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• HIV now infects 33 million adults worldwide
• An HIV vaccine represents the best hope of 

controlling the disease
• $682 million 

is spent on 
HIV vaccine 
research 
annually.
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Cytotoxic T Lymphocytes (CTLs)

• Cells with the ability to identify and destroy 
virally infected cells in the body

• Activated via specific recognition of viral 
fragments

• One of the body’s best natural defence 
mechanisms.
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CTL vaccines

• If CTLs can be boosted at regular intervals, 
they can attack infected T-helper cells

• A vaccine that stimulates the CTL response 
has been described as the best hope for 
control of HIV

• Such a post-infection “vaccine” would be 
administered regularly and indefinitely.
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Infected CD4+ T cells

• Die at death rate d
• Cleared by CTLs at rate p, proportional 

to the density of both types
Key approximation:
• We assume the production rate of 

infected cells is constant, π
(thus we use a steady-state viral load 
approximation when estimating parameters).
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CTLs

• Proliferate at rate α, 
proportional to 
density of both CTLs 
and infected T cells

• Die at death rate δ.

Three CTLs (blue) annihilate 
target cells (red)
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• Thus the model (without vaccination) is

dT

dt
= ⇤ � dT � pCT

dC

dt
= �CT � ⇥C .

T=infected T cells   π=production rate  d,δ=death rates
C=CTLs          α=proliferation rate      p=clearance rate
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Steady states

Two steady states:

• trivial 
(no CTLs)

• nontrivial 
(coexistence)

(T̂ , Ĉ) =
��

d
, 0

⇥

(T̄ , C̄) =
�

⇥

�
,
�⇤ � ⇥d

p⇥

⇥
.
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• For the trivial steady state, the Jacobian is

Thus unstable iff 
• For the nontrivial steady state, the 

characteristic polynomial is

Thus stable whenever 

det(J
��
(T̄ ,C̄)

� �I) = �2 + (d+ pC̄)�+ p�C̄/↵

Stability

C̄ = (�⇤ � ⇥d)/p⇥ > 0

C̄ > 0.
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Stability

Hence:
• the trivial steady state is unstable iff the 

nontrivial steady state exists in the positive 
plane

• the nontrivial steady state 
is asymptotically stable 
whenever it exists in the 
positive plane.
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Nontrivial eqm stable in the positive plane 
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• A fixed boost of CTLs, Ci

• Given at regular times, tk
• We assume the vaccine effect is 

instantaneous...
...this results in a 
series of impulsive
differential equations.
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Impulsive effect

• According to impulsive theory, we can 
describe the nature of the impulse at time rk 
via the difference equation

Depends on the 
time of impulse
and the state
immediately 
beforehand.

Difference
equation
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Impulsive DEs

• Solutions are 
continuous for t ≠ rk

• Solutions undergo 
an instantaneous 
change in state 
when t = rk.

Thousands of HIV particles emerging 
from an infected T-cell

rk=impulse time



Putting it together

• The model thus consists of a system of 
ODEs (infected T cells and CTLs) together 
with a difference equation (CTL boost).
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Impulsive interruption

• The impulsive 
effect “interrupts” 
the continuous 
trajectories

• The cycle is 
restarted 

• It continues until 
the next 
“interruption”.

CTLs
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• Thus, the impulsive model is

dT

dt
= ⇤ � dT � pCT t ⇥= tk

dC

dt
= �CT � ⇥C t ⇥= tk

�C = Ci t = tk .

T=infected T cells   π=production rate  d,δ=death rates    Ci=vaccine strength
C=CTLs          α=proliferation rate      p=clearance rate    tk=vaccination time
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Defining Tint

• Define

whereτ= tk+1 - tk is the vaccine 
administration interval (assumed constant)

• Tint is a measure of the ratio of the number 
of CTLs at the end of an impulsive cycle to 
those at the beginning

• Thus, Tint<1 is necessary for an impulsive 
orbit to exist.

Tint = e
R �
0 (�T (u)�⇥)du

T=infected T cells   α=proliferation rate   
δ=death rate   tk=vaccination time
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An impulsive periodic orbit

C(��) =
CiTint

1� Tint

C(�+) =
CiTint

1� Tint
+ Ci

=
Ci

1� Tint

= C(0+) .
Tint=cell ratio measure   C=CTLs
Ci=vaccine strength  τ=vaccination period

• In particular, if C(0+) = Ci

1�Tint
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The orbit, with endpoints

• Thus we have an impulsive periodic orbit 

for 0 < t <τ
• Endpoints of the impulsive orbit are

C(t) =
Cie

R t
0 (�T (u)�⇥)du

1� Tint

C(0+) =
Ci

1� Tint
and C(��) =

CiTint

1� Tint
.

Tint=cell ratio measure   C=CTLs   Ci=vaccine strength  
α=proliferation rate    δ=death rate  τ=vaccination period
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Impulsive Floquet Theory

• From the impulsive DEs, define

with the (differentiable) function φ defined 
implicitly by

P (T, C) = ⇤ � dT � pCT

Q(T, C) = �CT � ⇥C

a(T, C) = 0
b(T, C) = Ci ,

{�(T (t), C(t)) = 0 : t = tk} .

