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Abstract

The SIR (susceptible–infectious–resistant) and SIS (susceptible–infectious–susceptible) frameworks for infectious disease have

been extensively studied and successfully applied. They implicitly assume the upper and lower limits of the range of possibilities for

host immune response. However, the majority of infections do not fall into either of these extreme categories. We combine two

general avenues that straddle this range: temporary immune protection (immunity wanes over time since infection), and partial

immune protection (immunity is not fully protective but reduces the risk of reinfection). We present a systematic analysis of the

dynamics and equilibrium properties of these models in comparison to SIR and SIS, and analyse the outcome of vaccination

programmes. We describe how the waning of immunity shortens inter-epidemic periods, and poses major difficulties to disease

eradication. We identify a ‘‘reinfection threshold’’ in transmission when partial immunity is included. Below the reinfection

threshold primary infection dominates, levels of infection are low, and vaccination is highly effective (approximately an SIR model).

Above the reinfection threshold reinfection dominates, levels of infection are high, and vaccination fails to protect (approximately

an SIS situation). This association between high prevalence of infection and vaccine failure emphasizes the problems of controlling

recurrent infections in high-burden regions. However, vaccines that induce a better protection than natural infection have the

potential to increase the reinfection threshold, and therefore constitute interventions with a surprisingly high capacity to reduce

infection where reduction is most needed.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Mathematical epidemiological models for the dy-
namics of microparasite infections that induce lifelong
immunity have been extensively developed (Kermack
and McKendrick, 1927; Anderson and May, 1991;
Grenfell et al., 2001) and used as predictive tools to
assist in the design of control programmes (Osborne
et al., 2000). This class of infections is viral and usually
occurs during childhood (if there is no vaccination
occurring), which is indicative of high transmissibility.

Such effective immunity is observed in infections such
as measles, mumps and rubella (MMR) but this is
unusual. More common is the occurrence of several
reinfections throughout life. In similar vein to char-
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acterization of a vaccine response (McLean and Blower,
1993), susceptibility to reinfection following a primary
infection can be attributed to a combination of two
factors: immune protection may wane over time
(temporary immunity), or immunity may not be fully
protective (partial immunity). Both effects are likely due
to a combination of host insufficiency in acquiring and
maintaining specific immunity (e.g. tuberculosis—
Vynnycky and Fine, 1997; pertussis—Hethcote, 1999;
van Boven et al., 2000) and of pathogen ability to
generate antigenic diversity thereby avoiding immune
recognition (e.g. influenza—Hay et al., 2001; Earn et al.,
2002; respiratory syncytial virus—Cane, 2001).

The specific within-host mechanisms allowing recur-
rent infections are not explicit in this paper. Rather, we
construct a series of simple models to investigate the
epidemiological consequences of varying the duration
and degree of immune protection. The models are
systematically analysed and reveal two main outcomes:
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the duration of immunity has a crucial impact on
potential inter-epidemic periods; the degree of immune
protection determines a reinfection threshold in trans-
mission responsible for a steep increase in the prevalence
of infection. The models are then extended to analyse
the effects of temporary and partial immunity on the
global impact of vaccination programmes.

Mathematical models have long been associated with
the planning of vaccination programmes. The main
contributions have been the prediction of the vaccina-
tion coverage necessary to eradicate infections (Nokes
and Anderson, 1992, 1993), and the illustration of the
post-vaccination dynamics if coverage does not meet the
eradication threshold (McLean, 1995a). McLean and
Blower (1993) have also investigated the consequences
of vaccine failures, but under the assumption that
immunity induced by natural infection was fully
protective. Here this assumption is relaxed to accom-
modate the recurrence of infections. In the case of
temporary protection, we reach the same basic conclu-
sion that the waning of immunity is a major obstacle to
disease eradication even if individuals are protected until
very late in their lifetime. In the case of partial
protection, our conclusions are fundamentally different
due to reinfection threshold. Below the reinfection
threshold, levels of infection are low and vaccination
impact is high. The transmission dynamics are essen-
tially described by the susceptible–infected–recovered
(SIR) framework. Populations where transmissibility is
above the reinfection threshold are of greater concern.
They sustain very high endemicities and vaccination
programmes are unable to increase natural immunity
further. The transmission dynamics are essentially
susceptible–infected–susceptible (SIS). The transition
between the two regimes happens over a short range in
transmission coefficient, indicating high sensitivity to
changes.

