Our model consists of five ordinary differential equations, which specify the
rate of change over time of five categories of individuals: susceptible individu-
als (who are unvaccinated or vaccine failures) (X), “successfully” vaccinated in-
dividuals (V), Hrv-infected individuals who were previously “successfully” vac-
cinated (Y;,), Hrv-infected individuals who were never vaccinated or who were
vaccine failures (¥},), and a1ps cases (A). The size of the sexually active com-
munity is specified by V(where N= X+ V+ ¥, + Y )). New susceptible in-
dividuals enter the sexually active community at rate 7, and they leave at an av-
erage rate y. A fraction p of newly susceptible individuals are vaccinated, and
the vaccine “takes” (i.e., produces a protective immunological response) in a
fraction £ of those vaccinated; therefore, the fraction of new susceptibles that
enter the susceptible pool is (1 — £p), and the fraction that is “successfully” vac-
cinated is £p. Susceptible individuals become Hiv-infected at rate A ¢ X, where
A is the average per capita risk of infection and cis the average number of new
sex partners acquired per unit time. The average per capita risk of infection (4)
. is calculated as the product of two factors: the per partnership transmission
‘i probability and the fraction of the community that is infected and infectious.
Thus, A = | ﬁU(YU/ N) + B, (Y,/N) ], where B, represents the per partner-
ship transmission probability of ¥, individuals and B, represents the per part-
nership transmission probability of ¥;, individuals. Vaccine-induced immu-

nity in the “successfully” vaccinated wanes at a rate @; thus the average duration
of vaccine-induced immunity is 1/@ years, and the number of “successfully”
vaccinated individuals entering the susceptible pool (per unit time) is @V,
Hence, the rate of change in the number of susceptible individuals (X) per unit
time is specified by:

dXldt= (1 —ep)r—uX—-AcX+aV. (1)



The fraction of new susceptibles in whom the vaccine “takes” enter the “suc-
cessfully” vaccinated state at rate £pr. They may leave this state for one of three
reasons: they may leave the community (at average rate u), their vaccine-
induced immunity may wane (at an average rate @), or they acquire Hiv-infec-
tion. The degree of vaccine-induced protection against HIV infection is y; thus,
their probability of becoming Hiv-infected is A ¢ (I — ). Hence, the rate of
change in the number of “successfully” vaccinated individuals (V') per unit time
is specified by:

dVidt=epr —uV—-—oV—-(1—y)ci V. (2)

“Successfully” vaccinated individuals (i.e., individuals in whom the vaccine
“took” and did not wane) who become Hiv-infected enter the infectious class
Y,,. Individuals leave this class if they leave the sexually active community (at
average rate i) or as they progress to AIDS (at average rate ¥,,). Thus the rate of
change in the number of infectious individuals (¥,,) per unit time is specified

by:
AV ldt =Ac(1-y)V—(u+ty,)Y,. (3)

Unvaccinated individuals and vaccine failures (i.e., individuals in whom the
vaccine either did not “take,” or in whom the vaccine “took” but waned) who
become Hrv-infected enter the infectious class ¥},. Individuals leave this infec-
tious class if they leave the sexually active community (at average rate ) or if
they progress to AIDs (at average rate ¥,,). Thus the rate of change in the num-
ber of infectious individuals (¥7,) per unit time is specified by:

Ay ldt=2cX—(u+71,) ¥, )

The number of AIDs cases (4) per unit time increases at rate ¥, Y, + ¥, ¥,
(due to the incidence of disease) and decreases as AIDs patients leave the com-
- munity (at average rate 1) or die of AIDs (at rate @):

dAldt=y, Y, + vy, Y, — (u+a)A. (5)



At the disease-free equilibrium, A = 0, since Yy =
YV = 0. Clearly dYV/dt = dYU/dt = dA/dt = 0.
Thus, the remaining nonzero equations satisty

dX/dt = (1 —ep)m — pX + WV
dV/dt = epm — pV —wV .

From the second equation,
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If there is no vaccination, then (ignoring the AIDS
equation, which decouples from the others), the system



simplifies to
dX/dt = (1 —ep)m — puX — AcX
dYy/dt = AeX — (u+ )Yy
Note that
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At the disease-free equilibrium, Y7y = 0, A = 0 and
X = N. Thus
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For the entire system, we have
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[t follows that
Ry, = S(1—v)Ry + (1 —9)Ry.

For perversity where the infected unvaccinated change their behavior by a

multiplicative factor m, and the infected vaccinated change their behavior by a

multiplicative factor m, , we require
SA-w)R,m, +(1-S)R,m, > R,
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Thus if m,, >1 then z is increasing with respect to S, whereas if the reverse inequality

holds, then z is decreasing with respect to S . Thus, the behavior changes in the
unvaccinated are a critical determinant of the epidemic control strategy for vaccines that

offer a low degree of protection.



