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Abstract

Since the discovery of HIV in the early 1980’s there has been a vast
amount of research conducted on HIV. A topic of particular interest has
been the investigation of possible prevention methods to halt or slow
down the spread of HIV. In this paper, we develop two models which
examine the effectiveness of education and treatment methods for HIV-
infected individuals on the spread of HIV. The first model developed is
a population-based system of ordinary differential equations. We show
that under certain conditions, the disease-free equilibrium is globally-
asymptotically stable. Through numerical simulations it is shown that
education and treatment maybe effective but further research is required.
In particular, our model identified the critical parameters as the number
of needles the average injection drug user comes in contact with before and
after the introduction of an education program as well as the proportion
of individuals reached by the program. The other model we developed
was an individual-based model; the goal was to compare results of this
model with the population-based model. We outline the difficulties in
implementing an individual-based model for HIV, as well as, discuss why
we are interested in developing this model and its usefulness.

1 Introduction

A 2002 national study estimated that 30% of new HIV infections which occurred
in Canada were among injection drug users [3]. That same year, HIV preva-
lence among injection drug users (IDU) in Ottawa was estimated at 19.7% [3].
The sharing of needles is relatively common among this population and poses
an efficient mode of transmission for the HIV virus [3]. In cities with more
mature HIV epidemics, such as New York and Milan, HIV prevalence levels are
reportedly as high as 50% [7]. As such, the spread of HIV among the Canadian
injection-drug user population merits serious and immediate attention.

From an economic perspective, the total medical cost of one HIV infec-
tion is estimated at $150,000 Canadian [7]. It clearly makes financial sense to
fund effective public health interventions that can decrease the number of in-
fections acquired by the Canadian IDU population. Kuyper et al. estimated
total expected medical expenditures in Vancouver, based on their current HIV
prevalence of 31% among IDUs at $215,852,613 [7]. However, forecasts show
that, should the prevalence rise to 50%, as in other major urban centres, the
medical costs of treating HIV among IDUs in Vancouver would skyrocket to
$348,935,865.

Here, we attempt to model HIV/AIDS disease progression within the IDU
community of one Canadian city. Treatment strategies involving education pro-
grams and/or anti-retroviral programs are considered, with varying uptake and
retention rates. There is evidence to support the hypothesis that by educating
injection drug users about HIV transmission and providing them with clean nee-
dles, risky needle-sharing behaviour will decrease resulting in a decreased HIV
transmission rate [4]. We consider the inclusion of anti-retroviral treatment as
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this is known to lower viral load, and thus, decrease transmission rates. The
outcome of interest in this analysis is the prevalence of HIV/AIDS. We expect
that these results could be useful from a policy-making perspective in order to
determine the most effective treatment strategy.

2 Mathematical model

The objectives of the models developed in this paper are to evaluate the ef-
fectiveness of education and treatment on the HIV epidemic among a group of
IDU in one Canadian city. For this study, we use preliminary data from Ottawa,
Ontario as an example. The education program examines the effect of having
a fraction of the population enter a program that reduces the risk they use a
“bad” needle and contract HIV. The treatment model considers how effective
treating HIV-infected individuals is on lowering prevalence and incidence rates.
The two strategies are also combined in one model to determine if it is more
beneficial to consider only one strategy at a time, or both.

The main challenge in meeting these objectives is the lack of data available
for IDU in Ottawa. The lack of data makes precise quantitative results impos-
sible. Hence, models focus on theoretical frameworks, qualitative results and
uncertainty analysis over a broad range of parameter values. These theoretical
results can identify important model parameters which can be used to guide
future research in this area.

2.1 Model assumptions

A yearly time scale is used to model population dynamics, which includes calcu-
lating the fraction of the population entering an education program, becoming
infected with HIV, entering or leaving treatment, developing AIDS and suc-
cumbing to mortality.

First, we define some notation:

� let S(t) denote the number of individuals in the IDU group who have not
contracted HIV;

� Se(t) be the number of individuals who entered an education program;

� Iu(t) be the number of untreated individuals who are HIV-infected;

� IT (t) the number of HIV-infected individuals in treatment;

� and A(t) the number of individuals who have AIDS.

