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Optimal drug treatment regimens for HIV depend on adherence
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Abstract

Drug therapies aimed at suppressing the human immunodeficiency virus (HIV) are highly effective, often reducing the viral load to
below the limits of detection for years. Adherence to such antiviral regimens, however, is typically far from ideal. We have previously
developed a model that predicts optimal treatment regimens by weighing drug toxicity against CD4þ T-cell counts, including the
probability that drug resistance will emerge. We use this model to investigate the influence of adherence on therapy benefit. For a drug
with a given half-life, we compare the effects of varying the dose amount and dose interval for different rates of adherence, and compute
the optimal dose regimen for adherence between 65% and 95%. Our results suggest that for optimal treatment benefit, drug regimens
should be adjusted for poor adherence, usually by increasing the dose amount and leaving the dose interval fixed. We also find that the
benefit of therapy can be surprisingly robust to poor adherence, as long as the dose interval and dose amount are chosen accordingly.
r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Highly active antiretroviral therapy (HAART) allows
for the effective suppression of viral replication in human
immunodeficiency virus (HIV)-infected individuals for
years or even decades. Adherence to HAART regimens,
however, is on average very low; estimates of mean
adherence rates typically range from 45% to 85% (Arnsten
et al., 2001; Howard et al., 2002; Weiser et al., 2003;
Giordano et al., 2004; Hinkin et al., 2004), although
average adherence has been reported to be as high as 93%
(Oyugi et al., 2004).

Imperfect adherence is due to a number of medication-
and patient-related factors; in particular, the severe and
even life-threatening side effects of antiretroviral therapy
are an increasingly important issue. For example, a
substantial fraction of all hospital admissions for HIV-
positive patients in the developed world are due to
HAART-related toxicity, typically manifested as hepatitis
(Martin-Carbonero et al., 2001). To reduce side effects,

individuals maintaining HAART often reduce their own
drug exposure through self-prescribed ‘‘drug holidays’’
(Kathleen, 2000; Siegel et al., 2000; Ammassari et al.,
2001).
Imperfect adherence not only undermines the efficacy of

therapy, but may also facilitate the emergence of drug
resistance (Montaner et al., 1998; Harrigan et al., 2005;
Walsh et al., 2002; Sethi et al., 2003; Bangsberg et al.,
2003). Drug resistance is one of the main reasons for
virologic failure during HAART (DeGruttola et al., 2000);
viral suppression cannot be achieved in the face of multiply
resistant viral strains.
The influence of adherence to HAART on treatment

outcome has been investigated in a number of clinical
studies. Paterson et al. (2000) reported a strong association
between adherence rates and four measures of therapeutic
success: virologic failure, number of days spent in the
hospital, incidents of opportunistic infection and death.
Similar results were described by Descamps et al. (2000),
who found that lower adherence to indinavir therapy was
associated with a higher risk of early virologic failure.
Likewise, Roca et al. (2000) observed significant associa-
tions between adherence and baseline viral load. De Olalla
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et al. (2002) and Wood et al. (2003) found that the
mortality rate among adherent patients is significantly
lower than among non-adherent patients. Gross et al.
(2001) found that adherence is important in achieving viral
suppression with a newly initiated treatment regimen. In
contrast, Maitland et al. (2005) found no association
between virologic failure and adherence.

Although clinical studies such as these are essential in
elucidating the complex effects of adherence in HAART,
important insights can also be gained through the careful
use of mathematical models. For example, Wahl and
Nowak (2000) used the basic reproductive ratio associated
with a particular treatment regimen to estimate the degree
of adherence required to suppress viral replication and
minimize the risk of drug resistance; both single and
triple drug regimens were investigated. Phillips et al.
(2001b) considered four different patterns of adherence
in triple drug therapy and found patterns which lowered
the probability that resistance would emerge during
therapy. Huang et al. (2003) investigated the effect of
imperfect adherence on viral rebound, and found that
longer sequences of missed doses implied faster viral
rebound. Smith (2006) used an impulsive differential
equation model (Smith and Wahl, 2005) to estimate the
number of doses that can be missed, as well as the number
of subsequent doses necessary to suppress the growth of a
50-fold resistant strain, for 12 different drugs. In another
group of studies (Wu et al., 2005; Verotta and Schaedeli,
2002; Ferguson et al., 2005) the adherence patterns of
individual patients were recorded and used to estimate
overall drug exposure. Wu et al. (2005) found that this
overall drug exposure was a significant predictor of viral
load. Verotta and Schaedeli (2002) fit clinical data
describing viral dynamics to four basic models, and found
that parameter estimates did not change significantly when
adherence was explicitly included. Finally, Ferguson et al.
(2005) demonstrated that adherence was a significant factor
in predicting between-patient differences in viral load and
T-cell count.