Throughout this paper we assume that birth and
death rates are equal ensuring a constant host popula-
tion size, the duration of infection is typically two orders
of magnitude lower than the host lifetime, and the
periods of infection and infectiousness coincide. Vacci-
nation programmes are implemented at birth. These
assumptions simplify the model analysis and do not
induce unwanted effects.
Table 1

Model parameters when time is measured in years

Symbol Definition Value

m Death rate and, equally, birth rate 1/70 year�1

t Rate of recovery from infection 12 year�1

b Transmission coefficient Variable
2. SIR and SIS models

The essence of infectious disease dynamics can be
represented by simple systems of ordinary differential
equations (Anderson and May, 1991; Diekmann and
Heesterbeek, 2000). The host population is assumed
homogeneous at birth and differentiation occurs as a
result of infection experience. The population is
assumed to mix homogeneously and transmission is
according to the mass-action principle. Hosts are
divided into three proportions: susceptible (S), infec-
tious (I), and recovered (R). Under the assumption that
recovered individuals acquired some immunity that is
totally protective and lifelong, we obtain the so-called
SIR model formalized by the system of differential
equations

dS

dT
¼ m� bIS � mS;

dI

dT
¼ bIS � ðtþ mÞI ;

dR

dT
¼ tI � mR: ð1Þ

As in Table 1, the parameter m is the death rate (and
equally, the birth rate), t is the rate of recovery from
infection, and b is a transmission coefficient which
combines a variety of epidemiological, environmental,
and social factors that affect transmission. Susceptible
individuals acquire infection at per capita rate bI : If
time, T, is measured in years, hosts are born with a life
expectancy of

L ¼
1

m
years

and we assume throughout that L=70 years. The
average duration of infection is

D ¼
1

tþ m
years

and we assume throughout that D is approximately 1
month. The last equation of model (1) can be omitted by
recalling that S+I+R=1.

2.1. Non-dimensional SIR model

The SIR model can be further simplified, resulting in a
reduction in the number of parameters. Measuring time
in units of duration of infection, t=T/D, we get the non-
dimensional system (see Table 2)

dS

dt
¼ e � R0IS � eS;

dI

dt
¼ R0IS � I : ð2Þ

The first parameter,

e ¼
D

L
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Table 2

Model parameters when time is measured in units of average duration of infection, D=1/(t+m)

Symbol Definition Value

e Death and birth rate, m/(t+m) 0.0012D�1

R0 Basic reproduction number, b/(t+m) Variable

a Factor affecting the rate of loss of acquired immune protection Between 0 and 1

s Factor affecting the degree of partial immunity induced by a previous infection Between 0 and 1

sV Factor affecting the degree of partial immunity induced by vaccination Between 0 and 1

v Vaccination coverage 90%

M.G.M. Gomes et al. / Journal of Theoretical Biology 228 (2004) 539–549 541
represents the average duration of an infectious episode,
expressed as a proportion of average lifetime. For the
values of L and D above we get the approximate value
of e=0.0012. The second parameter,

R0 ¼ bD

represents the number of secondary cases expected from
a primary case in a completely susceptible population.
This is the so-called basic reproduction number, and is a
crucial parameter that will be thoroughly explored. The
SIR model with the new time units is represented
diagrammatically in Fig. 1(a). The model has two
possible steady states
(1)
(2)
Disease-free equilibrium: S1=1, I1=0.

(2)
 Endemic equilibrium: S2=1/R0, I2=e(1�(1/R0)).
Fig. 1. Flow diagram for all the models analysed in this paper. Time is

in units of average duration of infection and the parameters are

described in Table 1. For simplicity, births and deaths are not

represented.
The disease-free equilibrium, (S1, I1), is a valid steady
state independently of the value of R0, but the endemic
equilibrium, (S2, I2), requires R0>1. The number of
steady states changes at R0=1, and this is a bifurcation
point. The stability of (Si, Ii) is determined by the
eigenvalues of the Jacobian matrix

Ji ¼
�R0Ii � e �R0Si

R0Ii R0Si � 1

 !

for i=1, 2. A straightforward calculation gives the
following results:
(1)
 Eigenvalues of J1: �e and R0�1.
Eigenvalues of J2:
�eR07