We assume that there is a constant recruitment rate into S(t), denoted by
π, regardless of interventions implemented and individuals leave due to natural
death a rate µ. Individuals enter an education program at a rate ψε (units
1/time) which reduces their chance of being infected (see text below). Thus,
the term ψεS is the number of people per year that enter an education program
and (1 −ψε)S is the number of individuals who chose not to enter a program.
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Individual’s in the IDU group will use c infected needles per year. The
probability that this use leads to infection depends on whether the needle was
previously used by an individual who has HIV, HIV-infected and in treatment
or infected with AIDS, denoted by β1, β2 and β3, respectively. For this paper,
we assume that each β is constant so that the incidence term is referred to as
standard incidence [6]. So, the contact rate does not vary with population size
which is a reasonable assumption for a HIV model. Now consider, for example,

the term (1−ψε)Scβ1Iu
N

which is the incidence of new infections due to a bad
needle being contaminated by a untreated, HIV-infected individual. Thus, the
incidence of new infections due to contact with an infected individual is given
by

λs =
(1 −ψε)Sc(β1Iu + β2IT + β3A)

N
. (1)

Note that the probability of infection is highest when the needle was previously
used by an AIDS-infected individual, followed by untreated HIV-infected indi-
viduals and treated HIV-infected individuals. This reflects that fact that an
individual who has AIDS will have more virus present in their blood then either
of two HIV-infected groups.

Individuals who chose to enter an education program have a reduced prob-
ability of becoming infected. We assume that these individuals will use a lower
number of infected needles per year, denoted by cse. Thus, the incidence of
infection among educated susceptibles is given by

λse =
ψSecse(β1Iu + β2IT + β3A)

N
. (2)

Since there is a delay between HIV and the appearance of symptoms, in-
dividuals who become infected with HIV are initially untreated. A fraction of
individuals, p, enter a treatment program. Since treatment can result in harsh
side effects we assume that individuals leave treatment at some rate α.

After initial symptomatic infection, HIV enters a dormant stage which lasts
approximately 10 years. We assume that individuals who have HIV but have
not taken treatment will develop AIDS at a rate ν. Individuals in treatment will
progress to AIDS at a slower rate denoted by θ. Upon development of AIDS,
individuals succumb to the disease at a rate γ.

From these assumptions, we obtain the following system of five ODEs:

Ṡ = π− (µ+ψε)S− (1 −ψε)λs

ṠE = ψεS− µSE − λSe

˙Iu = (1 −ψε)λs + λse + αIT − (p+ θ+ µ)Iu

˙IT = pIu − (α+ µ+ ν)IT

Ȧ = θIu + νIT − (µ+ γ)A, (3)

with positive initial conditions (S0,Se0, Iu0, IT0,A0). If we let ψε = 0 then the
model is for treatment only and if p = α = ν = 0 then the model is for education
only.
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2.2 Results

In this subsection we present analysis of model 3 as well as some numerical
simulations of the model. The analysis of the model will show that upon certain
conditions that the disease-free equilibrium (DFE) is globally asymptotically
using a Lyapunov function. For numerical results, we generated a large sample
of parameter space using Latin hypercube sampling. The ranges used for each
parameter are shown below in Table (1). In this paper, the results presented
are from subsets of the Latin hypercube sample.

2.2.1 Disease-free equilibrium

The disease-free equilibrium for model 3 is found by setting Iu = IT = A = 0,
as well as time derivatives and solving for S̄ and S̄e. For model 3 the DFE is
given by (

S̄, S̄e, 0, 0, 0
)
=

(
π

µ+ψε
,
ψε

µ

π

µ+ψε
, 0, 0, 0

)
,

where, for example, π
µ+ψε is the mean time an individual spends in S. The sta-

bility of the DFE is determined using the next-generation method technique of
Watmough and van den Driessche [12]. The quantity that determines stability is
known as the basic reproduction number (R0) which is the number of secondary
infections caused by the introduction of one infectious individual into a totally
susceptible population. For model 3, one can find the following matrices F, V
for the next generation method:

F =

 β1((1 −ψε)S0cs + SE0cSe) 0 0
0 β2((1 −ψε)S0cs + SE0cSe) 0
0 0 β3((1 −ψε)S0cs + SE0cSe)


and

V =

 p+ θ+ µ 0 0
0 µ+ γ 0
0 0 α+ µ+ ν

 .

Therefore, since R0 is given by the largest eigenvalue of FV−1 we have

R0 = max
i∈{1,2,3}

Ri, (4)

where, for example, R1 = RIu = β1c(S0(1−ψ)+Se0φ)
p+θ+µ and RIT ,RA are similar

in form. Thus, the reproduction number is the maximum of the number of
infections caused by the introduction of a untreated HIV-infected individual,
a treated HIV-infected individual or an AIDS-infected individual into a totally
susceptible population. We now show that the DFE is globally asymptotically
stable whenever R0 < 1.