Our recent work has used mathematical modeling to
investigate possible drug-sparing antiviral regimens—
regimens which reduce toxicity while suppressing both
viral replication and the risk of drug resistance (Krakovska
and Wahl, 2007). Here we extend this work to consider,
in detail, the effects of non-adherence. Our model
incorporates accurate pharmacokinetics and quantitatively
balances the benefits of therapy against both toxicity and
the risk of drug resistance. We investigate changes in the
optimal treatment regimen for patients with different
levels of adherence, and estimate the effects of non-
adherence on the overall benefit of therapy. These results
sensitively depend on the underlying pharmacokinetics of
the antiviral drug, particularly the drug half-life; we
investigate a range of half-lives between 3 and 60 h. A
surprising result of this investigation is that substantial
treatment benefit can often be maintained, even when
adherence is poor.

2. Methods

2.1. The model

Our model for in-host HIV dynamics (Krakovska and
Wahl, 2007) consists of five populations: CD4þ T-cells
which are naı̈ve (x), activated (r) or productively infected
(y); and CD8þ T-cells which are naı̈ve (u) or activated (z).
We include both naı̈ve and activated cells in order to
capture any possible boosting of the immune system during
breaks in therapy. The concentration of cells in a small
volume of plasma for each population is modeled as
follows:

_x ¼ lx # bð1# ZÞxy# dxx# axy, (1)

_r ¼ abxy# bð1# ZÞry# drr, (2)

_y ¼ ly þ bð1# ZÞðrþ xÞy# dyy# rzy, (3)

_u ¼ lu # duu# xury, (4)

_z ¼ xgury# dzz. (5)

The parameters, model assumptions and rationale for this
system of equations have been described in detail elsewhere
(Krakovska and Wahl, 2007). Briefly, lx½lu' is the
production rate of naı̈ve CD4þ½CD8þ' T-cells by thymus,
dx½du' is the corresponding death rate, dr½dz' is the death
rate of activated CD4þ½CD8þ' T-cells, ly is the input of
productively infected cells from the latent source, dy is the
death rate of the productively infected cells and b is the
infection rate. We make the conservative assumption that
all infected cells are productively infected. In addition to
these terms, our model includes T-cell activation and
cloning. The mass-action term axy represents the activa-
tion of naı̈ve CD4þ T-cells by antigen-presenting cells,
which are assumed to be proportional to productively
infected cells y. Activated CD4þ T-cells can further clone
themselves; a newly activated CD4þ T-cell produces on
average b# 1 clones, such that the rate of increase in r
through activation and cloning is abxy. Activated CD4þ

are also required to activate naı̈ve CD8þ T-cells, with the
overall activation rate xury. Finally, activated CD8þ

T-cells can clone themselves at rate g# 1, and kill
productively infected cells at rate r. In all of the numerical
work to follow, we use parameter values as described in
Krakovska and Wahl (2007). A sensitivity analysis for
these parameter values also appears in Krakovska and
Wahl (2007).
The drug effectiveness, Z, is the degree to which the

infection rate b is reduced by the current drug concentra-
tion, with 0pZp1. We use Michaelis–Menten dynamics to
model changes in Z with changing drug concentrations,
ZðtÞ ¼ cðtÞ=ðcðtÞ þ IC50Þ (Wahl and Nowak, 2000), where
cðtÞ is the intracellular drug concentration, and IC50 is the
concentration necessary to inhibit viral replication by 50%.
Although in vivo IC50 values are very difficult to measure,
for the purposes of this model we are able to use drug
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concentrations normalized by IC50, CðtÞ ¼ cðtÞ=IC50, such
that ZðtÞ ¼ CðtÞ=ðCðtÞ þ 1Þ. This approach has the addi-
tional advantage of removing one free parameter from the
model.