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2R2

0
�4e R0�1ð Þ

p
2 .
The eigenvalues of J1 are always real, and from their
signs we infer that the steady state (S1, I1) is stable for
R0o1, and unstable for R0>1. The eigenvalues of J2

have negative real part for the whole range of validity of
the steady state (S2, I2), implying that this steady state
is always stable. The eigenvalues are real for R0 just
above 1, and become complex for R0 between ð2=eÞ

ð1 �
ffiffiffiffiffiffiffiffiffiffiffi
1 � e

p
Þ and ð2=eÞð1 þ

ffiffiffiffiffiffiffiffiffiffiffi
1 � e

p
Þ implying conver-

gence in the form of damped oscillations in this range
(for e=0.0012, this is 1.0003oR0o3332). The vector
field is illustrated in Fig. 2(a) for the particular case
R0=3. Superimposed is a simulation starting near the
disease-free equilibrium illustrating how the disease
invades and converges to the endemic equilibrium. Fig.
2(b) shows the time-series plot corresponding to the
same simulation. Convergence is in the form of damped
oscillations: a series of epidemics of sequentially
reducing amplitude occur until the system approaches
the endemic equilibrium. A number of mechanisms have
been identified as capable of sustaining the oscillations
(Liu et al., 1987), enhancing the importance of
quantifying the inter-epidemic periods.

2.2. Non-dimensional SIS model

Variations of the SIR model have been developed to
incorporate features of particular diseases (Anderson
and May, 1991). Here, we consider diseases that fail to
elicit protective immunity, allowing recurrent infections.
In this extreme case, recovered hosts return to the
susceptibility class and the recovered class remains
empty so that S+I=1. The dynamics of this system
are driven by a one-dimensional system: the SIS model,
represented diagrammatically in Fig. 1(b) and more
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formally by the equation

dI

dt
¼ R0Ið1 � IÞ � I : ð3Þ

Also here, there is a disease-free equilibrium (S = 1, I =
0) for all values of R0. Stability analysis shows that this
steady state is stable for R0o1 and unstable for R0>1.
As R0 is increased across one, a branch of endemic
equilibria bifurcates. At the endemic steady state we
have S=1/R0 and I=1�1/R0. In Fig. 2(c) and (d), we fix
R0=3 to represent the vector field associated with the
SIS model and a simulation to illustrate convergence to
the steady state. The bifurcation diagrams correspond-
ing to both the SIR and SIS models are shown as the
full lines in Fig. 3, setting the lower and upper bounds to
the intermediate models.
3. Intermediate models

3.1. Temporary immune protection

Pertussis is a highly contagious infection of the
respiratory tract where recurrence has been attributed
to the waning of immunity (Hethcote, 1999; van Boven
et al., 2000). Control by vaccination is less successful
than for other childhood diseases, and recent trends are
for overall increase, and occasionally strong epidemic
outbreaks.

The temporary immunity model is represented dia-
grammatically in Fig. 1(c). Our assumption is that, upon
infection, individuals develop an immune response that
is lost at a certain rate. The parameter a is introduced to
control the rate of loss of immunity. The model
equations are

dS

dt
¼ e � R0IS � eS þ að1 � eÞð1 � SÞ;

dI

dt
¼ R0IS � I : ð4Þ
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Fig. 4. Equilibria and convergence for the temporary immunity and partial immunity models. (a) and (b) refer to temporary immunity: (a) shows the

endemic equilibrium as a function of R0 and a indicating whether convergence is by damped oscillations (light grey) or linear decay (dark grey); and

(b) shows contour plots for the period of the oscillations in the damped oscillatory region (the labels represent years). (c) and (d) provide the same

information for partial immunity: (c) shows the endemic equilibrium as a function of R0 and s; and (d) shows contour plots for the period of the

oscillations.
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The new parameter can take values between 0 and 1. In
the limit a=0, the rate of loss of immunity equals the
death rate (SIR limit). In the limit a=1, the rate of loss
of immunity equals the rate of loss of infectiousness
(SIS limit). The equilibrium curve for a= 0.04 is
represented as a dashed line in Fig. 3. Fig. 4(a) shows
the stable endemic equilibrium as a function of R0 and a
indicating whether convergence is by damped oscilla-
tions (light grey) or linear decay (dark grey). Fig. 4(b)
shows the contour plots for the period of the oscillations
in the damped oscillatory region (with time rescaled
back to years). Naturally, waning of immunity has a
crucial impact on the time-scale for potential oscillatory
dynamics.

