MAT4996 Assignment 3

1. Consider the SIRS model

$$S' = -\beta SI + \nu R$$

$$I' = \beta SI - \gamma I$$

$$R' = \gamma I - \nu R$$

- (a) Name a disease that this model might describe.
- (b) Find all equilibria of the system.
- (c) Find R_0
- (d) Determine the stability of each equilibrium for $R_0 < 1$ and $R_0 > 1$.

2. Consider the SIS model with disease-specific death

$$S' = -\beta SI + \gamma I$$

$$I' = \beta SI - (\gamma + \alpha)I$$

- (a) Name a disease that this model might describe.
- (b) Show that

$$R_0 = \frac{\beta N_0}{\gamma + \alpha},$$

where N_0 is the population at the beginning of the outbreak.

- (c) Show that S' < 0 when $S = \frac{\gamma + \alpha}{\beta}$ and $I \neq 0$.
- (d) (BONUS) Deduce that

$$\lim_{t \to \infty} I(t) = 0.$$

(Hint: sketch the S-I phase plane and find the nullclines. You also need to rule out the existence of any periodic orbits.)

- (e) Is this a contradiction if $R_0 > 1$? Explain.
- 3. Consider the model

$$S' = b(a - S) - \beta SI + \gamma I$$

$$I' = \beta SI - \gamma I - bI$$

- (a) Describe in words the biological behaviour of this model.
- (b) Under what conditions will the disease become endemic? (Express your answer in words a nonmathematician would be able to understand.)
- (c) Is the total population size affected by disease?