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1 Introduction

The endeavor of this project is to investigate the evolution and dynamics of interacting animal popula-

tions. Starting with a basic model with one predator and one prey population (Lotka-Volterra model),

we will analyze in the usual way its equilibria points, stability and time evolution of the populations.

In an e↵ort to bring this model closer to a realistic system, we will introduce various modifications

that can be applied to the basic model. For example, limiting the growth rates of the prey, including

the e↵ects of interspecies competition, and adding a functional response for the predation mechanism.

Of course, in a realistic ecosystem, there are multiple predator and prey populations that interact.

Combining the above mentionned modifications to the basic Lotka-Volterra equations, we numerically

model the dynamics of a simple food web which include beetle, rabbit, fox and owl populations.

As a bonus, we also present preliminary results if the animals are allowed to move around in a 2-

dimensional space.

2 The model: Lotka-Volterra

Given two populations in which share a predator-prey relationship, we can describe their population

dynamics using the basic Lotka-Volterra equations. This model was simultaneously and independently

developed by Alfred Lotka and Vito Volterra in the 1920’s [1, 2].

dP
dt

= ↵P � �PV (1)

dV
dt

= c�PV � �V (2)

where P and V are the prey and predator populations, respectively; ↵ is the prey birth rate; � is the

predation rate, i.e. the rate at which predators kill prey; c is the conversion rate from eaten prey to new

predators; and � is the predator death rate. All parameters are assumed to be positive.

There are several assumptions built into this model. The first is that there is an unlimited food sup-

ply for the prey (e.g. plants and vegetation for herbivores); in such a way, the prey maintain a constant

birth rate, independent of population density. On the converse, the growth of the predator population

relies solely on the presence of prey, and predators have limitless appetite. Another assumption is

that prey do not live out their full life, but are inevitably eaten at some point for the duration of this
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model. Predators, on the otherhand, can die of natural causes at a constant rate. Additionally, these

assumptions mean that there are no seasonal variations that might negatively or postively a↵ect either

population.

2.1 Equilibria

Let us investigate the potential equilibria of the Lotka-Volterrra equations. We begin setting Eq. 1 and

Eq. 2 to zero:

0 =
dP
dt
= P(↵ � �V) =) P̄ = 0 or V̄ =

↵

�
, (3)

0 =
dV
dt
= V(c�P � �) =) P̄ =

�

c�
or V̄ = 0. (4)

We thus have two potential equilibria that give us both di↵erential equations zero simultaneously:

(P̄ = 0, V̄ = 0) and (P̄ = �
c� , V̄ =

↵
� ). The first equilibrium is the morbid point where both populations

are extinct; the second is a positive, real point.

2.2 Stability

To determine the stability of our two equilibria, we need to first calculate the Jacobian of the system.

Recall that the Jacobian of our system is defined as,

J(P,V) =

2
666666664
@PṖ @V Ṗ

@PV̇ @VV̇

3
777777775 , (5)

where @ is shorthand for the partial derivative with respect to the subscripted symbol, and the dotted

variables are shorthand for the time derivatives. The Jacobian is thus calculated to be,

J(P,V) =

2
666666664
↵ � �V ��V

c�V c�P � �

3
777777775 . (6)

Evaluating this at our extinction equilirium point,

J(0, 0) =

2
666666664
↵ 0

0 ��

3
777777775 . (7)

3



Since this is a diagonal matrix, the eigenvalues are simply �1 = ↵ and �2 = ��. Both ↵ and � are

positive by assumption, so we have a positive and negative equilibrium. Knowledge from our ordinary

di↵erential equations (ODEs) classes tells us that (0, 0) is a saddle point, which is stable along one

arm and unstable along the other in a P-V phase plane diagram. Thankfully (0, 0) is not completely

stable! Otherwise no matter what our predator and prey would be doomed to extinction. We see that

solutions with P = 0 will move towards (0, 0) along the stable arm; this can be interpreted as the

predator population starving to death. On the other hand, solutions with V = 0 will move away from

(0, 0) along the unstable arm, which occurs since the nothing is eating the prey and thus the population

explodes.

For non-zero populations, we need to analyze the second equilibrium point; the Jacobian evaluated

at it is:

J
 
�

c�
,
↵

�

!
=

2
666666664

0 � �c
c↵ 0

3
777777775 . (8)

Since this matrix is neither diagonal, nor upper triangle, we will calculate the characteristic equation

to find the eigenvalues. To do so, we take the determinant,

0 =

���������

�� � �c
c↵ ��

���������
= �2 + ↵�. (9)

Therefore, the eigenvalues are �± = ±i
p
↵�, which are purely complex. This corresponds to ( �c� ,

↵
� )

being a stable, i.e. a point that solutions orbit. This suggests cyclical behaviour.

2.3 Time evolution

To better visualize the behaviour of the solutions of the Lotka-Volterra equations, we will use MAT-

LAB to numerically solve them. Figure 1 is numerical simulations of the Lotka-Volterra equations

over a 20 month period with initally 500 prey and 150 predators, and the folllowing parameters:

↵ = 0.5 month�1, � = 0.002 predator�1month�1, c = 0.02 predator/prey, and � = 0.4 month�1.