3.2. Partial immune protection

There are many infections motivating the study of
partial immune protection. Influenza A and B viruses
cause the same respiratory disease, but exhibit contrast-
ing evolutionary features (Hay et al., 2001). Partial
immunity across antigenic variants is a principal player
in models designed to study influenza evolution (An-
dreasen et al., 1997; Ferguson et al., 2003; Gog and
Grenfell, 2002; Gomes et al., 2004b). Other pathogens
invoking partial immunity include Neisseria meningitidis

(Gupta and Maiden, 2001), Streptococcus pneumoniae
(Lipsitch, 1997), and Mycobacterium tuberculosis

(Vynnycky and Fine, 1997; Gomes et al., 2004a).
The partial immunity model is represented diagram-

matically in Fig. 1(d) and formalized by the system of
equations

dS

dt
¼ e � R0IS � eS;

dI

dt
¼ R0IðS þ sð1 � S � IÞÞ � I : ð5Þ

The new assumption is that individuals are protected
while infected but regain some susceptibility upon
recovery. This susceptibility is reduced by a factor s;
compared to susceptibility prior to infection. The limit
s ¼ 0 is an SIR model, and the limit s ¼ 1 is an SIS

model. The equilibrium curve for s ¼ 0:4 is represented
as a dotted line in Fig. 3. Fig. 4(c) shows the stable
endemic equilibrium as a function of R0 and s indicating
whether convergence is by damped oscillations (light
grey) or linear decay (dark grey). Fig. 4(d) shows the
contour plots for the period of the oscillations in the
damped oscillatory region (in years). The figure reveals
two clearly distinct types of endemic behaviour: low and
potentially oscillatory; and high and steady. Roughly,
the first requires that transmissibility is above the
threshold for disease persistence (R0>1), and the second
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relies on reinfection requiring that transmissibility is
above a higher threshold (R0>1/s).

3.3. Temporary-partial immunity

We used the dynamics of pertussis as an example of
temporary immunity, and we evoked a number of
infections as examples of partial immunity. However,
the transmission dynamics of each of these infections is
likely to be associated with a specific combination of
both temporary and partial immunity processes, as
recently analysed for respiratory syncytial virus (White
et al., 2004). We construct a general framework where
the contributions of the two mechanisms are combined.

The temporary-partial immunity model is represented
by the diagram in Fig. 1(e). As before, a is a parameter
that controls the rate of loss of immune protection, and
s controls the degree of protection that individuals
acquire upon recovery from infection. The model
equations are

dS

dt
¼ e � R0IS � eS þ að1 � eÞð1 � SÞ;

dI

dt
¼ R0IðS þ sð1 � S � IÞÞ � I : ð6Þ

Fig. 5 illustrates the position of SIR and SIS frame-
works in the parameter space (a, s) that characterizes
temporary-partial immune protection. The SIR model is
retrieved at a=0 and s=0, and the SIS model
corresponds to a=1 or s=1. The temporary immunity
model is retrieved at s=0, and the partial immunity
model is obtained at a=0. As observed in Fig. 4, a
temporary immunity mechanism has a strong impact on
potential epidemic dynamics, and a partial immunity
mechanism induces a second transmission threshold
separating regions of low-oscillating and high-steady
endemicity. Here, we analyse the combined effects of
these two mechanisms. Fig. 6 illustrates how the
behaviour of the system depends on a and s for three
fixed values of R0. Fig. 6(a), (c) and (e) show the stable
endemic equilibrium, for R0=3.5, 4.0, 4.5, respectively,
indicating whether convergence is by damped oscilla-
tions (light grey) or linear decay (dark grey). The
respective contour plots for the period of the oscillations
are shown in Fig. 6(b), (d) and (f).
4. Temporary immune protection and vaccination