Theorem 1. The DFE is globally-asymptotically stable whenever R0 < 1.
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Proof. First, one can easily show that the system of equations given in 3 with
positive initial conditions are well-posed (e.g. there exists a non-negative solu-
tion for all time). Now, let

D = {(S,Se, Iu, IT ,A) ∈ R5+|S,Se, Iu, IT ,A > 0,S+ Se + Iu + IT +A 6 N0},

and summing the 5 ODEs in 3 we obtain

Ṅ = N0 − µN− γA 6 N0 − µN.

Therefore, N is bounded below byN0 and above byN0 exp{−µt}+ π
µ
(1−exp{µt})

and D is attracting and positively invariant.
Let F(I,A) = (1−ψε)RII+RT IT +RAA; we claim F is a Lyapunov function

on D. First, it is obvious that F(0, 0) = 0 and F(I,A) > 0 for all Iu, IT and A
not equal to 0.

Now, we must show that Ḟ(Iu, IT ,A) < 0 for all Iu, IT and A. We have

Ḟ(Iu, IT ,A) = (1 −ψε)RIİ+ RT ˙IT + RAȦ

= Iu(p+ θ+ µ)(RI − 1) + IT (α+ µ+ ν)(RIT − 1) +A(µ+ γ)(RA − 1)

< 0,

which is less than 0 because all parameters are positive and we assume that
R0 < 1 so all partial reproductions numbers must also be less than 1. Therefore F
is a Lyapunov function on D, which implies I(t) and A(t) go to 0 as t approaches∞. From this, we get that the limit of S(t) as t approaches ∞ is N0 and the
DFE is GAS.

2.3 Numerical Results

The Latin hypercube sampling technique was first developed by McKay et al. [8]
and more recently by Blower and Dowlatabadi [1]. It is a modified Monte Carlo,
or random sampling technique in which each parameter is treated as a random
variable and is assigned a probability density function. Each distribution is
then divided into n sub-intervals and randomly sampled creating input vectors
of length n for each parameter. In this study, each parameter was assigned a
continuous uniform probability density function, with ranges shown in Table
1, to generate parameter sets. We chose a continuous uniform distribution for
several reasons. First, data are equally likely to be sampled which is important
because of the uncertainty in the data. Secondly, choosing other distributions
leads to other assumptions, which may or may not be true and thus we chose
to use a simple distribution until more data becomes available.

For this study, thousands of simulations were run and the figures focus on
some key results. It should be noted that some parameters were assumed to
be constant as reasonable estimates were available. For this study, π, µ, θ, ν
and γ were set to 1000, .0195, 1/10, 1/15 and 1/5. For example, we assumed
that the average time to develop AIDS was 10 years and if an individual was in
treatment this time would be extended to, on average, 15 years.
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Table 1: Parameter ranges for Latin hypercube sample
parameter

0 6 ψε 6 1
0.003 6 β1 6 0.05
.0003 6 β2 6 .005

.05 6 β3 6 .5
10 6 cs 6 100
1 6 cse 6 10

0 6 p 6 1
0 6 α 6 1

Before presenting numerical results we discuss the initial conditions for model
3. A usual choice for many models is to set initial conditions as the DFE.
However, given that the HIV epidemic is almost 30 years old now, we chose
to use a different approach. The initial conditions were chosen to reasonably
represent current numbers in Ottawa based on the crude estimates available
[2, 5, 9]; from [2, 5, 9] we have

(S0,Se0, Iu0, IT0,AT0) = (2000, 0, 300, 0, 50)

Thus, the goal of these simulations was to evaluate the effectiveness of introduc-
ing education and treatment on the current epidemic in Ottawa and predicting
future prevalence rates. More specifically, we wondered if an outreach-based
HIV prevention program should be put in place in a community with a (ap-
proximately) 20% HIV/AIDS prevalence. Our model predicts that the results
are dependent on a number of factors:

� The number of infected needles the average injection drug user comes in
contact with in a year, prior to the program;

� the number of infected needles the average injection drug user comes in
contact with in a year, after to the program;

� the proportion of susceptible injection drug users reached by the program.

Before considering results of the full model, we examined the effectiveness
of education-only and treatment-only intervention methods. For simulations
of the treatment-only model we did not notice any interesting results. In all
simulations, treatment was ineffective in lowering the prevalence rates of HIV
and AIDS. One possible reason for this is that the treatment model is too simple;
see Section 4 for a further discussion of this point.