In the time series plot, we see a oscillatory behaviour between the predator and prey populations.

Initially, the prey population increases. However, after a short time, the predator population also

begins to increase caused by the increase in prey. Then there comes to be a tipping point in which

the number of predators overwhelm the prey and the prey population begins to decrease. Of course,
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Figure 1: Numerical simulation of the Lotka-Volterra equations: time series (left) and phase plane
plot (right).

this then means there comes a point when there is not enough prey for all the predators, and thus the

predator population decreases. But now that there are less predators, the prey population can recover

and the cycle starts all over again.

Since there are no other factors that might tip the favour to either one population, this oscillatory

behaviour continues forever. This periodic behaviour is precisely cyclic orbits about the non-zero

equilibrium in the phase plane. Trajectories cycle in the counter-clockwise direction, consistent with

the saddle having its stable arm along the vertical axis and unstable arm along the horizontal axis.

3 Modifying the model

The Lotka-Volterra model provides a simple set of equations and useful starting point for understand-

ing the interactions of a predator and prey population. Of course, despite its beautiful constant oscil-

latory behaviour and periodic orbits, some assumptions of this model are a little less than realistic. As

is such, we will explore di↵erent options to make the model more realistic.

3.1 Logistic growth

The first assumption that we made with the Lotka-Volterra model is that the prey population have an

unlimited food supply and grow exponentially. Perhaps over short enough periods of time this might

be true, but over longer periods the prey will exhaust their food supply. More precisely, the ecosystem
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that the prey live in has the ability, or carrying capacity K, to support only a certain population size.

We say that the population grows logistically, and can be written mathematically as,

dP
dt
= ↵P

✓
1 � P

K

◆
. (10)

Again, the population has birth rate ↵; however, now, it is limited by the carrying capacity. As we

have seen, if the population is smaller than the carrying capacity, it will grow until it saturates to K. If

the population begins larger than the carrying capacity, it will decrease to K.

Suppose we now modify the growth of the prey in Eq. 1 to be logistic, but leave Eq. 2 untouched,

dP
dt

= ↵P
✓
1 � P

K

◆
� �PV, (11)

dV
dt

= c�PV � �V. (12)

To determine the equilibria and stability for this new system, we follow the same procedure as in

Sec. 2. Setting the derivatives to zero,

0 =
dP
dt
= P

✓
↵
✓
1 � P

K

◆◆
=) P̄ = 0 or V̄ =

↵

�

 
1 � P̄

K

!
, (13)

0 =
dV
dt
= V(c�P � �) =) P̄ =

�

c�
or V̄ = 0. (14)

Again, we have two equilibria, the extinction one at (0, 0) and the positive one. For the stability of

each, the Jacobian is calculated to be,

J(P,V) =

2
666666664
↵
⇣
1 � 2P

K

⌘
� �V ��V

c�V c�P � �

3
777777775 . (15)

Evaluating the Jacobian at (0, 0) yields the same stability conditions as before: it is a saddle. As for

the second equilibrium, we have,

J(P̄, V̄) =

2
666666664
� �

c�K � �c
c↵

⇣
1 � �

c�K

⌘
0

3
777777775 . (16)

As opposed to going through the messy algebra of solving for the eigenvalues, we shall instead call

upon our knowledge from ODEs once again. We will determine the stability by analyzing the signs of
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the Jacobian’s trace and determinant using the Fig. 2.

Figure 2: Stability and Equilibrium analysis using a Jacobian’s trace and determinant. [3]

Right o↵ the bat, we see that our Jacobian as a negative trace; this land us on the left side of the

trace vs. determinant plot. The determinant, on the other hand, is,

det(J) = ↵�
 
1 � �

c�K

!
. (17)

Since all the parameters are assumed positive, the determinant could be positive or negative depending

on the sign of the quantity in the brackets. If K > �/(c�), then according to the figure, we have a stable

equilibrium that solutions spiral in towards. However, if K < �/(c�), then we would have an unstable

saddle-like equilibrium. We will note however that usually this is an unphysical scenario given that

the typical parameters are on the order of � ⇡ 10�4 days�1 and c� ⇡ 10�5 prey�1days�1, which gives

�/(c�) ⇡ 10 prey. In contrast, the carrying capacity is on the order of 1000s of prey. Thus, K tends to

be much larger than �/(c�), meaning that we have a stable spiral.

Figure 3 shows the numerical simulation of the Lotka-Volterra equations with the addition of lo-

gistic prey growth; the same parameter values as before are used, and now with K = 10000. Compared

to the time series of the basic Lotka-Volterra equations, we still see an o↵set oscillatory behaviour be-

tween the predator and prey populations. However now with the logistic growth, this dampens the

oscillations of the prey — and in turn the predator — population. In particular, this means that the two
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Figure 3: Numerical simulation of the Lotka-Volterra equations with logistic prey growth: time series
(left) and phase plane plot (right).

populations do reach the positive equilibrium, as can be seen in the phase plot: the solutions spiral

into the equilibrium.