We proceed to illustrate the impact of mass vaccina-
tion at birth under the temporary immunity model. The
model, which assumes that protection induced by the
vaccine is equivalent to protection acquired in response
to natural infection, is formalized by the system of
equations

dS

dt
¼ ð1 � vÞe � R0IS � eS þ að1 � eÞð1 � SÞ;

dI

dt
¼ R0IS � I ; ð7Þ

where the new parameter, v, represents coverage of the
vaccination programme. Fig. 7 illustrates the effect of
vaccination in this system when a=0.0015. In this case,
the average duration of immunity, 1/a(1�e), corre-
sponds to approximately 55 years to represent the loss of
immunity commonly observed late in life (which is
sometimes observed, even for SIR type infections). The
full curves in Fig. 7(a) represent the endemic equilibrium
without vaccination (top curve) and when the system is
subject to a mass vaccination programme with 90%
coverage (bottom curve). The dashed line represents the
unrealistic limit of 100% vaccination coverage. The
dashed line meets the R0-axis at the critical value:

R0a ¼ 1 þ
e

að1 � eÞ

implying that eradication is possible only if, in the
absence of vaccination, R0 is lower than this threshold.
For the parameter values set here, R0a is approximately
1.84. This appears remarkably low when we note that in
the idealized situation of lifelong immunity, a=0, the
eradication threshold would be pushed to infinity,
implying that the infection could always be eradicated
by vaccination as long as the coverage was sufficiently
high (i.e. greater than 1�1/R0). Fig. 7(b) shows the
result of simulations with two model populations:
population A below the eradication threshold; and
population B above the eradication threshold.
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Fig. 6. Equilibria and convergence for the temporary-partial immunity model. (a), (c) and (e) endemic equilibrium as a function of a and s for three

values of R0 (3:5;=4:0;=4:5) indicating whether convergence is by damped oscillations (light grey) or linear decay (dark grey); (b), (d) and

(f) corresponding contour plots for the period of the oscillations in the damped oscillatory region (the labels represent years).
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The main observation from these results is that
waning of immunity is a major obstacle to the
eradication of infectious diseases. This is illustrated
here with a situation where immunity lasts, on average,
55 years and the average lifetime is 70 years. The
deterministic models used here predict that, in this
scenario, eradication is possible only if R0 is below 1.84.
Further investigations with discrete stochastic models
may give more optimistic results, but this is beyond the
scope of this paper.
5. Partial immune protection and vaccination

Here, we illustrate the impact of mass vaccination at
birth in the case where both infection and vaccination
induce partial protection. First, we consider the simplest
situation of a vaccine that induces as much protection as
a previous infection. Then we analyse the impact of
more efficacious vaccines.

5.1. The reinfection threshold

Before describing vaccination models, we elaborate
on a concept that will be crucial to the analysis—the
‘‘reinfection threshold’’. The full line of Fig. 8 shows
how the endemic equilibrium increases with R0 when
s=0.25, revealing a steep increase as transmission
crosses

R0s ¼
1

s

which in this case is R0=4. This increase is associated
with the reinfection threshold. The dotted and dashed
lines are plotted to illustrate the contributions of
primary infection and reinfection to the overall infection
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levels, and correspond to the equilibria of two sub-
models: the dotted line corresponds to the SIR model
dS/dt=e�R0IS�eS; dI/dt=R0IS�I and represents pri-
mary infection; and the dashed line corresponds to the
SIS model dI/dt=sR0I(1�I)�I and represents reinfec-
tion. The invasion threshold (R0=1) is associated with
the primary infection submodel, and the reinfection
threshold (R0=4) is associated with the reinfection
submodel. The full model combines the two dynamical
processes, and reveals the potential to convert small
baseline variabilities of the transmissibility parameter,
R0, into large variabilities of infection prevalence.

5.2. Vaccine inducing protection equivalent to natural

infection

The first vaccination model corresponds to a vaccine
that induces an immune response equivalent to that
induced by a previous infection. This is formalized by
the system of equations

dS

dt
¼ ð1 � vÞe � R0IS � eS;