We assume that the normalized drug concentration,
CðtÞ, can be modeled using an impulsive differential
equation as follows (Smith and Wahl, 2004, 2005): doses
are taken at fixed times 0; t; 2t; . . . ; where t is a constant
dose interval. Between doses, the drug concentration
decays exponentially with decay rate w, determined by
the drug half-life t1=2 as w ¼ ln 2=t1=2:

dC

dt
¼ #wC; ta0; t; 2t; . . . (6)

with Cð0Þ ¼ 0. At the dosing times, the drug concentration
increases instantaneously by the single dose amount, Cm, if
a dose is taken:

Cðtþk Þ ¼
Cðt#k Þ þ Cm; t ¼ 0; t; 2t; . . . if dose is taken,

Cðt#k Þ; t ¼ 0; t; 2t; . . . if dose is missed.

(

(7)

This impulsive system implicitly assumes that the time-to-
peak is negligible compared to the intracellular decay rate.
This formulation also assumes that drug concentrations
add linearly with increasing dose, which is clearly an
oversimplification of the underlying pharmacodynamics.
Thus the total drug concentration accrues over several
doses (see Fig. 1), reaching a periodic orbit if adherence is

perfect, as elucidated in detail in Smith and Wahl (2004).
To clarify notation, Cm is the instantaneous increase in
drug concentration with each dose, while Cmax is the peak
concentration reached during the periodic orbit, for perfect
adherence. We will also use the term ‘‘single dose efficacy’’,
denoted by Zm, which we define as the instantaneous
increase in drug efficacy with each dose: Zm ¼ Cm=
ðCm þ 1Þ. For convenience, we also refer to Zm as
simply the ‘‘dose amount’’. Analogously, Zmax is the peak
efficacy reached during the periodic orbit (peak values in
Fig. 1).

2.2. Treatment benefit

To compare treatment regimens, we have previously
developed a metric that incorporates the three main goals
of HIV therapy (Krakovska and Wahl, 2007): (i) maximize
the population of CD4þ T-cells; (ii) minimize toxicity; (iii)
minimize the risk of drug resistance. In this approach, we
assess the benefit of a given treatment regimen, by
integrating the population of naı̈ve CD4þ T-cells, x, over
the course of therapy. To assess drug toxicity, we assume
that side effects increase linearly with drug concentration,
CðtÞ, and normalize for different drugs by dividing by the
average drug concentration when each drug is taken with
perfect adherence. Thus, if Ca gives the mean drug
concentration when the impulsive equations (6) and (7)
reach the periodic orbit, we gauge overall toxicity by
integrating CðtÞ=Ca over the treatment period ½t0; tf ':

Toxicity /
Z tf

t0

CðtÞ
Ca dt. (8)

To assess the risk of drug resistance, we estimate a
probability distribution for the time at which resistance
emerges, tr. Before the emergence of drug resistance, the
costs of therapy, in terms of side effects, are subtracted
from the treatment benefit, in terms of the naı̈ve CD4þ T-
cell count. Therefore, treatment benefit during the time
interval before resistance emerges, ½t0; tr', is given byR tr
t0
x# qðCðtÞ=CaÞdt. After resistance emerges, we assume

a worst-case scenario, that is, we assume that the emergent
strain is fully resistant to current therapy, the patient is
taken off therapy and the CD4þ T-cell count falls to
200 cells=ml, consistent with a diagnosis of AIDS. Therefore
the treatment benefit on ½tr; tf ' is