3.2 Fuctional responses

Another modification that we can add to our base model is to impose a saturation limit on the predation

rate. We do this in hopes to massage the assumption that predators have a limitless appetite into

something more realistic. We can classify how the predator and prey interact by their type of functional

response [4, 5]. The linear interaction, �PV , found in the basic Lotka-Volterra equations is classified

as Type 1: the number of prey consumed is independent of the prey population.

Instead, we could introduce a hunting mechanism for the predators that is dependent on the density

of the prey population. The predation rate could take, for example, the following functional form in

the prey equation:
dP
dt
= ↵P � aPV

1 + aTHV
, (18)

where a is the attack rate, and TH is the handling time. This form is known as a Type 2 functional

response, and corresponds to a plateau in hunting. This term can be interpreted as predators having

less of a need to hunt as often since they can find food more quickly as the prey population increases.

This functional response separates the time it takes a predator to hunt (with the attack rate a) from the

time it takes for it to eat by introducing a handling time TH . For fixed attack rates and handling times,
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for small prey populations, a larger proportion of prey are killed per predator; however, as the prey

population increases, a smaller and smaller proportion of prey is killed per predator. Thus a plateau in

hunting. This functional response has been observed in some bug species in an attempt to overwhelm

their predators by sheer numbers.

Figure 4: Numerical simulation of the Lotka-Volterra equations with Type 2 function response: time
series (left) and phase plane plot (right).

Figure 4 shows the numerical simulation of the Lotka-Volterra equations with the addition of a

Type 2 functional response. In contrast to the logistic growth plots that displayed dampened oscilla-

tions, we see here that the oscillations are now increasing in the time series. This corresponds to the

positive equilibrium point being unstable now, and can be interpreted as the fact that the predators can

no longer control the prey population.

3.3 Competition

In the wild, there is more than just predation as an interation between species. Indeed some species

might compete for resources and have a negative e↵ect on each other (interspecies competition), or

they might benefit each other (mutualism). Given two species, X and Y , that are not necessarily preda-

tor and prey populations, a simple set of di↵erential equations to describe interspecies competition

is,

dX
dt

= ↵XX � �XY XY, (19)

dY
dt

= ↵YY � �YXYX, (20)
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where ↵i is the growth rate of the ith population, and �i j is the e↵ect that the j species has on i (assumed

to be positive constants). It is not necessary that �XY = �YX as one species might be more a↵ected by

the other species rather than vice versa. If we were to model mutualism instead, we would just need

to flip the negative signs to positive signs.

4 Ecosystem

In the previous sections, we discussed di↵erent modifications that can be applied to the Lotka-Volterra

model to account for di↵erent e↵ects such as logistic growth, competition, functional response, etc.

In this section, we will use these tools to model a mini-ecosystem.

4.1 Food Web

The first step in creating a model is to map it out. This is generally done using a block diagram — a

diagram which shows how a given population a↵ects other populations. When it comes to a biological

system, like an ecosystem, such block diagrams should be nothing new, assuming you had an adequate

fifth grade teacher. In such a system, we call the block diagram a food web.

Figure 5 shows the bare-bones food web of the ecosystem that we wish to model. Here, we have

two primary predators and two primary prey. The prey are the beetle and the rabbit, and the predators

are the fox and the owl. The catch here is that despite being a predator, the owl is also a prey to the

fox. Of course this diagram does not cover everything. If we want to create a realistic model, we need

to add some complexity. Animals are born and animals die by both natural causes and by being eaten.

The prey need to compete for resources, and the Predators can only consume so many prey in a given

amount of time. All of these things need to be reflected in the model.

4.2 Creating the Model

Beginning with the prey, we need to start with growth rates. We are assuming a realistic environment

with limited resources. This environment can only supports so many prey. However, for the rabbits

and the beetles, despite sharing some resources (eating similar plants), it can be assumed that they

both have individual interests. Some beetle species for example eat fungus and dung; whereas rabbits

have the tendency to eat twigs and bark when resources are low. With this in mind, we can assume

logistic growth for each of the prey where the carrying capacity is independent of the other animals.
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Figure 5: Basic Food Web of the ecosystem we wish to model

To account for any competition between the Beetle and the Rabbit, a competition term will be included

in the model.

Next, we need a background mortality rate. The simplest technique for this is to assume the back-

ground mortality be proportional to the population of the given animal itself. It should be mentioned

that in the classic Lotka-Volterra, background mortality of the prey is ignored. This is not exactly

physical since in the wild some prey have been known to live out their days naturally. For example,

when considering the beetle, some species like the Callosobruchus maculatus are only expected to

live for half a month [6]. Our model will thus include background death for all animals in the system.

