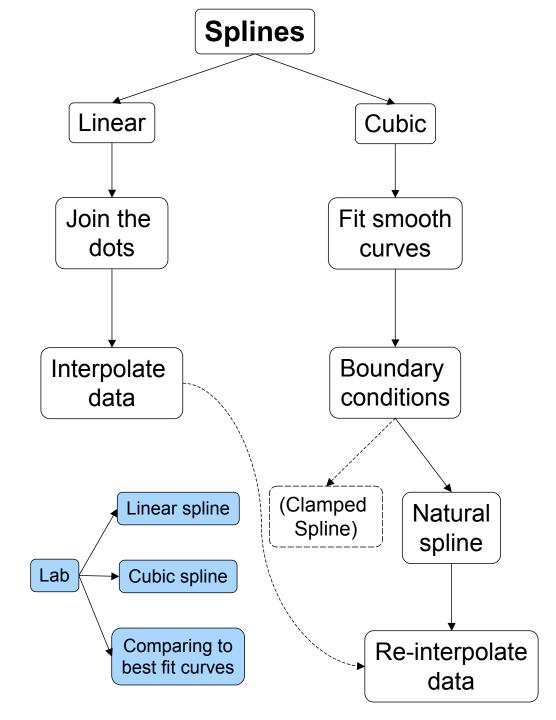
Splines

A type of model-fitting that

- Assumes the data is excellent
- Adapts the model to the data
- Is good for interpolating between data points.



An illustrative example

We use splines as an illustrative example as

- They're easy to use in Matlab
- We've used them in the previous lab
- It's important to understand the theory behind what the computer is doing.

Polynomial fitting

Polynomials are

- simple to apply
- easy to integrate and differentiate
- but very bad near the endpoints (oscillations and sensitivity to small changes in the data).

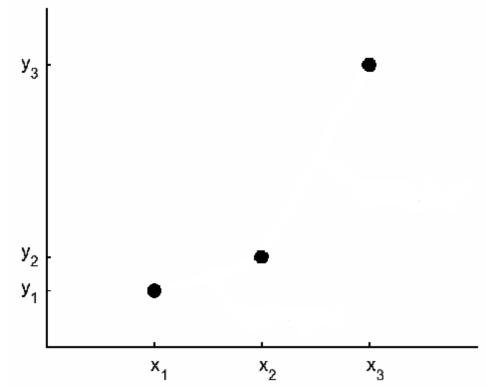
Advantages of splines

Splines

- capture the trend of the data regardless of the underlying relationship
- reduce the tendency toward oscillation
- are not sensitive to small changes in the data.

Linear splines

- Simplest method of connecting data points
- "Join-the-dots"
- Fits straight lines



This is what Matlab does when it plots.

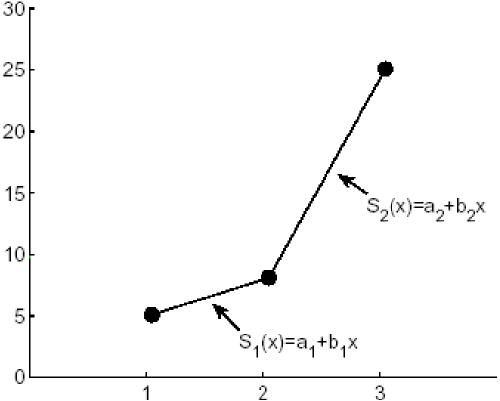
A sudden disease increase

 Consider a disease that maintains low levels and suddenly increases sharply

• For simplicity, we'll only fit two curves, but the method will generalise.

Two straight lines

- For $1 \le x \le 2$, $S_1(x) = a_1 + b_1 x$
- For $2 < x \le 3$, $S_2(x) = a_2 + b_2 x$
- Both spline segments meet at the point (2,8).



Substituting to find $S_1(x)$

• Since $S_1(x)$ passes through (1,5) and (2,8), substitute these points in: $a_1+b_1(1) = 5$

$$a_1 + b_1(2) = 8$$
 Substituting (2,8).