R tf
tr
200 dt, since CðtÞ is

zero in this interval.
To estimate the time at which resistance emerges, we use

the simplest possible model, assuming that the rate at
which resistance emerges per unit time, or the ‘‘failure
rate’’, F, is constant. This is clearly a simplifying
assumption, since drug concentrations in particular may
fluctuate on an hourly time scale. However, for the optimal
treatment regimens we compute, this rate is uniformly
small (see Appendix B) and the expected fluctuations in F
are small as well. We thus find that tr is exponentially
distributed, with probability density Fe#Ftr . The mean
failure rate F can be computed, using clinical data, as
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Fig. 1. Changes in the drug efficacy ZðtÞ versus time, determined by
Michaelis–Menten dynamics. Drug concentration is determined as a
numerical solution to the impulsive differential equations (6) and (7), with
90% adherence. The top panel gives the corresponding value of ZðtÞ for a
drug with a 3 h half-life; for the bottom panel t1=2 ¼ 60 h. Note that
depending on the drug half-life, several consecutive doses may be required
to return to the periodic orbit after a dose is missed (vertical lines).
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described in Appendix B. We note that F depends on the
drug concentration, CðtÞ, over the entire course of therapy,
as well as on the populations of susceptible and infected
CD4þ T-cells at all times.

The overall benefit of therapy, T, over a time period
½0; tf ' is then given by

T ¼
Z tf

t0

pðtrÞ
Z tr

t0

x# q
C

Ca

! "
dtþ

Z tf

tr

200 dt

# $
dtr

þ ð1# Pðtf ÞÞ
Z tf

t0

x# q
C

Ca

! "
dt, ð9Þ

where e#Ftf gives the probability that resistance emerges
after tf . Thus the first integral estimates the benefit of
therapy if resistance emerges before tf and therapy is
discontinued, while the second term estimates the benefit if
resistance is not predicted to emerge during the treatment
interval. The parameter q is a scalar which gives the weight
between CD4þ T-cell counts, x, and normalized side effects
C=Ca; following Krakovska and Wahl (2007), we use the
methods described in Appendix A to estimate this weight.

For the purposes of this investigation, we consider a
hypothetical antiviral pharmaceutical, with a fixed half-life.
Our goal is to predict optimal dose amounts and dose
intervals for this drug, and to examine how these optima
might change when imperfect adherence is considered. To
compute the benefit of therapy in Eq. (9), however, we need
the average drug concentration, Ca, when the drug is taken
as typically prescribed with perfect adherence. The typical
dose interval for a drug of a given half-life can be estimated
easily by comparing drug intervals and half-lives for
currently available antivirals (see Table 1). To estimate
the typical dose amount, we make the somewhat arbitrary
assumption that drugs will typically be prescribed such that
the minimum (trough) drug concentration, when taken
with perfect adherence, corresponds to a drug efficacy of

90%. This estimate falls in the range estimated by
Montaner et al. (2001). Thus

Cmaxe#wt

Cmaxe#wt þ 1
¼ 0:9. (10)

Integrating over a single dose interval, we can then
compute the average drug concentration, Ca, for a typical
dosing regimen:

Ca ¼
9ewtð1# e#wtÞ

w
. (11)

We consider a treatment interval of two years, and assume
that the system is at the infected equilibrium at the start of
therapy. This allows us to capture an upper bound on the
probability that resistance emerges, thus giving conserva-
tive estimates of the benefit of therapy.
We consider adherence between 65% and 95%. In

modeling imperfect adherence, we assume that each dose is
taken independently with a probability equal to the
adherence level, and a dose is never taken when it is not
prescribed.
We consider drugs with four different half-lives for each

adherence level: a drug with a 3 h half-life, standardly
prescribed every 8 h; a drug with a 6 h half-life, prescribed
every 12 h; and drugs with 20 and 60 h half-lives, both
prescribed every 24 h. These half-lives and dosing intervals
span the range of currently available protease and reverse
transcriptase inhibitors, as shown in Table 1. We then
numerically compute the target function value correspond-
ing to other dose intervals and dose amounts, for a given
level of adherence. The dose amount is varied such that the
single dose efficacy, Zm, changes from 0.25 to 1, and the
dose interval is varied from 8 to 100 h in increments of 4 h.
Note, however, that not all of these dose intervals are
clinically feasible; for example, a dosing interval of 20 h
would not be realistically sustainable. We thus limit dosing
intervals to t ¼ 8; 12; 24; 48; 72 or 96 h when discussing
‘‘practically feasible’’ schedules.
The treatment benefit, T, is a random variable which

depends on the particular sequence of missed doses. We
thus estimate T by numerically evaluating Eq. (9) over 250
simulation runs for each dose interval, dose amount and
adherence level.

