can prove: the disease-free equilibrium is unstable in the absence of drugs

Proof: Smith? & Aggarwala, 2009.

 T_S =Susceptible T cells T_I =Infected (wild type) λ =lymphic source T_R =RTI inhibited T_{RP} =RTI + PI inhibited T_{PNI} =PI inhibited (not infected) T_{PI} =PI inhibited (infected) T_L =Latently infected A_B =antibodies d_S =susceptible cell death rate

The presence of drugs

- There are no equilibria, due to impulses
- Instead, there are impulsive orbits with variation in the state variables, due to the drug dynamics
- The disease-free impulsive orbit is in the form

$$(V_I, A_B, T_S, T_I, T_L, T_R, T_{RP}, T_{PN}, T_{PI}) = (0, 0, \hat{T}_S, 0, 0, \hat{T}_R, \hat{T}_{RP}, \hat{T}_{PN}, 0).$$

$$R(t) = R(t_k^+)e^{-d_R(t-t_k)}$$
 $t_k < t \le t_{k+1}$
 $R(t_k^+) = R(t_k^-) + R^i$

$$R(t) = R(t_k^+)e^{-d_R(t-t_k)}$$
 $t_k < t \le t_{k+1}$
 $R(t_k^+) = R(t_k^-) + R^i$

Hence

R=drug d_R =decay rate R^i =dosage t_k =impulse time

$$R(t) = R(t_k^+)e^{-d_R(t-t_k)}$$
 $t_k < t \le t_{k+1}$
 $R(t_k^+) = R(t_k^-) + R^i$

Hence

$$R(t_k^+) \rightarrow \frac{R^i}{1 - \mathrm{e}^{-d_R \tau}}$$

R=drug d_R=decay rate Rⁱ=dosage t_k=impulse time

$$R(t) = R(t_k^+)e^{-d_R(t-t_k)}$$
 $t_k < t \le t_{k+1}$
 $R(t_k^+) = R(t_k^-) + R^i$

Hence

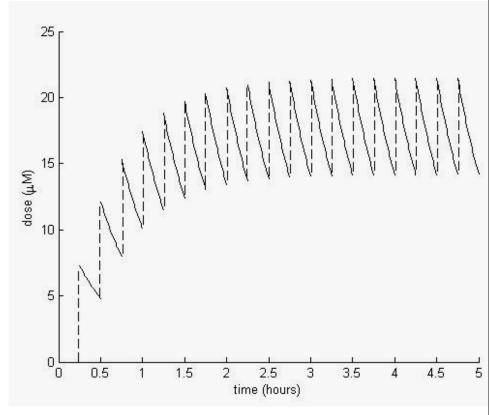
$$R(t_k^+) \rightarrow \frac{R^i}{1 - e^{-d_R \tau}}$$

as $k \to \infty$, where $\tau = t_{k+1} - t_k$ is the dosing interval.

R=drug d_R =decay rate R^i =dosage t_k =impulse time

Impulsive periodic orbit

- Thus, for the drugs, there is a unique, positive impulsive periodic orbit with one impulse per cycle
- It can also be shown that the endpoints of each cycle monotonically approach the endpoints of this periodic orbit.



Disease-free orbit

The disease-free orbit satisfies

$$\hat{T}_{PN} = \frac{r_P P \hat{T}_S + m_R \hat{T}_{RP}}{d_S + r_R R + m_P} \qquad \hat{T}_S = \frac{f_1}{f_2} T_{RP}$$

$$\hat{T}_R = \frac{r_R R \hat{T}_S + m_P \hat{T}_{RP}}{d_S + m_R + r_P P} \qquad \hat{T}_{RP} = \frac{\lambda}{f_3}$$

where

$$f_{1} = d_{S}(d_{S} + r_{P}P + m_{R})(d_{S} + r_{R}R + m_{P}) + m_{P}(d_{S} + m_{R})(d_{S} + r_{R}R + m_{P})$$

$$+ m_{R}(d_{S} + m_{P})(d_{S} + r_{P}P + m_{R})$$

$$f_{2} = r_{R}Rr_{P}P(2d_{S} + m_{R} + m_{P} + r_{R}R + r_{P}P)$$

$$f_{3} = \left[d_{S} + r_{R}R + r_{P}P - \frac{m_{R}r_{R}R}{d_{S} + r_{P}P + m_{R}} - \frac{m_{P}r_{P}P}{d_{S} + r_{R}R + m_{P}}\right]\frac{f_{1}}{f_{2}}$$

$$- \frac{m_{R}m_{P}}{d_{S} + r_{P}P + m_{R}} - \frac{m_{R}m_{P}}{d_{S} + r_{R}R + m_{P}}$$