Remember $S_1(x)=a_1+b_1x$

Substituting to find $S_2(x)$

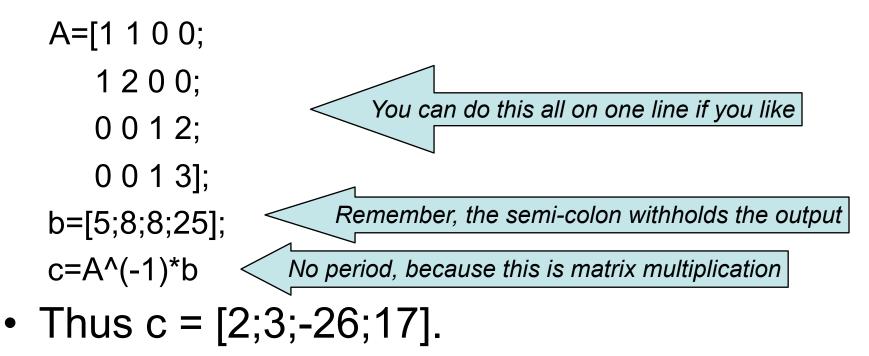
• Since $S_2(x)$ passes through (2,8) and (3,25), substitute these points in: $a_2+b_2(2) = 8$

$$a_2 + b_2(3) = 25$$
 Substituting (3,25).

Remember
$$S_2(x)=a_2+b_2x$$

How to solve Ac=b in Matlab

- If Ac=b and det(A) \neq 0, then c=A⁻¹b
- Matlab code:



Prediction with splines

• We've solved the linear spline:

Interval	Spline model
$1 \le x \le 2$	$S_1(x) = 2+3x$
2 < x ≤ 3	$S_2(x) = -26 + 17x$

Let's use it to predict. Eg
 y(1.67) = 2+3(1.67) = 7.01
 y(2.33) = -26+17(2.33) = 13.61.

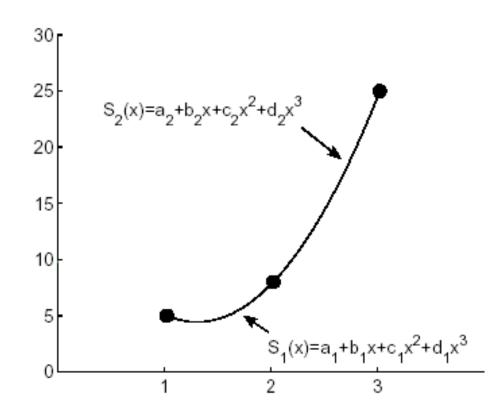
A problem with the linear spline

The linear spline is

- easy to construct
- intuitively clear
- but isn't "smooth" (i.e. the derivatives at the midpoint are not continuous).

Cubic splines

- For $1 \le x \le 2$, $S_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3$ • For $2 < x \le 3$, $S_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3$
- Both spline segments meet at the point (2,8).



First and second derivatives

Since $S_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3$,

- $S_1'(x) = b_1 + 2c_1x + 3d_1x^2$
- $S_1''(x)=2c_1+6d_1x$

Similarly,

- $S_2'(x) = b_2 + 2c_2x + 3d_2x^2$
- $S_2''(x)=2c_2+6d_2x$.

The derivative of xⁿ is nxⁿ⁻¹ and the derivative of a constant is zero

Smoothness

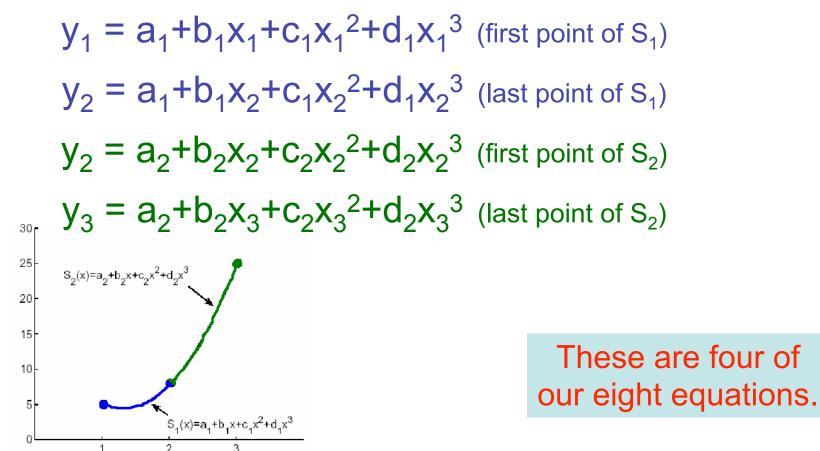
Cubic splines match up

- slopes (continuous first derivatives)
- curvatures (second derivatives)

We have eight unknowns $(a_1, b_1, c_1, d_1, a_2, b_2, c_2, d_2)$, so we need eight equations.