3. Results

Fig. 1 provides an illustrative example of changes in the
drug effectiveness, ZðtÞ, versus time. When a single dose is
missed (vertical lines), the drug continues to decay with its
usual half-life; we illustrate ZðtÞ for drugs with a short (3 h)
and long (60 h) half-life, and adherence of 90%. Depending
on the half-life, recovery of the drug concentration to the
periodic orbit may require several doses to be taken in
succession after missed doses. The horizontal line on each
panel illustrates the mean drug efficacy achieved with this
level of adherence.
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Table 1
Half-lives and typical dose intervals for antiviral drugs, including protease
inhibitors (PI), nucleoside analog reverse transcription inhibitors (NRTI)
and non-nucleoside reverse transcription inhibitors (NNRTI)

Drug Class t1=2 (h) Dose
interval
(h)

Dosage
(mg)

Indinavir PI 1.5a 8 800
Abacavir NRTI 18b 12 300
Stavudine NRTI 3.5b 12 40
Zidovudine NRTI 7b 24 200
Ritonavir PI 4a 12 600
Nelfinavir PI 4.25a 12 1200
Delavirdine NNRTI 5.8a 12 400
Amprenavir PI 8.85a 12 1200
Lamivudine NRTI 12.5b 24 300
Didanosine NRTI 16b 24 400
Nevirapine NNRTI 16.5a 24 200
Efavirenz NNRTI 64a 24 600

aSerum half-life.
bIntracellular half-life.
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Fig. 2 illustrates, for 90% adherence, how the overall
treatment benefit, T, changes with dose interval ðtÞ and
single dose efficacy, Zm. We tested dose intervals ranging
from 8 to 100 h, in increments of 4 h. Panels show results
for drug half-lives of 3, 6, 20 and 60 h. Stars show the best
attainable treatment benefit, Tmax; circles show the best
practical treatment benefit, achievable with a clinically
feasible dose interval. At 90% adherence, we predict that
drugs with half-lives of 3, 6 or 20 h should be taken every
8 h, the minimum dose interval we tested; stars and circles
overlap at an 8 h dose interval in these three cases. For
short half-life drugs, the range of single dose efficacy at
which treatment benefit outweighs the cost of toxicity is
narrow, while the peak on the surface is considerably
broader for longer half-lives. For longer half-lives, a range
of ‘‘optimal’’ regimens may be nearly equivalent, with

higher doses recommended for longer dose intervals. The
sharp drop in treatment benefit for high dose amounts and
short intervals is due to drug toxicity; more drug is taken
than is necessary to control the virus in this range.
We also computed the mean basic reproductive ratio, R0,

for each combination of single dose efficacy and dose
interval by estimating the average drug efficacy achieved
for each combination and a particular level of adherence.
Results for 90% adherence are shown in Fig. 3. We find
that the optimal drug regimen reduces R0 to just below
unity. Individual lines in this figure show how the
treatment benefit changes for fixed dose amount when
the dose interval is varied. When R0 is allowed to exceed
one, the treatment benefit drops sharply, whereas the effect
of reducing R0 below its optimal value is less sharp; the
decrease in T on the left is due to increased drug toxicity.
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Fig. 2. Treatment benefit for various dosing regimens, determined for 90% adherence and for drug half-lives t1=2 ¼ 3; 6; 20 and 60 h (panels a,b, c and d,
respectively). A numerical solution of Eq. (9), subject to the cell dynamics described by Eqs. (1)–(5), was found as described in the text for dose intervals, t,
between 8 and 100h, and single dose efficacy, Zm, between 0.025 and 1. Stars show the peak on the surface, that is, the best attainable treatment benefit;
circles show the best practical treatment benefit, achievable with a clinically feasible dose interval. Note that for short half-life drugs, the range of single
dose efficacy for which treatment benefit outweighs the cost of toxicity is narrow, while the peak on the surface is considerably broader for longer half-
lives.
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We varied adherence between 65% and 95%, and
regenerated surfaces such as those shown in Fig. 2 for
90% adherence. Fig. 4 shows how the optimal dose
regimen changes with adherence. For a drug half-life of
3 h, the optimal dose interval is always at the minimum,