dI

dt
¼ R0IðS þ sð1 � S � IÞÞ � I ; ð8Þ

where v is the vaccination coverage. Fig. 9(a) and (c)
illustrates the effect of mass vaccination in this scenario.
Note that such a vaccine is protective against primary
infection, but not against reinfection. Primary infection
is associated with the susceptibility pool S; and
reinfection associated with the susceptibility pool
S+R. Vaccination moves individuals from S to R and
therefore, essentially reduces the resource for primary
infections without directly affecting reinfection. There-
fore, it is expected that a mass vaccination programme
will be effective below the reinfection threshold, but not
above. This is evident from Fig. 9(a), where we show the
equilibria without vaccination and with 90% vaccina-
tion coverage (full lines). The dashed line corresponds
the unrealistic limit of 100% vaccination coverage.
Three model populations are marked: population A is
below the reinfection threshold and infection eradica-
tion is expected with the 90% vaccination programme;
population B is also below the reinfection threshold and
although 90% coverage is not sufficient for eradication,
a substantial reduction in prevalence is expected;
population C is above the reinfection threshold and
the vaccination programme has only a minor effect on
the equilibrium prevalence. Fig. 9(c) shows the results of
simulating vaccination on the three populations.

The main outcome of this analysis is to demonstrate
with a simple model how a vaccination programme
can have such variable outcomes. Tuberculosis and the
bacille Calmette-Gu!erin (BCG) vaccine constitute the
best documented example of this phenomenon, and this
is further discussed in (Gomes et al., 2004a). The
variability associated with the reinfection threshold
presents serious difficulties to the estimation of vaccine
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Fig. 9. Partial protection and the global impact of mass vaccination. Using the endemic equilibria of Fig. 8 as baseline pre-vaccination states, we

illustrate the impact of two vaccination programmes: (a) and (c) show the result of 90% coverage with a vaccine that confers as much protection as

natural infection (model (8)); (b) and (d) show the result of 90% coverage with a vaccine that is more potent than natural infection (model (9) with

sV ¼ 0:2 ). The second vaccine increases the reinfection threshold generating spectacular outcomes in high burden regions that were insensitive to the

first vaccine (e.g. population C).
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efficacy from field observations, which led to great
controversy concerning the use of BCG.

5.3. Vaccine inducing greater protection natural infection

A sound understanding of susceptibilities to infection
and reinfection is essential to predict the impact of
vaccination programmes when immunity is partially
protective. The hope is that, where transmissibility is
above the reinfection threshold, vaccines that protect
more than a natural infection might prove much more
effective. This can be demonstrated with the model

dS

dt
¼ ð1 � vÞe � R0IS � eS;

dIS

dt
¼ R0IðS þ sRÞ � IS;

dR

dt
¼ ð1 � eÞIS � sR0IR � eR;

dV

dt
¼ ve þ ð1 � eÞIV � sV R0IV � eV ;

dI

dt
¼ sV R0IV � IV ; ð9Þ

where sV is the factor by which vaccination reduces
susceptibility, and here we consider sVos. Fig. 9(b) and
(d) illustrates the effect of such vaccine when s=0.25 as
before and sV=0.2. The full lines in Fig. 9(b) represent
the pre-vaccination state (as before) and the post-
vaccination equilibrium with 90% coverage. We see
that the range of R0 where this vaccine has the potential
to be highly effective has increased, going up to 1/sV,
which is R0=5 in this case. In other words, if vaccine
protection is higher than naturally acquired protection
(sVos) then vaccination has the power to increase the
reinfection threshold to

R0V ¼
1

sV

:

From the three model populations used before, it is
population C (where endemicity is highest) who would
benefit the most with the development of such vaccine.
Fig. 9(d) shows the simulations of the vaccination
programme from the time it is introduced until the new
equilibrium is reached.

These results have important implications for public
health. A great challenge of vaccine development is to
supersede the protection provided by natural infection.
The reinfection threshold magnifies epidemiological
variabilities, but perhaps the most exciting news is that
this threshold can be manipulated by vaccines. Vaccines
that protect more than naturally acquired infection
increase the threshold for reinfection, and may have
greater impact than expected in regions afflicted by high
burdens of disease. In the case of tuberculosis, a number
of strategies for the development of better vaccines are
being followed (Britton and Palendira, 2003; Olsen and
Andersen, 2003), and the potential of such interventions
cannot be overemphasized (Gomes et al., 2004a).
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6. Discussion

Since the majority of pathogen infections involve
reinfection, the dynamic consequences of any interven-
tion on rates of (re)infection should be considered. We
suggest that most infections can be classified according
to the relative significance of partial and temporary
immunity in creating susceptibility to reinfection (Fig.
5). Temporary immunity is, to a large extent, determined
by the propensity for antigenic change, but also
alteration in host status (e.g. immunosuppression due
to other infections). Partial immunity is more dependent
on the interaction between static host and pathogen
variation: high parasite variation decreasing partial
immunity, and high host variation increasing partial
immunity. As rates of antigenic change will depend on
the variability in the population, one might expect that
pathogens occupy the diagonal region in Fig. 5.

