
Spatial models

• Many systems change with respect to both 
space and time

• Instead of ODEs, we use PDEs (Partial 
Differential Equations)

• PDEs à differential equations with more 
than one independent variable.

ODEs = Ordinary Differential Equations
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One spatial dimension

• We'll illustrate the methods using one 
spatial variable

• Two dimensional models with time
• More spatial dimensions... 
 à things get very complicated K.



The conservation law

• Mass can neither be created or destroyed
• We'll model infectious measles droplets
• We must ensure that droplets do not 

spontaneously appear or disappear.



A stretch of space

• Consider a stretch of space Δx long
• Infected measles droplets flow along this 

space.

x = space



The flow of droplets

• The density at a particular location and 
time is U(x,t)

• The flow of droplets F will be a function of 
the density 

• Thus F = F[U(x,t)].

F = flow of droplets x = space U = droplet density t = time



The total flow (part 1)

• Thus the total flow is F[U(x,t)]-F[U(x+Δx,t)]
 (The inward flow minus the outward flow)
• Let's hold that thought for a moment.

F = flow of droplets x = space
U = droplet density t = time



Another method

• There's another way to calculate the total 
flow in this stretch of space

• Consider a small length of space dx wide.

F = flow of droplets x = space
U = droplet density t = time



The total number of droplets

• We want the total number of droplets in 
our stretch of space

• Sum the density of these small portions 
over the total interval

Remember that an integral is really 
just a sum over lots of tiny pieces.

U = droplet density x = space  t = time



The total flow (part 2)

• The total flow is the change in this number 
with respect to time

• Thus, the total flow is

We want the change with respect to time 
only, so we have an ordinary derivative.

U = droplet density x = space t = time



Equating our two expressions

minus  signs.Swap  the The ordinary derivative moves
inside, becoming partial

F = flow of droplets x = space
U = droplet density t = time



Partial derivatives

• The partial derivative ∂g(y,z)/∂y is the 
derivative of g with respect to y, ignoring z

• The partial derivative is used when the 
outcome depends on several variables

• In our case U=U(x,t) and we only want the 
derivative with respect to t.

U = droplet density x = space  t = time



An approximation
• The integral of 

f(x) from a to 
a+Δa is the area 
under the curve 
from a to a+Δa

• If Δa is small, we 
can approximate 
by a rectangle. 

f(x) is any function



Area of a rectangle

• The area of a rectangle is 
 height × width = f(a)Δa

• Thus, the integral (an area) is

f(x) is any function

.



Applying  ∫aa+Δa f(u)du = f(a)Δa 

F = flow of droplets x = space
U = droplet density t = time

.



The conservation equation

• Let Δx → 0
• By definition, the right side is then the 

partial derivative with respect to x

This is the
conservation

equation.

F = flow of droplets x = space
U = droplet density t = time
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Diffusion

• If you drop dye into water, the particles 
spread out from the centre

• Diffusion is the movement from high 
concentration of particles to low 
concentrations

• It is the result of random collisions 
between molecules.



The flow of diffusing droplets

• For diffusion, the flow is

 where D is the diffusion constant, reflecting 
the viscosity of the medium

• Thus, the flow is proportional to the change 
in density over distance

• Density decreases with distance ⇒ ∂U/∂x < 0.

F = flow of droplets x = space
U = droplet density t = time



From the conservation equation,

• Differentiate:

• The diffusion equation is thus

F = flow of droplets
U = droplet density
D = diffusion constant
 x = space
 t = time

.

�U

�t
= ��F (U)

�x



Measles in a corridor

• Harry is infected with measles
• After he sneezes in a corridor at school, 

the infectious droplets spread out
• Random collisions may knock them left or 

right.



Assumptions

• There are s seconds between collisions
• Collisions displace each droplet by ±r mm
• Each collision (left or right) is independent 

of the previous one.



The trajectory of a random droplet



Displacement from 0

• Let rn be the displacement from 0 at the 
nth step

• r1=r, r2=r, r3=-r etc 
in our figure.



The total displacement

• The total displacement after n collisions is
yn = r1 + r2 +  + rn

• y1=r, y2=2r, y3=r 
etc in our figure.

rn = displacement from 0 at nth step



Average displacement

• On average, yn will be zero
• Collisions will likely send the droplets left 

as often as right
• How can we measure distance without 

things cancelling each other out?

yn = total displacement after n collisions



Mean square distance

• Answer: Sum of squares
   yn

2 = (r1 + r2 +  + rn)2

    = r1
2 + r2

2 +  + rn
2  +  2(r1r2 + r1r3 + )

∴  yn
2 = nr 2.

...and these terms will 
all cancel each other out

But these terms are 
each equal to r2...

yn = total displacement after n collisions
rn = displacement from 0 at nth step
r = collision displacement



Mean square distance formula

• After n steps, t = sn seconds have elapsed.
∴ n = t/s  

  yn
2 = nr2  

         = tr2/s
        = C2t

∴       yn = ± C√t.

C2 is just some constant 
that we happen to 
know is positive

yn = total displacement after n collisions
r = collision displacement 
s = seconds between collisions



Average trajectory over time



Extending to many droplets

• Suppose we kept track of a whole lot of 
droplets

• The tendency as a whole would be to 
follow paths within this parabolic trajectory.



Normally distributed droplets

• Suppose the spatial spread is normally 
distributed at any given time

• The standard deviation at each time is 
governed by this parabola

• At any time, 70% of droplets should be 
found within this parabola.



Measles spreading over time

• Thus, we have an idea of how far measles 
spreads with time

• Important for determining quarantine 
measures

• Could extend to more dimensions, but the 
mathematics is harder.
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Lab work

• In the lab we'll keep track of hundreds of 
measles particles

• We'll include randomness to simulate the 
real situation

• We'll also fit parameters to data to verify 
our theoretical approximations.



Demo

• For loops repeat statements a specific 
number of times

• If statements may include an else or an 
elseif

• Be sure to match each with a 
corresponding end.



N=3;
n=4;
a=rand(N,n)  %creates a random matrix
for i=1:N
   for j=1:n
      if a(i,j)>0.5
         a(i,j)=1;
      else
         a(i,j)=-1;
      end
   end
end
a    %now it's a random matrix of ±1's
pause(1)  %pause for 1 second
for i=1:N
   for j=1:n
      y(i,j)=sum(a(i,1:j));
   end
end
y    %See how y comes from a? Run it again.