8 h. However, the recommended dose amount decreases
with increasing adherence (left panel, squares). Similarly,
the benefit of therapy increases with adherence (stars).
Results for half-lives of 6 and 20 h were qualitatively
identical to the results illustrated here.
For a 60 h half-life (right panel), we find that the optimal

regimen is extremely sensitive to adherence. The figure
shows the recommended dose interval and single dose
amount for adherence between 0.65 and 0.95. Circles show
drug regimens that are practically achievable, while stars
show the numerically optimal solutions. We find that as
adherence increases, smaller dose amounts, with the same
dose interval, are beneficial. As adherence increases
further, the optimal regimen ‘‘jumps’’ to a longer dose
interval, and larger dose amount. We further note that the
recommended dose intervals range from 8 to 24 h, and that
the recommended dose amount changes by nearly a factor
of 2 for adherence between 75% and 95%. These changes
in dose amount and dose interval counter-balance each
other, however, such that the corresponding peak efficacy,
Zmax, changes only modestly, and is in the range of
0.71–0.79 for all the optima shown here.
The final goal of our investigation was to evaluate the

performance of ‘‘optimal’’ dose regimens, determined for a
specific level of adherence, at other adherence levels.
Results are shown in Fig. 5 for short and long drug half-
lives. We find that the benefit of therapy is reduced if a
regimen which works best at one adherence level is taken
with either higher or lower adherence. This reduction,
however, is not symmetrical: our model predicts that a dose
regimen which is optimal at high adherence performs very
poorly at lower adherence (steep slope on the left of each
curve); in contrast, a regimen designed for low adherence
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still performs relatively well at higher adherence levels.
Note that when adherence is high, the maximum treatment
benefit attainable is slightly higher for short half-life drugs
(panel (a)); this is possibly due to a reduction in side effects
because of the faster decay of the drug from the system.

Despite this subtle difference, the peak values for each
curve in Fig. 5 have approximately similar heights,
especially for drugs with long half-lives (Fig. 5(b)). This
unexpected result predicts that poor adherence does not
necessarily compromise the treatment benefit that is
attainable, when doses are missed independently and
randomly, as long as the dose amount and dose interval
are tailored to the adherence level. This counter-intuitive
result will be taken up again in the Discussion.

4. Discussion

In general, our results predict that the optimal dosing
regimen is sensitive to adherence. Our results suggest that
drug regimens could be adjusted for poor adherence,
typically by increasing the dose amount, while the dose
interval remains fixed. For drugs with very long half-lives,
we predict that both the recommended dose amount and
dose interval should be adjusted. In the example illustrated
in Fig. 4, the recommended dose amount is cut in half,
while the dose interval decreases from 24 to 8 h if adherence
decreases from 95% to 75%. We note, however, that
decreasing the dose interval might itself further compro-
mise adherence, a factor which we have not yet considered.
Nonetheless, the most interesting prediction of this model
is that similarly effective therapy can often be achieved,
even for low adherence, if the dosing regimen is adjusted
appropriately. In contrast, we find that poor adherence

severely compromises the benefit of therapy if the treat-
ment regimen is not adjusted.
In particular, our model predicts, not surprisingly, that