The most important part of this model is predation. That’s why you are reading this, right? There

are two types of predation models discussed; the type 1 and type 2 functional responses. Recall that

where type 1 assumes a predator can eat continuously, type 2 includes a handling time, a time length in

which the predator will be satisfied with what they have just ate. Keeping this in mind, for the Beetle,
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Figure 6: Summary of our ecosystem model

both the Fox and the Owl will have a type 1 (linear) interaction since it’s such a small and abundant

creature. As for the Rabbit, since it is a relatively large prey, it will require a handling time for both

the Fox and the Owl and will be given type 2 interaction with both. Similarly, the Fox-Owl interaction

will be given a type 2 functional response. Figure 6 summarizes the key points discussed above that

make up the model. The next step is to form the system of Ordinary Di↵erential Equations that will

be the basis of the model.

4.3 The Model

In previous sections, mathematical formulations of the functional responses, logistic growth, and com-

petition were discussed. Applying these to the previous discussion, we can form our system of ODEs

that describe the population dynamics of our system.

dB
dt
= eBB

✓
1 � B

KB

◆
� gBF BF � gBOBO � �BRBR � mBB (21a)

dR
dt
= eRR

✓
1 � R

KR

◆
� gRF

1 + gRFTRFR
RF � gRO

1 + gROTROR
RO � �RBRB � mRR (21b)
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dF
dt
= cBFgBF FB +

cRFgRF

1 + gRFTRFR
RF +

cOFgOF

1 + gOFTOFO
OF � mF F (21c)

dO
dt
= cBOgBOOB +

cROgRO

1 + gROTROR
RO � gOF

1 + gOFTOFO
OF � mOO (21d)

To make the equations easier to understand, Figure 7 shows our food web only this time with more

details and parameters.

Figure 7: Labeled Food Web of our ecosystem

In Equation 21, there many parameters which may cause confusion. However, these parameters

were denoted in such a way to reduce any uncertainty. First, the beetle, rabbit, fox, and owl populations

themselves are denoted B, R, F, and O, respectively. Prey birth rates are denoted e where the subscript

indicates the animal. K is the carrying capacity and m is the mortality rate of the sub-scripted animal.

Parameters describing interaction (predation and competition) have two subscripts. The predation

terms are g, T , and c which represent the predation rate, handling time, and predation-predator birth

rate conversion factor, respectively. In these parameters, the first subscript represents the prey in the
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interaction and the second represents the predator. The last term is � which represents competition

between the prey species. The first subscript represents the victim of the interaction whereas the

second represents the competitor.

4.4 Numerical Values

As you can see, creating a model of a small ecosystem using some basic assumptions is not very

di�cult. The challenging part of modeling this system is finding the appropriate numerical values for

the parameters. In order to solve these equations however, numerical values are required. The first

step is to determine units. Almost all of the parameters have some aspect of time, so we need to find

an appropriate unit of time. In the case of an ecosystem, a month seems to be a good start.

Now for some simple parameters. Prey birth rates are simple as they are quite clearly reported and

can be found on numerous web pages. Rabbits seem to have a rather varying birth rate. We focus on

the Eastern Cottontail Rabbit or Sylvilagus floridanus, which can have five litters of up to eight babies

per year [7]. This averages out to about three babies per month and hence we have eR = 3 month�1. In

a similar fashion, the Callosobruchus maculatus can lay up to 100 eggs in a year — most of which will

hatch. This can be averaged out to 8 beetles hatched per month by a single beetle or eB = 8 month�1.

Background mortality rates are rather simple as well. These can be approximated as being the

inverse life span of the given animals. The lifespan of a fox is expected to be two years, so mF =

1/(2 ⇤ 12) ⇡ 0.04 month�1 [8]. Similarly the cottontail rabbit is expected to live about three years

(mR ⇡ 0.028 month�1), and an owl about four years (mO ⇡ 0.02 month�1) [9]. Of course, the beetle is

expected to live about half a month, so mB = 2 month�1.

As for the actual predation parameters g, c, and T , numerical values are not readily available, and

those that are available work for their individual ecosystem. So for this particular system, such values

are approximated or guessed, and tested by using them to solve the equations. One example of such

an approximation is the handling time for the Fox-Rabbit interaction. It is assumed that a Fox can eat

two Rabbits every day. So TRF = 2/30 = 0.0667 month. Similarly, the Owl can eat one Rabbit every

day TRO = 0.033 month. As for g and c, these values were found via trial and error (in the hopes of

finding a stable system).

The parameters used in solving this system are all found in Table 1.
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Parameter Value Parameter Value

eB 8 gRF 0.0005
eR 3 TRF 0.0667
KB 75000 gRO 0.0002
KR 10000 TRO 0.0333
mB 2 cRF 0.01
mR 0.028 cRO 0.03
mF 0.04 gOF 0.0003
mO 0.02 TOF 0.0167
gBF 0.001 cOF 0.03
gBO 0.0005 �RB 0.00002
cBF 0.0001 �BR 0.0002
cBO 0.05

Table 1: Numerical Values used to solve Equation 21

4.5 Results

To solve the above system of ODEs with the numerical values listed, MATLAB’s ODE45 function

was utilized. The time series plots for this system of ODEs is show in Figure 8. Note that the Beetle

population is two times the displayed value; it is plotted this way to make the other populations more

visible.