Impulsive effects

DEs

Reworks impulse times as a smooth function.

π=production rate    
δ,d=death rates    
p=production rate
α=proliferation rate  
Ci=vaccine strength   
tk=impulse times
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Calculating the nontrivial Floquet multiplier
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Orbital asymptotic stability

• Hence, the nontrivial impulsive Floquet 
multiplier lies inside the unit circle

• Thus, the impulsive periodic orbit is 
a) orbitally asymptotically stable and 
b) has the property of asymptotic phase.
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A caveat

• Although this orbit exists and is stable it 
might not be unique

• In particular, there might be impulsive orbits 
with more than one impulse per period

• However, this does not appear to be the 
case, for the parameter ranges under 
consideration.



• The average number of infected T cells 
during a single cycle of the impulsive 
periodic orbit is

Average # of infected T cells

Tav �
1
�

� �

0
T (u)du .

T=infected cells  τ=vaccination period

A CTL recognising a tumour
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Infected T cell minimum

• Easy to show:

• Denote this turning point by (Ttp, Ctp)
• Clearly this turning point is a minimum.

dT
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(t+k ) <

dT

dt
(t�k )

dT

dt
= 0 only once per cycle

T=infected T cells  C=CTLs  tk=vaccination time
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Thus

dT

dt
(Ttp, Ctp) = � � dTtp � pCtpTtp = 0

� �
�

d +
pCiTint

1� Tint

⇥
Tav < 0

� �
�

d +
pCie�⇤Tav�⇥⇤

1� e�⇤Tav�⇥⇤

⇥
Tav < 0

Tint = e�⇤Tav�⇥⇤ ,

⌅ <
1

⇥ � �Tav
ln

�
1 +

pCiTav

⇤ � dTav

⇥
.

T=infected T cells   π=production rate  δ=death rate    Ci=vaccine strength    Tav=av # cells
C=CTLs   α=proliferation rate   p=clearance rate    τ=vaccination period   (Ttp,Ctp)=T-cell min
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Infected T cells can be kept arbitrarily low

• It follows that the average number of 
infected T cells can be kept as low as 
desired, by appropriate choice of τ and Ci 

• In particular,

lim
Tav�0

⇤
1

⇥ � �Tav
ln

�
1 +

CiTav

⇤ � dTav

⇥⌅
= 0+ .

π=production rate  δ,d=death rates    Ci=vaccine strength
α=proliferation rate   τ=vaccination period   Tav=av # cells
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Parameters

• Realistic parameters were simulated
• Desired average: Tav = 2.6 cells µL-1

(instead of 3 cells µL-1)
• Parameter estimates:

Remark. It follows that the number of infected T cells can theoretically be
kept as low as desired, by appropriate choice of vaccine strength Ci and/or
frequency ⌃ . In particular, note that

lim
Tav⇥0

⇤
1

⇤ � �Tav
ln

�
1 +

CiTav

⇧ � dTav

⇥⌅
= 0+ .

Thus, the infection could theoretically be cleared (ignoring latently infected
cells and other reservoirs), assuming a su⇥ciently strong vaccine or su⇥ciently
frequent vaccinations (although the impulsive assumptions break down as the
limit approaches zero).

5 Simulations

To illustrate the theorem, parameter values from the literature were used (see
Table 1). All parameters were directly analagous to existing parameters, except
⇧. In a model of de Boer & Perelson (1998), the production of infected T cells
is given by the term ⇥V , where ⇥ = 0.015 is the infection rate and V represent
the (non-constant) amount of infectious virions (equation (9) in that reference).
At steady-state values, V = 100, suggesting that ⇧ = ⇥V̄ = (0.015)(100) =
1.5 cells µ L�1 day �1. Thus, our estimates assume approximate steady-state
concentrations of free virus.

Table 1: Parameters used
Parameter Value Units Reference

⇧ 1.5 cells day�1 µL�1 de Boer & Perelson (1998)
d 0.5 day�1 Essunger & Perelson (1994)
p 0.05 µL cells�1day�1 Bonhoe�er et al. (2000)
� 0.067 µL cells�1day�1 de Boer & Perelson (1998)
⇤ 0.2 day�1 de Boer & Perelson (1998)

The threshold inequality (4.8) was illustrated, for Tav = 2.6 cells µL�1 (Fig-
ure 2). CTL vaccines whose strength and frequency lie to the left of the curve
are guaranteed to keep the average number of infected T cells below the chosen
value of Tav. For example, a CTL vaccine boost of 35 cells µL�1 that was ap-
plied with a frequency of 122 days or fewer would ensure the average infected
T cell count remained below 2.6 cells µL�1 (dashed line). Conversely, a vaccine
applied with frequency of 122 days would need to boost the CTL count by 35
cells µL�1 or more, to ensure the average infected T cell count remained below
2.6 µL�1.

