Mathematically, our model is represented as follows:
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with the function f given by
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The disease-free equilibrium satisfies
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and Iy = Iy = N = 0. We assume 0 < ¢,€ p,p < 1. All other parameters
are assumed to be positive.



At the disease-free equilibrium, the Jacobian matrix is
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Thus, the largest eigenvalue for J will be the largest eigenvalue for M
and so we can reduce the problem to solving
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By the Routh-Hurwitz condition, all roots will have negative real parts if
a>0,v>0and af —~v > 0. Clearly a > 0. We can write the third

condition as
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which will be positive if v > 0. Thus, all roots will have negative real part if
1 = By B M[Ay + (1 =) Ay] > 0.

Solving for ep in terms of €p and substituting equilibrium values, our
eradication threshold is thus
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Differentiating (1), we have
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It follows that there is a critical vaccine efficacy 1*, satisfying
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such that if ¢ < ¢*, then eradication of targeted types is not possible. Thus,
even if the vaccine mounts an immune response 100% of the time and we can
vaccinate 100% of the population, if the efficacy is below this threshold, then
the disease will persist.

By setting p = 1 and p = 0, it also follows from (1) that there is a critical
immunogenicity value €*, satisfying
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such that if € < €*, then even 100% childhood vaccination coverage will not
eradicate targeted types of the disease.
From (1), when p = 1, we have
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For ¢ > ¢* and € < €*, > 0. It follows that the minimum level of adult
vaccination required for eradication of targeted types, p*, satisfies
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Since 6 > 0, it follows that p* > 0. If the immunogenicities ¢ and € are not
too small, then p* < 1 (since 7y is small). Note that we are not assuming that
childhood immunogenicity is necessarily the same as adult immunogenicity.
Thus, if childhood immunogenicity is below €* (but not so small that the
vaccine is nonfunctional), then there is a minimum level of adult vaccination
coverage that must be achieved for eradication of targeted types.

To examine sensitivity of results on parameter variation, we used the
output parameter as the proportion of adults who should be vaccinated in
order to eradicate targeted types. Thus, rearranging equation (1), we have

_ d(1+7)
P eroy
where
B BuBNTMTW (o + pe) B )
0= (1 =) BuBnmumwa — pt(o+ pe) (6#@9 " BuBNT M TW '