Intermediate calculations

We have

$$\lim_{r_P P \to \infty} f_1 = \infty$$

$$\lim_{r_P P \to \infty} f_2 = \infty$$

$$\lim_{r_P P \to \infty} \frac{f_1}{f_2} = 0.$$

R=reverse transcriptase inhibitor
P=protease inhibitor
$$d_S$$
=susceptible cell death rates
 m_R , m_P =RTI, PI waning rates
 r_P , r_P =drug inhibition rates

$$f_{1} = d_{S}(d_{S} + r_{P}P + m_{R})(d_{S} + r_{R}R + m_{P})$$

$$+ m_{P}(d_{S} + m_{R})(d_{S} + r_{R}R + m_{P})$$

$$+ m_{R}(d_{S} + m_{P})(d_{S} + r_{P}P + m_{R})$$

$$f_{2} = r_{R}Rr_{P}P(2d_{S} + m_{R} + m_{P} + r_{R}R + r_{P}P)$$

Further calculations

$$r_{P}P\frac{f_{1}}{f_{2}} = \frac{d_{S}(d_{S} + r_{R}R + m_{P})(d_{S} + r_{P}P + m_{R})}{r_{R}R(2d_{S} + m_{P} + m_{R} + r_{P}P + r_{R}R)} + \frac{m_{R}(d_{S} + m_{P})(d_{S} + r_{P}P + m_{R}) + m_{P}(d_{S} + m_{R})(d_{S} + r_{R}R + m_{P})}{r_{R}R(2d_{S} + m_{P} + m_{R} + r_{P}P + r_{R}R)}$$

Limiting values

$$\lim_{r_P P \to \infty} T_S = \lim_{r_P P \to \infty} \frac{f_1}{f_2} \lim_{r_P P \to \infty} T_{RP}$$

$$= 0$$

$$\hat{T}_{S} = \frac{f_{1}}{f_{2}}T_{RP}$$

$$\hat{T}_{RP} = \frac{\lambda}{f_{3}}$$

$$\hat{T}_{PN} = \frac{r_{P}P\hat{T}_{S} + m_{R}\hat{T}_{RP}}{d_{S} + r_{R}R + m_{P}}$$

$$\hat{T}_{R} = \frac{r_{R}R\hat{T}_{S} + m_{P}\hat{T}_{RP}}{d_{S} + m_{R} + r_{P}P}$$

Pls can also control virus

- We have thus proved the following:
- If PIs are taken with sufficient frequency, then

$$T_{RP} + T_{PN} \rightarrow \frac{\lambda}{d_S}$$

 λ / d_S = the level of CD4⁺ T cells in the uninfected body

- as the dosing interval shrinks to zero
- It follows that, with sufficient application, PIs can theoretically control the virus.

RTIs theoretically control virus

- Similarly:
- If RTIs are taken with sufficient frequency, then

$$T_R + T_{RP} \to \frac{\lambda}{d_S}$$

 λ / d_S = the level of CD4⁺ T cells in the uninfected body

- as the dosing interval shrinks to zero
- It follows that, with sufficient application,
 RTIs can theoretically control the virus.

Both drugs together

If RTIs and PIs are taken with sufficient frequency, then

 $T_{RP} o rac{\lambda}{d_S}$

 λd_S = the level of CD4⁺ T cells in the uninfected body

- as the dosing interval shrinks to zero
- Thus, with sufficient application, combination therapy can theoretically control the virus
- In particular, the latently infected cells are driven to extinction.

Why is this? (Mathematically)

• As $P \to \infty$, $T_I' \to -\infty$ unless $T_I \to 0$

$$\frac{dV_I}{dt} = n_I T_I - d_V V_I$$

$$\frac{dA_B}{dt} = p_A V_I - d_A A_B$$

$$\frac{dT_S}{dt} = \lambda - r_I T_S V_I - d_S T_S - r_R T_S R - r_P T_S P + m_R T_R + m_P T_{PN}$$

$$\frac{dT_I}{dt} = q_I T_S V_I - d_I T_I + p_L T_L - \delta_A A_B T_I - r_P T_I P + m_P T_{PI}$$

$$\frac{dT_L}{dt} = \alpha_L T_S V_I + \alpha_L T_{PN} V_I - d_L T_L - p_L T_L$$

$$\frac{dT_R}{dt} = r_R T_S R - d_S T_R + m_P T_{RP} - m_R T_R - r_P T_R P$$

$$\frac{dT_{RP}}{dt} = r_R T_{PN} R - d_S T_{RP} - m_P T_{RP} - m_R T_{RP} + r_P T_R P$$

$$\frac{dT_{PN}}{dt} = r_P T_S P - d_S T_{PN} - r_I T_{PN} V_I - r_R T_{PN} R - m_P T_{PN} + m_R T_{RP}$$

$$\frac{dT_{PI}}{dt} = q_I T_{PN} V_I - d_I T_{PI} - \delta_A A_B T_{PI} + r_P T_I P - m_P T_{PI}$$