Match points

• First we "join-the-dots", ensuring our splines match the data points:



Match slopes

- The slopes must match at the interior data point x₂
- i.e. $S_1'(x_2) = S_2'(x_2)$
- which means

$$b_1 + 2c_1x_2 + 3d_1x_2^2 = b_2 + 2c_2x_2 + 3d_2x_2^2$$

Match curvatures

- The curvatures must match at the interior data point x₂
- i.e. $S_1''(x_2) = S_2''(x_2)$
- which means

$$2c_1 + 6d_1x_2 = 2c_2 + 6d_2x_2$$

The last two equations

- We still need two equations, but we've exhausted information about the interior point
- Where can we find them?
- Answer: use the endpoints.

Natural spline

- In the absence of other information, let's make the first derivatives constant at the endpoints
- This means the second derivative must be zero
- This is called the *natural spline*.

Remember, the derivative of a constant is always zero

Derivatives at the endpoints

- Our endpoints are x₁ and x₃
- Thus

$$S_1''(x_1) = 2c_1 + 6d_1x_1 = 0$$

 $S_2''(x_3) = 2c_2 + 6d_2x_3 = 0$

These our seventh and eighth equations.

(Clamped spline)

- If we had information about the endpoints, we could use that
- This would 'clamp' the spline to that information, hence a *clamped spline*
- We won't use this method, but...
 ...it's important to realise the cubic spline method isn't unique.

An example

- Let's use the same data to construct the cubic spline through our three points.
- We'll construct by hand what the computer does.
- We don't normally do this in practice... ...but for three data points it's just about manageable.

Substituting to find $S_1(x)$

• Since $S_1(x)$ passes through (1,5) and (2,8), substitute these points in: $a_1+b_1(1)+c_1(1^2)+d_1(1^3) = 5$

$$a_1 + b_1(2) + c_1(2^2) + d_1(2^3) = 8$$

$$S_1(x)=a_1+b_1x+c_1x^2+d_1x^3$$

Substituting to find $S_2(x)$

• Since $S_2(x)$ passes through (2,8) and (3,25), substitute these points in: $a_2+b_2(2)+c_2(2^2)+d_2(2^3) = 8$ Substituting (2,8)

 $a_2 + b_2(3) + c_2(3^2) + d_2(3^3) = 25$

$$S_2(x)=a_2+b_2x+c_2x^2+d_2x^3$$

Matching derivatives at x₂=2

- $S_1'(2) = S_2'(2)$
- $b_1+2c_1(2)+3d_1(2^2) = b_2+2c_2(2)+3d_2(2^2)$ • $S_1''(2) = S_2''(2)$
 - $2c_1 + 6d_1(2) = 2c_2 + 6d_2(2).$

$$S_1' = S_1''(x) = 2c_1 + 6d_1x$$

 $S_2' = S_2''(x) = 2c_2 + 6d_2x$

Natural spline at the endpoints

• For a natural spline, $S_1''(1) = S_2''(3) = 0$ $2c_1+6d_1(1) = 0$ $2c_2+6d_2(3) = 0.$

$$S_1''(x)=2c_1+6d_1x$$

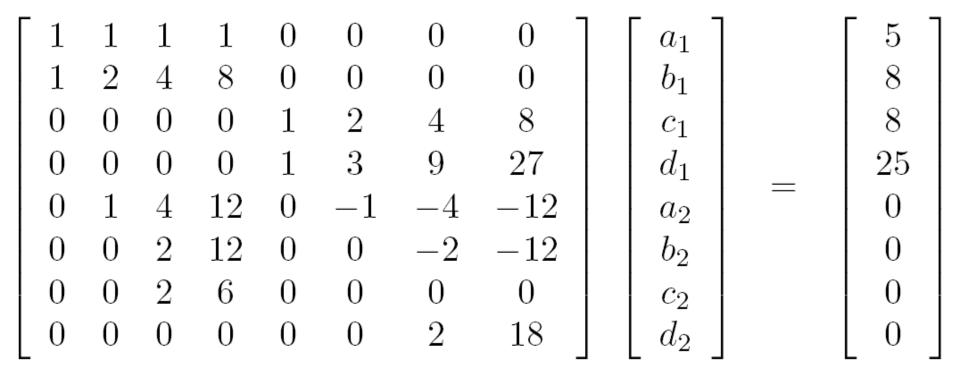
 $S_2''(x)=2c_2+6d_2x$

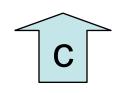
Thus, our eight linear equations are

$$a_1 + b_1 + c_1 + d_1 = 5$$

- $a_1 + 2b_1 + 4c_1 + 8d_1 = 8$
- $a_2 + 2b_2 + 4c_2 + 8d_2 = 8$
- $a_2 + 3b_2 + 9c_2 + 27d_2 = 25$
- $b_1 + 4c_1 + 12d_1 b_2 4c_2 12d_2 = 0$
 - $2c_1 + 12d_1 2c_2 12d_2 = 0$
 - $2c_1 + 6d_1 = 0$
 - $2c_2 + 18d_2 = 0.$