Figure 8: Time series plot of our food over a 200 month period.

These results are not particularly interesting. The populations quickly evolve into an equilibrium
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state. However, the qualitative equilibrium points are what one may expect. The prey populations are

higher than the predator populations with the population sizes ranging from the smallest prey (highest

population) to the largest prey (lowest population). The troubling issue with these results is the lack

of oscillations that are expected from a Lotka-Volterra Model. One would expect fluctuations in the

predator and prey populations, since not only is this a consequence of the Lotka-Volterra Equations,

but it is also a physical phenomenon in nature.

The problem here is the complexity of the ecosystem. The Lotka-Volterra equations provide a

simple qualitative model to show the e↵ects a single predator has on a single prey. The addition of

more than one of each adds a level of complexity for which this model is not well-suited. Though

it can provide an approximate equilibrium point for the ecosystem, which may even account for the

average population over a year, it cannot be used to model the week-by-week or even month-by-month

dynamics. This model also ignores climate and weather fluctuations that may occur throughout the

year. For example, the plant life available to the beetles and the rabbits in the summer may not be

around in the winter. Food becomes more scarce, and we can expect to see the populations decrease

in those months.

To reiterate, this model does provides us with an approximation for the equilibrium populations

for this system. One use for such a model is to determine how each population a↵ects the others. If

the fox population gets a disease and suddenly there are much less, or perhaps they eat less, how does

this a↵ect the population? What if the winter was particularly harsh and the Owl population is killed

o↵? These are some things that this model could help us predict.

Suppose for example, Billy Bob, a lone hermit, lives by himself in the vicinity of this ecosystem.

He’s not really a hunter (he prefers vegetables from his garden) so he does not a↵ect the animal

population in the ecosystem. However, one thing about Billy Bob is that he HATES Beetles. They

are small, ugly, and frankly they eat his veg. He decides that he wants to spray around his home and

kill o↵ the Beetle population. Now, Billy loves animals like foxes and rabbits. He is also an avid owl

photographer. He could never live with himself if he ended up harming these populations.

Like any rational human being, Billy decides to create a model of the ecosystem, and gasps!, his

math gives him Equation 21. He decides to numerically solve his model by guessing some initial

populations and gets similar results to those in Figure 8. As it is currently summer, he assumes that

the equilibrium values are a better approximation for the current populations than his initial guesses.

He now simulates the system after spraying, using the equilibrium values as initial conditions and
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setting the initial Beetle Population to be zero (assuming instantaneous death). The results he gets are

those shown in Figure 9 and Figure 10, which show how the populations of the other animals respond

to a sudden lack in Beetles in the short term and long term, respectively.

Figure 9: Food Web Time Series Plot with no Beetles (short term)

Figure 10: Food Web Time Series Plot with no Beetles (long term)

Needless to say, Billy Bob was shocked at the fact that simply eliminating a pest could totally
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kill o↵ the predator population and cause an overthrow of the Rabbit population. With all the rabbits,

maybe food will become scarce and they will attack his garden. What about the Owls? They die

almost right away from a lack of Beetles. And sure, it’s long term, but the foxes will eventually die

o↵ as well. Because of Billy’s proactive thinking and his Mathematical Modeling skills, he was able

to stop himself from ruining an entire ecosystem.

To conclude, we have developed a system of ODEs that model a small ecosystem. This model

was used to find the equilibrium populations of this hypothetical system. The model was then used to

show the e↵ect of eliminating a single organism from the system showing that it would result in the

long term destruction of the system.

5 Spatial Dependence

A feature of predator prey dynamics that is ignored by the Lotka-Volterra model and its modifications

is spatial variation. Very rarely is a predator-prey pair restricted to a single location, so a variation that

ensures spatial dependence in the Lotka-Volterra model should be considered.

When modeling the spatial dynamics of a biological system, it is common practice to use random

walk models. In such models, an object (a particle, bacteria, protein, etc) is placed in a grid at the

origin. At each increment in time, the particle can take a single step forward, backwards, left or right

(assuming a 2-D model). The direction of choice is generally chosen at random (using random number

generators). When many particles are modeled in a random walk, the behavior becomes di↵usive. The

random walk of a large number of particles can be described using the di↵usion equation.

@ f
@t
= Dr2 f (22)

where D is the constant di↵usion coe�cient that characterizes the system, and r2 is the Laplacian

operator. The solution of the di↵usion equation is one which shows the ”downhill travel” of some sort

of substance through a medium. In other words, the substance will travel from an area of high density

to an area of low density (Fick’s law) in such a way that mass is conserved (Continuity Equation). This

makes it ideal for modeling population dynamics. As an animal (or human for that matter) population

grows in a certain area, it seems to spread outwards. This is why it seems natural to apply the di↵usion

equation to population dynamics.
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To include a spatial dependence in the Lotka-Volterra model, we will be assuming that the predator

and prey systems both start at a given point and that the motion of a given animal of either species can

be described using a random walk. So to model the spatial dynamics of the entire system, a di↵usion

coe�cient will be added to the original Lotka Volterra model.