However, this threshold is overconservative: a CTL boost of 35 cells admin-
istered every 120 days produced an actual average of 2.02 cells µL�1 (Figure
3). Conversely, a CTL boost of only 10 cells µL�1, administered every 240 days
produces an average of 2.65 cells µL�1, higher than the required average (Figure
4).
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How strong and how often?

A CTL boost of 35 
cells µL-1 that was 
applied every 122 
days or fewer would 
ensure the average 
infected T cell count 
remained below 2.6 
cells µL-1.
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• The inequality is an overestimate
• A CTL boost of 35 cells administered every 

120 days produced an actual average of 
2.02 cells µL-1

(better than the 
desired 2.6 cells µL-1).
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• Low or infrequent vaccination has minimal 
effect on the infected T cell counts

• A CTL boost of 10 cells administered every 
240 days produced an actual average of 
2.65 cells µL-1

(worse than the 
desired 2.6 cells µL-1).

Infrequent vaccination
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How accurate is the approximation?

• Modelling the change in CTL numbers by an 
instantaneous change is obviously an 
approximation

• In reality, CTLs take ~14 days to reach peak 
values

• This might be too coarse for an impulsive 
approximation...

• ...so we ran numerical simulations to test the 
accuracy of the results.



A reasonable approximation
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An overestimate
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An overestimate

• Thus, the impulsive approximation 
overestimates the average number of 
infected cells

• It follows that the actual average will be 
lower if our recommendations are 
implemented.
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Sensitivity of parameters

• All parameters may vary, to some extent
• We used the most up-to-date estimates, but 

individuals will have different characteristics
• To calculate sensitivity, we varied each 

parameter individually, while holding all 
others at median values

• Our output parameter is the vaccination 
frequency.



Sensitivity of parameters

π=production rate      
p=clearance rate
δ=CTL death rates     
d=infected T cell death rate
α=proliferation rate    
tau=vaccination frequency

0.057 0.067 0.077
0

100

200

variation in α
0.025 0.05 0.075
0

100

200

variation in p

ta
u

0.15 0.2 0.25
0

100

200

variation in δ
0.4 0.5 0.6
0

100

200

variation in d
1.25 1.5 1.75
0

100

200

variation in π

ta
u



Limitations

• The impulsive orbit is orbitally asymptotically 
stable, but may not necessarily attract all 
trajectories



Limitations

• The impulsive orbit is orbitally asymptotically 
stable, but may not necessarily attract all 
trajectories

• There may be higher order impulsive orbits



Limitations

• The impulsive orbit is orbitally asymptotically 
stable, but may not necessarily attract all 
trajectories

• There may be higher order impulsive orbits
• Estimates are only reasonable during the 

asymptomatic phase of infection



Limitations

• The impulsive orbit is orbitally asymptotically 
stable, but may not necessarily attract all 
trajectories

• There may be higher order impulsive orbits
• Estimates are only reasonable during the 

asymptomatic phase of infection
• Results may be sensitive to parameter 

variation



Limitations

• The impulsive orbit is orbitally asymptotically 
stable, but may not necessarily attract all 
trajectories

• There may be higher order impulsive orbits
• Estimates are only reasonable during the 

asymptomatic phase of infection
• Results may be sensitive to parameter 

variation
• Impulsive Floquet theory is not easily 

extendable to higher-order models.
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• A small increase in the vaccine strength may 
result in a significantly larger range of 
possible vaccination intervals when the 
boost is low

• Thus, CTL vaccines 
whose strength is too 
low would be less 
desirable, even if the 
frequency could be 
tolerated.

Implications for weak vaccines
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Attractiveness of such vaccines

• Currently, the only treatment option is 
antiretroviral drugs

• Such drugs have harsh side effects, lead to 
drug resistance and require frequent daily 
administration

• A CTL vaccine would offset the daily pill 
burden.
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Potential drawbacks

• Logistical difficulties in administering regular 
vaccines to large populations

• The consequences of missing a single 
vaccination are more severe than missing a 
single drug dose.
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Future work

• Adherence to a regular CTL vaccine
• The effects of fluctuations in the vaccination 

time, even if administered quasi-regularly
• Consequences of vaccine “resistance”.
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Summary

• A CTL vaccine pulsed at regular intervals 
can keep the average number of infected 
CD4+ T cells arbitrarily low, by choosing 
appropriate vaccination intervals and 
strength of the vaccine

• The estimate is overconservative, 
so this will actually result in a 
lower average number of 
infected T cells than theoretically 
predicted.
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Conclusions

• A post-infection CTL vaccine would be highly 
desirable, assuming perfect patient 
adherence

• Such a vaccine would offer a realistic 
alternative to the daily pill burden of 
antiretroviral drug therapy

• We recommend that such a
vaccine should be available
for self-administration by 
patients.



• R.J. Smith? and E.J. Schwartz, Predicting the 
potential impact of a cytotoxic T-lymphocyte HIV 
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