Figures 1-2 show two simulations of the education-only model when 80 % of
susceptible individuals enter a education program and it would lower the number
of infected needles they encounter by a factor of 10. Over the first 20 years (see
Figure (1)) we see that the education program is effective as prevalence rates for
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Figure 1: Numerical solutions of the
model for cs = 30, cse = 3 and ψε = .8.
This figure shows that prevalence rates
are approximately 20 % after 20 years.
Other parameter values were β1 = .025,
β2 =.0025, β3 = .25

Figure 2: Numerical solutions of the
model for cs = 30, cse = 3 and ψε = .8.
This figure shows that prevalence rates
are approximately 45 % after 100 years.
Other parameter values were β1 = .025,
β2 =.0025, β3 = .25

HIV and AIDS reach a level of 20 % after 20 years. After 100 years, we see that
prevalence rates reach levels of approximately 45%. This means that education
programs are not effective in combating the HIV epidemic for the parameters
in this scenario. Figures 3-4 show two simulations where the number of needles
used by educated and un-educated individuals was increased (see figure caption
for values). These figures show that, even after 20 years, education programs
were ineffective in stabilizing current prevalence rates or lowering them. In fact,
prevalence rates increase immediately and sharply, reaching 30% HIV prevalence
in just 10 years.

There are two conclusions that can be drawn from these figures. First,
education-only programs maybe effective in stabilizing current prevalence rates
for 30 years, thus providing additional time for the discovery of other prevention
methods. Secondly, all results indicated that the important model parameters
were cs and cse. Thus, future research projects need to determine reasonable
estimates of these parameters so that there is less uncertainty in our theoretical
model.

An outreach-based HIV prevention program could provide effective and
anonymous HIV testing and treatment facilities. We considered that 50% of
HIV-infected IDUs would take treatment were it made available to them. As
the viral load among treated HIV-infecteds is lower, we decreased the transmis-
sion rate from the mean value of 0.05 to the lower limit of 0.025. The trends are
similar to the scenarios considered previously, but the climb in HIV prevalence
is more gradual. Figures 5-6 show a simulation of this scenario after 20 years
and 100 years, respectively. After 20 years, one can see that the combination
of both programs has been effective as prevalence rates have been lowered to
approximately 10 %, down from the current level of 20 %. However, after 100
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Figure 3: Numerical solutions of the
model for cs = 50, cse = 5 and ψε = .8.
This figure shows that prevalence rates
are approximately 45 % after 100 years.
Other parameter values were β1 = .025,
β2 =.0025, β3 = .25

Figure 4: Numerical solutions of the
model for cs = 50, cse = 5 and ψε = .8.
This figure shows that prevalence rates
are approximately 45 % after 100 years.
Other parameter values were β1 = .025,
β2 =.0025, β3 = .25

years it can be seen in Figure 6 that the combination of both programs are not
efficient to keep the prevalence rates lowered long-term. After approximately 50
years, prevalence rates are approximately 45 %. Figures 7-8 show that preva-
lence rates reach levels of approximately 80 % after 20 years if cs = 50 and
cse = 5. Figures 5-6 show that the combined prevention method of education
and treatment can be effective in lowering prevalence rates, however, over a
long-time period they are ineffective. However, the combined effort will pro-
vide some additional time to develop other prevention methods. We also once
again found that the important model parameters were cs and cse. Thus, it
is imperative that future research projects attempt to estimate the number of
dirty needles individuals are using as these estimates would greatly improve this
theoretical model.

3 Individual-based model

Individual-based models (IBM) have seen applications in many areas such as
ecology and forestry. However, to the best our knowledge, no IBM has been
developed to model the dynamics of HIV. In this section, we present some results
on the IBM developed in this paper and discuss some of the complications we
faced in implementing this model.

The IBM developed follows the same assumptions as the ODE model devel-
oped in Section 2. However, there are some distinctions between the two models
that must be discussed. First, the ODEs of model 3 are replaced by difference
equations which keep track of the number of individuals in each class. Each
individual is assigned a different value for each model parameter although this
value is not necessarily unique. That is, it is possible to have two individuals
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Figure 5: Numerical solutions of the
model for cs = 30, cse = 3, ψε = .8,
p = .5 and α = .25. This figure shows
that prevalence rates are approximately
10 % after 20 years. Other parameter
values were β1 = .025, β2 =.0025, β3 =
.25

Figure 6: Numerical solutions of the
model for cs = 30, cse = 3, ψε = .8,
p = .5 and α = .25. This figure shows
that prevalence rates are approximately
40 % after 100 years. Other parameter
values were β1 = .025, β2 =.0025, β3 =
.25