But this is really a matrix system





b

We can solve using Matlab

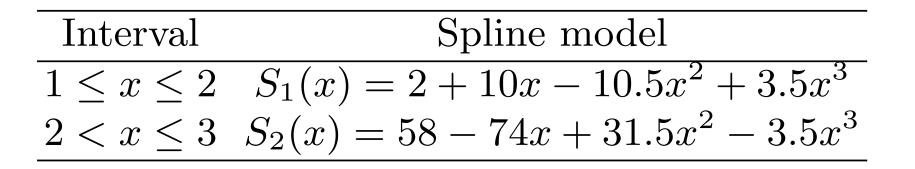
• Again, the solution to Ac=b is $c=A^{-1}b$.

 $A = [1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0;$ 1 2 4 8 0 0 0 0;0 0 0 0 1 2 4 8;0 0 0 0 1 3 9 27; $0\ 1\ 4\ 12\ 0\ -1\ -4\ -12;$ $0\ 0\ 2\ 12\ 0\ 0\ -2\ -12;$ 0 0 2 6 0 0 0 0;0 0 0 0 0 0 0 2 18];b = [5;8;8;25;0;0;0;0]; $c=A^{(-1)}*b$

The solution

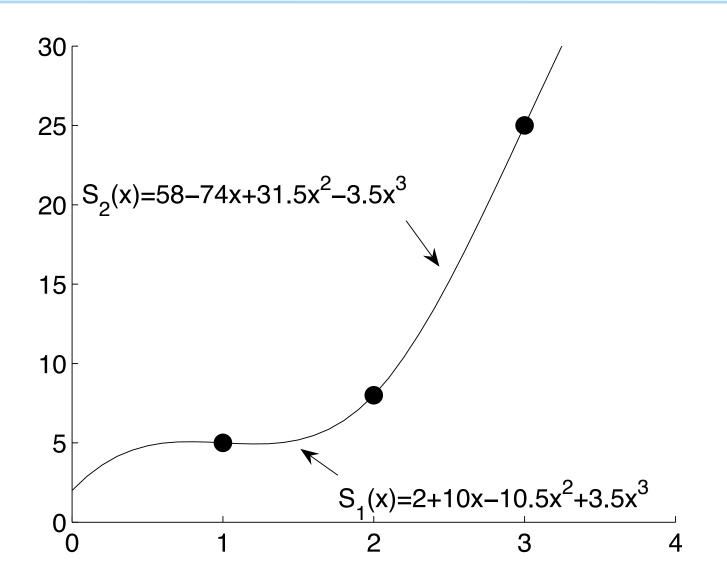
The solution is

c = [2; 10; -10.5; 3.5; 58; -74; 31.5; -3.5]



• This solution is continuous, with continuous first and second derivatives at the interior point.

Graph of the cubic spline

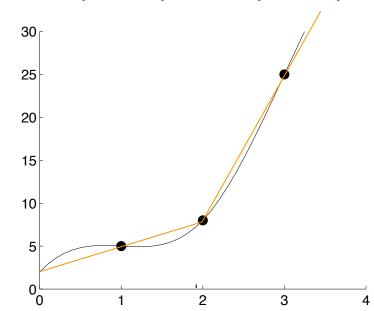


Predicting data

• Let's predict our points again, using the cubic spline:

 $y(1.67) = 2+10(1.67)-10.5(1.67)^{2}+3.5(1.67)$ = 5.72 $y(2.33) = 58-74(2.33)+31.5(2.33)^{2}-3.5(2.33)^{3}$ = 12.32

- From the linear spline
 y(1.67) = 7.01
 y(2.33) = 13.61
- Which do you have more faith in?



Extending to more data points

For more data points

- Each spline is forced to pass through the endpoints of the interval over which it is defined
- We match the first and second derivatives of adjacent points
- The natural (or clamped) condition is applied at the two exterior data points.

Generalising

- Of course, we don't do that by hand
- Matlab does it quite nicely, as we saw in the previous lab
- But this is a taste of the theory behind a simple computer algorithm for fitting one type of curve to data.