therapies designed for 90% adherence do not perform well
at 65% adherence. More interestingly, we also predict that
if therapies which work best at 65% adherence are taken
with 90% adherence, the benefit of therapy is also
diminished: since the virus is well controlled by the
prescribed regimen at 65% adherence, 90% adherence
likely increases toxicity without improving viral suppres-
sion. These quantitative findings are important since dose
amounts and timings are often validated under the
conditions of controlled clinical trials, while adherence
rates in a random clinical population may vary more
widely (Bangsberg et al., 2000). Ideally, patient adherence
should be assessed before prescribing therapy, and
monitored periodically, in order to prescribe a regimen
that is most effective for the individual.
The model we describe focuses on estimates of optimal

dose regimens for a single antiviral with a known half-life.
This approach might also be applicable to a combination
of antivirals taken together (in a single pill), as long as the
drug half-lives were similar. An avenue for future work is
the extension of this model to combination therapies
during which drugs are taken independently, and adher-
ence by the same individual to different drugs might vary.
Future extensions to this approach should also include
more realistic patterns of non-adherence (random drug
holidays, imperfect timing of successive doses), more
accurate intracellular pharmacokinetics and better esti-
mates of the rates at which drug resistance emerges, since
these are known to depend on the type of drug used
(Bangsberg et al., 2004).
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Fig. 5. Performance of ‘‘optimal’’ dosing regimens, determined for a specific level of adherence, at other adherence levels. The optimal dose amount and
dose interval for each adherence rate were first determined as described in the text and the legend to Fig. 2. The treatment benefit for each of these optimal
regimens was then computed at different adherence rates by computing the mean value of T for 250 independent simulation runs at each rate of adherence
between 0.45 and 0.95 in increments of 0.05. The panel on the left gives results for t1=2 ¼ 3 h; the panel on the right gives results for t1=2 ¼ 60 h. Note that
the maximum benefit attainable is approximately the same for all adherence levels, particularly when the half-life is long.
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The benefit of therapy, as estimated in our model,
explicitly includes the negative effects of drug toxicity.
While the success of HAART in prolonging survival and
delaying the progression to AIDS cannot be overstated,
persons living with HIV/AIDS are now typically expected
to participate in drug therapy for years or even decades. It
is critical that well-tolerated therapeutic regimens, with
realistic expectations for adherence, are developed over the
next several years. The theoretical predictions we describe
here represent a small step in that direction.
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Appendix A. Estimating the weight of drug toxicity, q

One of the more difficult aspects of this work is to
balance, quantitatively, the costs of side effects against the
benefits of improved helper T-cell counts. As in Krakovska
and Wahl (2007), we do this by considering clinical
practice. In particular, a standard guideline is to begin
triple-drug therapy when CD4þ T-cell levels fall to
350 cells=ml or less.

Consider two possible treatment strategies: one is to
initiate treatment at the moment of infection, t0; the other
is to delay treatment until t350, the time at which CD4þ

T-cell counts reach 350 cells=ml. The clinical practice
outlined above implicitly assumes that the drug toxicity
avoided by this delay ‘‘is worth’’ the loss of CD4þ T-cells
experienced during this interval. Thus

R t350
t0

ðxmax # qÞdt ¼R t350
t0

xðtÞdt, where xðtÞ gives the time course of naı̈ve CD4þ

T-cell counts in the absence of therapy. Although the time
course of the loss of x will clearly differ from patient to
patient, assuming this loss is roughly linear, we find
q ¼ ðxmax # 350Þ=2.

Appendix B. Estimating the probability that resistance
emerges

To estimate the rate at which resistance emerges, the
failure rate F, we compute the probability that new drug-
resistant mutations arise during the therapeutic interval
½t0; tf ', and multiply by the probability that each new
mutation forms a lineage of infected cells which will
ultimately survive in the population of infected cells. The
latter probability is given by the fixation probability, p, as
described below. The former probability is given by the
overall number of newly infected cells, multiplied by the
mutation rate m: mW

R tf
t0
bð1# ZÞðxþ rÞydt. Here W is a

conversion coefficient which is necessary to compute the

number of drug-resistant mutations which arise in the
whole body (particularly in lymph tissue), given the rate at
which such new mutations occur in 1 ml of blood.
The fixation probability p is governed by the basic

reproductive ratio of the drug-resistant viral strain, Rm.
Assuming complete drug resistance, we have