@P
@t
= DPr2P + ↵P � �PV (23a)

@V
@t
= DVr2V � �V + c�PV (23b)

As with the original Lotka-Volterra Model, ↵ represents the prey birth rate, � is the predation rate,

c is the conversion rate (proportionality constant describing how many prey are killed for a predator to

be born), and � is the Predator mortality rate. Now we have added a DV and DP which are the di↵usion

coe�cients for the Predator (P) and Prey (V) systems, respectively. These coe�cients describe the

rate of spread of both system and their units are Area/Time. It is worth noting that we are assuming

that the di↵usion coe�cients are constant; however, much more complicated systems can be modeled

using spatially-dependent or even population-dependent di↵usion coe�cients.

5.1 Solving this Model

This, like most other systems of PDEs needs to be solved numerically. Here, we will make use of

a simple Forward Euler solution scheme. First, we need to make our solution space discrete. This

means we choose a �x and �y that represent the spatial step sizes in the x and y directions. This

means that every point in our solutions space can be described by a coordinate (xi, y j) where xi = i�x

and y j = j�y, where i and j are integers that represent the x and y coordinates of each grid space.

Coordinates can take on values ranging from 1 to Nx or Ny where N is the number of cells in the x or

y direction of the system. At the same time, we need to also make time discrete so that any time can

be described by tn = n�t where �t is our time step size. This discrete scheme is represented in Figure

11 with �y = �x.

Now we need to turn our derivatives into finite di↵erences. So for the first order time derivative:

@P
@t

(xi, y j, tn) ⇡
Pn+1

i, j � Pn
i, j

�t
(24)
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Figure 11: Discrete Solution Space Scheme

For our second order spatial derivative, the finite di↵erence approximation is given by:

@2P
@x2 (xi, y j, tn) ⇡

Pn
i+1, j � 2Pn

i, j + Pn
i�1, j

�x2 (25)

Using these finite di↵erence approximations, we can rewrite our model (Equation 29) into finite dif-

ferences.

Pn+1
i, j � Pn

i, j

�t
= DP

 Pn
i+1, j � 2Pn

i, j + Pn
i�1, j

�x2 +
Pn

i, j+1 � 2Pn
i, j + Pn

i, j�1

�y2

!
+ ↵Pn

i, j � �Pn
i, jV

n
i, j (26a)

Vn+1
i, j � Vn

i, j

�t
= DV

 Vn
i+1, j � 2Vn

i, j + Vn
i�1, j

�x2 +
Vn

i, j+1 � 2Vn
i, j + Vn

i, j�1

�y2

!
� �Vn

i, j + c�Pn
i, jV

n
i, j (26b)

Both parts of Equation 26 can be rearranged and solved for Pn+1
i, j and Vn+1

i, j . Then, using a simple

computer code these equations can be solved. The algorithm involves creating four matrices, two for

each animal. One will represent the n time step, and the other will represent n + 1. The solution will

start with initial conditions which will be stored in the n matrix (for n = 0). By looping through the
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spatial indexes i and j, we get Pn+1
i, j and Vn+1

i, j using the rearranged versions of Equation 26 and stored

in the n + 1 matrices (for n + 1 = 1). Once the n + 1 matrices are solved, the n matrices are reset and

used to store the n + 1 matrices that were just calculated. And then we repeat this for the rest of the n.

Solve for n + 1 using n, replace old n with n + 1, and repeat.

Of course a couple small details arise when trying to solve this. Initial conditions (n = 0) were

already mentioned and will be further discussed later. However when it comes to solving any point

with the index i = 1 or Nx (where Nx is the number of discrete cells that our solution space has in the

x direction), we need data for points i = 0 or Nx + 1. Because of this we require boundary conditions.

For our solution, we will keep things simple and use Dirichlet Boundary Conditions (DBC) where we

set all boundary values to be zero. This can be implemented by only solving for i = 2 to Nx � 1 and

j = 2 to Ny � 1 and keeping all outer cells in the simulation domain (i = 0 and Nx or j = 0 and Ny)

equal to zero for all time. Physically this represents the fact that there are no animals outside of our

2D system.

5.2 Initial Conditions

The algorithm and boundary conditions are now set up. All that is missing is a set of initial condition

and numerical values needed to actually numerically solve our model. Let’s start with algorithm

parameters. We are going to assume that our system is rather large: 10 km by 10 km. In order for our

code to solve the solution in a reasonable amount of time, we need to pick a broad spatial resolution,

so we choose �x = �y = 100 m so that Nx = Ny = 100. So our solution matrices (for n and n + 1)

are going to be 100 ⇥ 100 in size (meaning 10000 calculations per time step). Our time step is chosen

�t = 0.0025 months. This time step was chosen because it is relatively large but stable (the solutions

don’t explode to infinity).