P=protease inhibitor T_S =Susceptible T cells T_I =Infected T_R =RTI inhibited T_{PI} =PI inhibited (infected) T_L =Latently infected A_B =antibodies

Why is this? (Biologically)

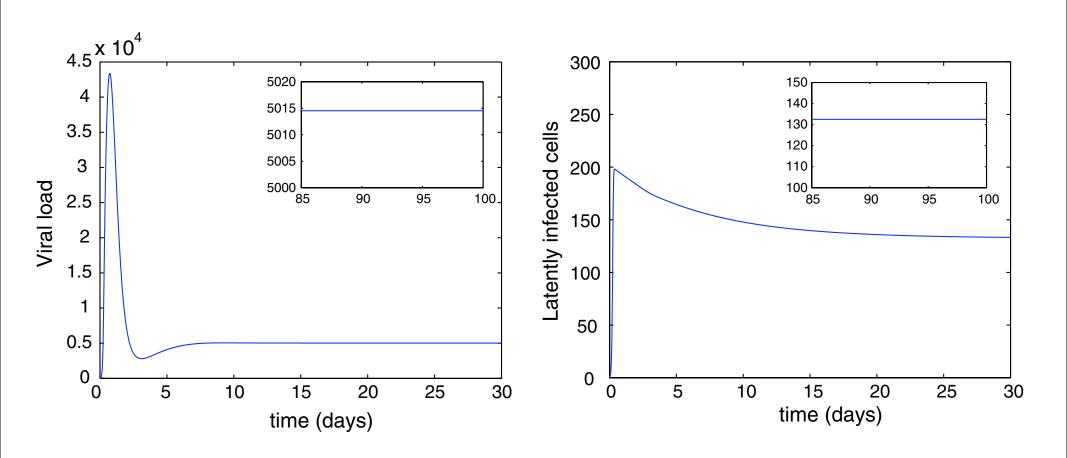
- As RTIs→∞,T_S cells instantly become T_R cells and cannot be infected
- As PIs→∞, cells instantly become T_{PN} or T_{PI}
 cells and don't produce infectious virus
- Essentially, the drugs "overwhelm" the virus.

RTI=reverse transcriptase inhibitor PI=protease inhibitor T_S =Susceptible cells T_{PNI} =Protease inhibited (not infected) T_{PN} =protease inhibited (not infected) T_{PI} =protease inhibited (infected) T_R =RTI inhibited

Realistic regimens

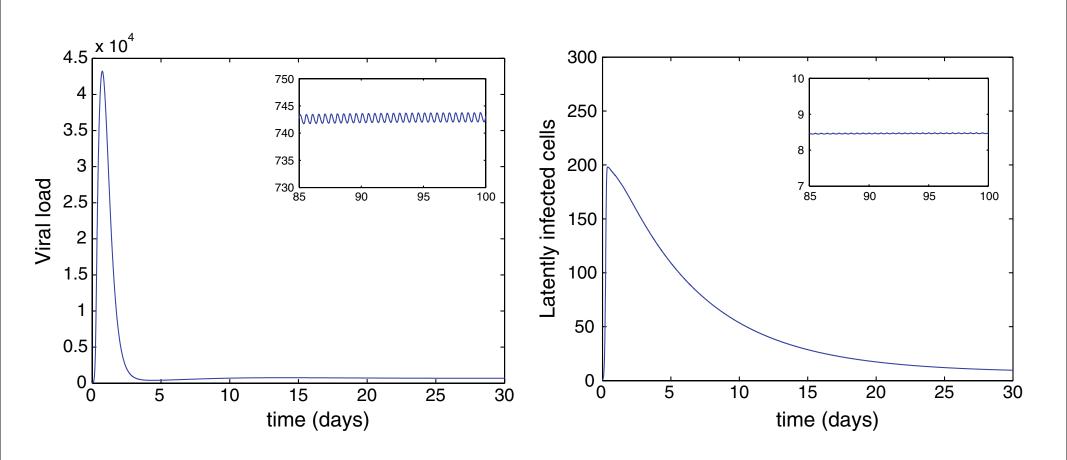
- Of course, we can't take drugs infinitely often
- Too much drug is toxic for the patient
- But these theoretical results match more realistic dosing regimens
- We simulated Didanosine, supplemented by a low-level PI.