Rm ¼
bð1# sÞðxþ rÞ

dy þ rz
p bðxþ rÞ

dy
. (12)

For a linear birth–death process (Karlin and Taylor, 1975),
we have p ¼ 1# 1=Rm.
Therefore, the rate at which resistance emerges, F, can be

expressed as

F ¼
Wmb
tf

Z tf

t0

ð1# ZðtÞÞðxðtÞ þ rðtÞÞyðtÞ

( 1#
dy

bðxðtÞ þ rðtÞÞ

! "
dt. ð13Þ

Clearly W is unknown; however, we can find a reasonable
numerical estimate of the product Wmb in the following
way. A distribution of adherence rates has been observed
for patients on continuous drug regimens (Eldred and
Cheever, 1998). Likewise, overall immunological failure
rates, due to drug resistance, have been estimated in
various studies (Grabar et al., 2000; Phillips et al., 2001a;
Martinez-Picado et al., 2003; Mocroft et al., 2004; Lohse et
al., 2005; Phillips et al., 2005). We assume a distribution of
adherence rates, and for each half-life and standard dose
interval, solve for the value of Wmb which gives the
appropriate overall failure rate. The failure rate we assume
is that resistance emerges in 12.5% of patients in six years
(Mocroft et al., 2004). The adherence rate distribution is
based on Eldred and Cheever (1998): 30% of patients have
very low adherence (0.25), 20% have low adherence (0.65)
and 50% have high adherence (0.9). This yields values of
Wmb in the range of 4:228:1( 10#8. We can then use the
appropriate value of Wmb, for a particular dose amount,
dose interval and adherence rate, to compute the predicted
failure rate, F.
The reciprocal of the failure rate, TF ¼ 1=F , gives the

expected time until resistance emerges. We illustrate the
behavior of this variable in Fig. 6. On the left (Fig. 6(a)),
we illustrate that treatment benefit is severely compromised
when the expected time until resistance emerges is not
sufficiently long. This allows our optimization routine to
reject treatment regimens which allow drug resistance to
develop. However, we note that for the optimal drug
regimens predicted by our model, TF is very long, and thus
has a negligible effect on the benefit of treatment. In
particular, for the optimal regimens found in this study, TF

was always longer than 1000 years.
TF itself depends directly on the mutation rate, but also

depends in a more complicated way on drug efficacy. We
illustrate the latter effect by fixing ZðtÞ to a constant level,
Zc, and computing TF from Eq. (13). Fig. 6(b) illustrates
that if the mean drug efficacy is high, the expected time

ARTICLE IN PRESS
O. Krakovska, L.M. Wahl / Journal of Theoretical Biology 246 (2007) 499–509506



until resistance emerges is long. In the inset, we see that TF

is also very long if Zc is small, that is, if the infected cells are
not exposed to the drug. In contrast, intermediate drug
levels promote the emergence of the drug resistance. Once
again, although the optimal drug regimens we report have
very long values of TF , this functional behavior is
important in eliminating regimens which may facilitate
the emergence of drug resistance.

As an aside, we predict that the product Wmb is in the
range of 4:228:1( 10#8. We also note that the variability
observed clinically in HIV viral load has been shown to be
best matched by an individual-based simulation in which
the infection is driven by 300–500 independent infectious
units (Heffernan and Wahl, 2006). Since our model
assumes 50 independent infected cells per ml, this suggests
that the conversion factor W should be in the range of
6–10. Using b ¼ :0028, this predicts that m is in the range of
1:524:7( 10#6. We note that m gives the rate at which
mutations which confer drug resistance are predicted to
occur, based on the clinical data cited above. The values
predicted here are smaller than the point mutation rate, but
larger than the 2-point mutation rate for double mutations.
This is perhaps not surprising since most of the patients in
the studies cited above, from which we estimate Wmb, were
prescribed combination therapy, but resistance presumably
arose during substantial periods of lower concentration for
one or more drugs, due to low adherence.
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