Now we need to think about actual model parameters. The prey birth rate is set to be ↵ =

0.5 month�1. We set the predation rate to be � = 0.05 month�1 predator�1. We set the predation-

predator birth rate conversion parameter to be c = 0.5 predator
prey . The predator death rate is � =

0.04 month�1. As for the di↵usion coe�cients, it was assumed that both the predator and prey could

cover as much area in the same amount of time, thus having the same di↵usion coe�cient. A reason-

able assumption for the di↵usion coe�cient was chosen to be DV = DP = D = 10000 m2

month .

As for actual initial populations, it was decided that the Predators would start with V0 = 1500
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and the Prey would start with P0 = 10000. The original idea was to have the populations start in

one discrete step (almost like a delta function) and have them spread out over time. This however is

problematic as it leads to instabilities. So, it was decided to use 2-D normalized Gaussian Distributions

for the initial conditions. This is because the natural solution to the di↵usion equation with an Delta

function initial condition is a spreading Gaussian Function. So the Initial Conditions are given by

Equation 27. The coe�cient in front ensures that if integrated over 2-D space the total populations will

be V0 and P0. And x0 and y0 denote the position of the center of the Predator and Prey distributions.

V(x, y, t = 0) =
V0

4⇡D
e

(x�x0)2+(y�y0)2

4D (27a)

P(x, y, t = 0) =
P0

4⇡D
e

(x�x0)2+(y�y0)2

4D (27b)

This model is now ready to be solved. This will be done twice. The first solution will assume that

the initial (x0, y0) of both populations are the same. The second will assume that the two populations

start at di↵erent locations.

5.3 Starting at the Same Position

The first solution will be done by assuming the Predator and Prey populations start at the same spot.

This point is conveniently chosen to be at the center of the domain (i0, j0) = (50, 50). This initial

distribution is shown in Figure 12 which qualitatively shows the initial population spread of both the

Predators and the Prey.

Figure 12: Initial population distribution of the Predator and Prey.
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Using the previously discussed algorithm, a MATLAB code is used to solve our model. The results

are plotted in Figure 13, 14, and 15. These figures show the time series and phase plots of the Predator

Prey systems at positions R=0km, R=2km, and R=4km from the center (starting) point. What we

see at each of these locations are population oscillations that we expect to see from the basic Lotka-

Volterra model. An increase in prey population will shortly lead to an increase in predator population

through predation. This in turn leads to further increased predation followed by a decrease in the prey

population. With a lack of prey, the predation decreases, and the predator population also decreases,

allowing for the prey population to reproduce and increase. This repeated cycle is the natural solution

of the L-V model.

Figure 13: Population Dynamics of the spatial dependent Predator-Prey Model at R=0km from the
center position

What we see in the spatial dependent results is the amplitude of the oscillations decreasing. This

of course is caused by the di↵usive spread of the population. Initially, outside of the initial population

spread, the populations are zero. As the simulation runs, the populations quickly spread (di↵use).

This is why we see a fast decrease in population at R=0km at the beginning of the simulation and a

fast increase at the same time at positions R=2km and R=4km. As time wears on, the populations

continue to spread outwards thus leading to a decrease in ”population amplitudes” over time.

Analyzing the phase plots, we see a surprising result. This system is cycling into a non-zero

equilibrium. This is very interesting as with the Dirichlet Boundary Conditions, we would expect that

the system would tend to zero. This expectation is from the fact that the steady state solution of the

basic di↵usion equation is simply the Laplace equation (Equation 28).
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Figure 14: Population Dynamics of the spatial dependent Predator-Prey Model at R=2km from the
center position

Figure 15: Population Dynamics of the spatial dependent Predator-Prey Model at R=4km from the
center position

r2V = 0 (28)

The Laplace equation with Dirichlet Boundary conditions is simply V = 0 (this is simple to see in

one dimension where the solution is a linear function which must be zero at x=0 and x=L). The reason

we don’t see our system evolving to this point is simply that we have a birth rate that outweighs the

death rate and the rate of di↵usion. This also explains why the minima in the oscillating Predator and

Prey population cycles are increasing over time.

It would be interesting to see the system completely evolve into equilibrium, however, the simula-
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tion takes too long to run.

5.4 Starting at Di↵erent Positions

The second solution will be done by assuming the Predator and Prey populations start at di↵erent

locations. These points will be at positions (i0, j0) = (60, 60) for the Prey and (i0, j0) = (40, 40) for

the Predators. This is shown in Figure 16.

Figure 16: Initial Population Spread of Predator and Prey Populations

Figure 17: Population Dynamics of the spatial dependent Predator-Prey Model at the Prey Starting
Point

The results are plotted in Figure 17, 18, and 19. These figures show the time series and phase plots

of the Predator Prey systems at the Prey starting point, the Predator starting point, and a point directly
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Figure 18: Population Dynamics of the spatial dependent Predator-Prey Model the Predator Starting
Point

Figure 19: Population Dynamics of the spatial dependent Predator-Prey Model directly between the
Predator and Prey Starting Points

in between (i = j = 50).