The case of no drugs



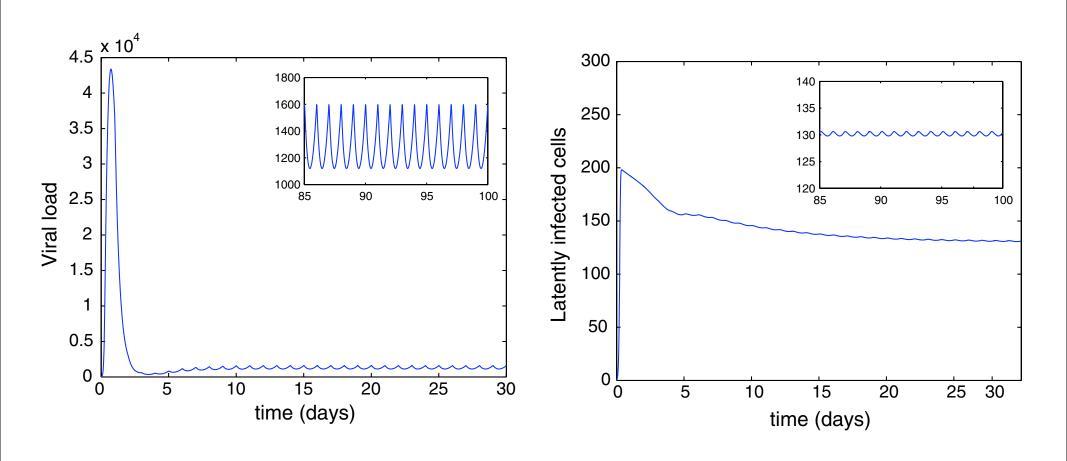
High viral load, high reservoir of latently infected cells.

RTIs taken twice daily, no PIs



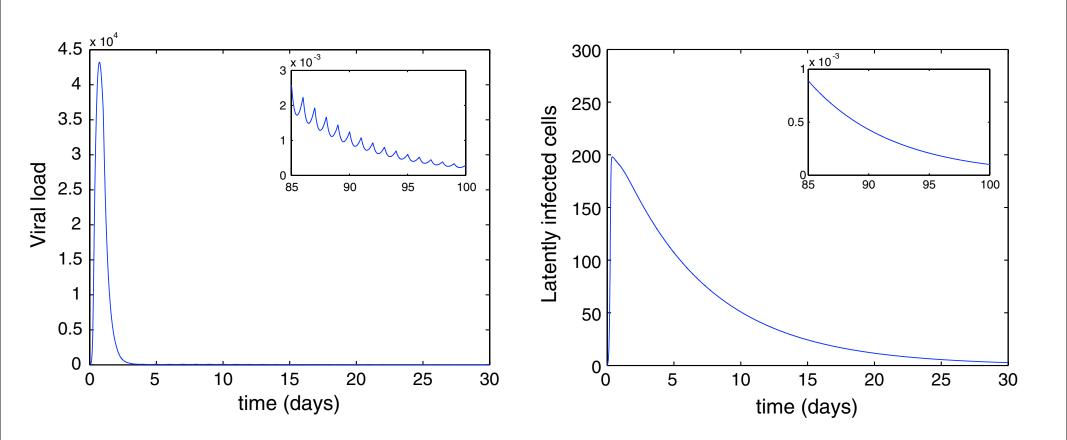
Moderate viral load, low reservoir of latently infected cells.

Low-level PI, no RTIs



High viral load, high reservoir of latently infected cells.

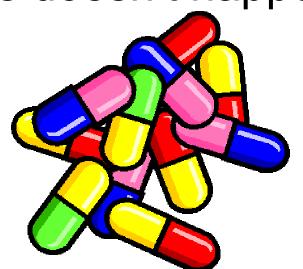
Both drugs



 Both viral load and reservoir of latently infected cells are eradicated.

Summary

- The model predicts that latently infected cells can be eradicated by sufficient drugs
- This happens even if they live for maximal time and are wholly unaffected by the drugs
- Except...
- ...we know this doesn't happen.

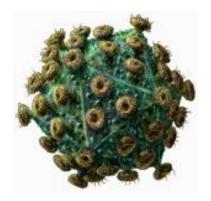


The problem with viral elimination

- Viral elimination doesn't occur
- If you stop taking drugs, the virus rebounds
- So what does this mean?

Implications

- We ignored other viral reservoirs
- eg eyes, brain, testicles, follicular dendritic cells, CTLs, etc
- These reservoirs must contribute to sustaining the low-level viral load
- Thus, latently infected cells cannot sustain a viral reservoir on their own.



Conclusion

- Mathematical models are useful for exploring hypothetical questions
- In this case, the hypothesis that latently infected cells are the sole viral reservoir
- If it were, the model predicts complete eradication, which we know doesn't happen
- This occurs even under the most extreme assumptions: that latently infected cells are immune to drugs and live for maximal time
- Thus, other viral reservoirs are critical.

Key reference

 R.J. Smith? and B.D. Aggarwala. Can the viral reservoir of latently infected CD4+ T cells be eradicated with antiretroviral HIV drugs?

(Journal of Mathematical Biology 2009, 59: 697-715)