Figure 7: Numerical solutions of the
model for cs = 50, cse = 5, ψε = .8,
p = .5 and α = .25. This figure shows
that prevalence rates are approximately
60 % after 20 years. Other parameter
values were β1 = .025, β2 =.0025, β3 =
.25

Figure 8: Numerical solutions of the
model for cs = 50, cse = 5, ψε = .8,
p = .5 and α = .25. This figure shows
that prevalence rates are approximately
70 % after 100 years. Other parameter
values were β1 = .025, β2 =.0025, β3 =
.25
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Figure 9: Numerical simulation of the IBM for the same parameter set as Figure
3

in the population who have the same value of, for example, β1. Below, we
first present a result from the IBM for education-only and then discuss some
difficulties we faced in implementing further models.

Figure 9 shows a simulation of the IBM for cs = 50, cse = 5 and other
parameters the same as in Figure 3. Comparing this figure with Figure 3 we
can see that in the IBM that we have similar proportions for the number of
individuals in the educated and uneducated susceptibles. It appears that the
proportion of individuals in the HIV class and AIDS class have switched for
these two figures. It is hard to say anything more as the IBM is expensive
computationally as discussed below.

There were many difficulties in implementing the individual-based model
proposed in this paper. The most important was the computational time re-
quired to run the model. For example, let’s assume the population begin with
1000 individuals with cs = 20 and cse = 5. Even in this case where individuals
are exposed a small number of dirty needles, the computational time required
is large. This is because for each of the 1000 individuals, we must check each
of the 20 dirty needles for individuals in S and 5 for individuals in Se. As the
population increases from year to year this results in an extraordinary number
of calculations. Secondly, it is difficult to parameterize the model; for example,
since it individual is unique it is difficult to determine the likelihood each in-
dividual would enter an education program or take treatment. Lastly, further
uncertainties are introduced because of the stochastic nature of the IBM. How-
ever, once the model is implemented more efficiently, we feel it will make an
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important contribution to HIV research as discussed in Section 4.

4 Discussion and conclusion

The current HIV prevalence among injection drug users in major Canadian
cities is alarming. Prevalence estimates from American and European cities are
even more so. It is clear that something needs to be done in order to curb
HIV transmission among Canadian injection drug users. Even those who argue
that injection drug users are knowingly putting their health and their lives at
risk must understand that the implications of this epidemic stretch far beyond
the IDU community. The costs of treating this disease among this population
are astronomical. The Canadian health care budget will suffer by hundreds of
millions of dollars if we cannot control this epidemic.

The results of our analysis indicate that beating the current Canadian HIV
epidemic among the injection drug using population is not an easily achievable
goal. However, with education and treatment strategies in place, we can buy
some time, in the hopes that a cure may be found within the coming decades.
Our recommendation would be to implement a treatment + education program,
aiming for 80% uptake of prevention, and 50% treatment uptake, until that time
when more effective prevention and/or treatment strategies are available.

As mentioned in Section 2.3, one possible explanation for the results of our
treatment model is that it is far too simple. This model does not include drug
levels in the body, development of drug resistance and other important factors
identified in [10, 11]. Thus, if the treatment model in this paper was changed to
a similar model was [10, 11], we may see improved results for the treatment-only
model and the combined model as well.

Although we were not able to get many interesting results from the individual-
based model, we still feel it will be useful contribution to research on HIV once
it is working efficiently. IBMs can investigate questions that the population-
based models cannot; for example, examining the effect of individual variability
in entering an education program or accepting treatment. However, IBMs can
also become quite complex rather quickly making the results difficult to inter-
pret. These models can also be difficult to parameterize as it is challenging to
obtain sufficient individual-based data from HIV studies. Thus, one must be
careful when interpreting the results and putting any emphasis on future poli-
cies. These models should be treated as theoretical in nature and used to aid
future research studies.

The greatest limitation of our model is that we were unable to find estimates
of the frequency with which HIV-susceptible injection drug users inject from
HIV-infected needles. There are obvious challenges involved in the estimation
of this variable. A well-designed, anonymous survey of the IDU population could
determine an approximate number of needles shared in a year, and perhaps the
number of people with whom the average IDU shares needles. At that point,
contact network modeling techniques could be used to determine the number
of infected needles the average HIV-susceptible IDU contacts in a year. Once
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this has been done, we can then develop a bio-economic model to determine the
most cost-effective strategy for combating HIV.
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