At the Prey Starting Point (Figure 17), the time series shows that right at the beginning we have

zero Predator population and a quickly di↵using Prey Population. Because of the birth rate of prey,

and the lack of predator in this area, the prey population quickly starts to recover from the di↵usive

deterioration. Due to the scaling, it’s di�cult to see in the figure, however, slowly the Predator pop-

ulation is growing in the area due to di↵usion (t=100 and on). However, the growth of the Predator

population seems to accelerate due to the increase in prey population (at around t=1000). After this

sudden growth, both populations seem to reduce to 0. A video showing the population dynamics of

this system shows that the highest predator population at t=1100 is in the vicinity of the Prey starting
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point. This means that the center of the predator population density moved from its starting point to

that of the Prey’s population density center (from (40, 40) to (60, 60)).After that sudden growth at the

Prey starting point, the predator population di↵uses outwards.

At the Predator Starting Point (Figure 18), we see similar dynamics. The predator population

quickly di↵uses away and the prey population di↵uses in and grows due to an imbalance between the

predation rate and birth rate. And again with the growth of the prey population, we see a growth of

the predator population, though not as great as that seen at the Prey Starting Point. Near the end as

both populations seem to decrease due to mortality and di↵usive spread, we seen what seems to be the

beginning of another cycle. The prey population seems to start to grow slightly near the end. However

due to simulation time, the idea of a second cycle, though likely, has yet to be explored. It is likely

that as time goes to infinity, this system would evolve similarly to that of the previous section (same

starting point).

The point directly between (Figure 19) has particularly interesting dynamics. We see a sudden

growth of the prey population with a high growth rate (slope). With the increase in predator population

due to di↵usion and predation, the rate of the Prey growth is slowed almost to zero (around t=50) in

an interesting balance between growth, di↵usion and predation. This balance is unstable and the prey

population begin to climb again, thus leading to a large increase in the predator population. As a result

the prey population decreases, however, near the end of the simulation a slight increase is a tell-tale

sign that a second cycle would have happened if the simulation were run longer.

The dynamics of this system was particularly interesting. The traveling of the predator area of

highest density from (40, 40) to (60, 60) is what would be expected due to the fact that in nature,

animals tend to follow the food. They chose to live in areas where food is in abundance. Since there

were more prey at the prey starting point, then it would make sense that a large portion of the predator

population would want to move there. Near the end of the simulation both populations seem to tend

towards the middle of the solution space (their points of highest density end at around (50, 50)). It is

hard to determine if that is the natural resting place for the highest population density, or if it is a result

of the limited solution space and the boundary conditions. This could be investigated further with a

more powerful computer simulating a much larger domain size (for longer time periods), but this is

beyond the scope of this project.
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5.5 Ideas For Improvement

This model added extra layers of complexity to the Lotka-Volterra model. Further complexities could

be implemented using the manipulations mentioned in previous sections (Logistic Growth, Functional

Response, Competition, etc). These have already been discussed. A further improvement would be

to investigate the e↵ects of di↵erent Di↵usion Coe�cients. It is beyond the scope of this project,

however, an interesting study would be to investigate the collective movements of di↵erent predator-

prey systems, and determine di↵usion coe�cients based o↵ the amount of area covered over time.

Further, more interesting locations could be investigated using spatially varying di↵usion coe�-

cients. For example, one could model a system where half of the simulation domain is a grass meadow,

and the other half is forest. If the animal has an easier time traveling through the meadow, the di↵u-

sion coe�cient for that area of the domain would be higher than that of the forest. For this a slight

manipulation would have to be made to the model:

@P
@t
= r · (DP(x, y)rP) + ↵P � �PV (29a)

@V
@t
= r · (DV (x, y)rV) � �V + c�PV (29b)

Similarly, population dependent di↵usion is another area worth investigating (DV (V) as opposed

to DV (x, y)) where one may want to take into account the fact that an area with an already highly dense

population may be less favorable (lower di↵usion constant for higher populations).

On top of that the other improvements would involve using high performance methods and more

powerful computers in order to simulate larger systems where the boundary condition will have less

e↵ect on the long term results (as is likely the case in the above results). All that said, the spatially

dependent model investigated in this section was a huge success, and shows realistic spatially-varying

predator-prey population dynamics.

6 Conclusion

Needless to say, a real world ecosystem has many more complex interactions. This report has covered

some preliminary dynamics of predator-prey systems, starting from the basic Lotka-Volterra equa-

tions, then building up to a simple food web that incorporated various modifications. Modifications
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included limiting the growth rate of the prey, limiting the predation rate of the predators, and introduc-

ing a di↵erent kind of interaction in the form of competition. We found that if a foodweb is broken, it

can have detrimental e↵ects on the rest of the populations. Building o↵ of this, a 2-dimensional model

was constructed in which predator and prey populations had the freedom to move around and interact.

The results show the movement of predator populations in order to be closer to the prey population.

It showed how the growth and depletion of each population a↵ected the other and how that can be

a↵ected by the di↵usive motion of animal populations. With a more powerful computer, it would be

interesting to explore larger systems with multiple di↵erent populations and perhaps di↵erent bound-

ary conditions.
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