The exact mechanism by which individuals regain
susceptibility following infection has an important
influence on the level of infection maintained in the
population and on the potential periodicity of epi-
demics. Fig. 4(a) and (b) suggests that waning of
immunity has a crucial impact on the time-scale for
potential inter-epidemic periods. Fig. 4(c) and (d)
reveals two clearly distinct types of endemic behaviour:
low and high. The first requires that transmissibility is
just above R0=1. The second relies on reinfection and
requires that transmissibility is above R0=1/s. Further-
more, the different mechanisms of immunity failure
impact differentially on control strategies.

Many diseases are subject to seasonal forcing of
transmission, and this has motivated extensive investi-
gations for the SIR scenario (Keeling et al., 2001).
Basically, the resulting inter-epidemic period is inferred
from the interplay of the annual cycle and the period of
the damped oscillations (Weber et al., 2001). Here we
observe that the period for damped oscillations is highly
sensitive to the mode of action of immune protection
(especially temporary immunity). A combination of
these mechanisms with seasonality may be necessary to
explain time-scales observed in epidemic cycles.

A more realistic scenario is to consider many levels of
susceptibility to infection, or even a continuum. This has
been previously implemented (White and Medley, 1998)
but analysis has been limited by model complexity. In
cases of antigenic diversity, the dynamics of immunity
should somewhat correlate with the pathogen evolution,
and this has been explored to some extent (Gomes et al.,
2002, 2004b; Gog and Grenfell, 2002; Ferguson et al.,
2003). In the context of Trypanosoma infections, Coen
et al. (2001) attempted to estimate the rate of loss of
immunity from seroprevalence data. However, unless
primary infection can be distinguished from subsequent
infection in some manner (e.g. antibody profile), the
parameters for infection rate and immunity loss will be
colinear, complicating statistical analysis. A further
complication is that the risk of disease on infection
might be higher for primary infection (e.g. RSV), or
increase with time since last infection or be determined
by pathogen (genetic) type. Consequently, the impacts
that we show in terms of prevalence and incidence of
infection might be different from prevalence and
incidence of disease. We have also assumed that
subsequent infections are as infectious as primary
infections, which is also unlikely to be generally true.

The incidence of pulmonary tuberculosis can vary by
two orders of magnitude between different regions of
the world, and estimates for the efficacy of the BCG
vaccine vary between 0% and 80%. This scenario is
aggravated by an association between high prevalence of
infection and low vaccine efficacy (Olsen and Andersen,
2003). It is reasonable to expect vaccination pro-
grammes to be less successful in highly endemic regions,
and all models discussed here show this effect to some
extent. However, the extreme variabilities observed in
TB and BCG efficacy are a specificity of the partial
immune protection mechanism, due to the reinfection
threshold. We have recently proposed this mechanism as
an explanation for the BCG discrepancies (Gomes et al.,
2004a). Here we show that the conclusions are not
specific to tuberculosis but rather, they are a general
feature of diseases characterized by partial immune
protection and the associated reinfection threshold.

The reinfection threshold represents the transmissi-
bility required to promote recurrent infections. Popula-
tions that exceed this threshold, sustain high levels of
infection and tend to be insensitive to interventions.
Furthermore, the reinfection threshold can be poten-
tially manipulated by vaccination. Vaccines that induce
more protection than a natural infection increase the
reinfection threshold, providing means for the control of
recurrent infection in high-burden regions. Conse-
quently, the partial immune protection framework can
serve as a basis to assess the impact of specific vaccines,
and to set targets for future vaccine performance in
terms of their epidemiological impact (McLean, 1995b).
While such vaccines are currently unavailable, efforts
can be exerted into manipulating transmission. That is,
in populations of high endemicity, improvements in
hygiene or reduced crowding could reduce the risk of
transmission and therefore the basic reproduction
number. If the basic reproduction number is reduced
below the reinfection threshold, there would be resulting
a drop in prevalence of infection and an increase in
apparent vaccination effectiveness.
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