Measles with vaccination

Higher-order discrete-time dynamical
systems

Driven by an underlying timestep
In this case, measles infection lasts a week
We also add in fixed vaccination rates.
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Assumptions

Assume the births and deaths are equal
each week

— not true in general, but okay on a weekly
timescale

Individuals recover from measles within a
week

— so there are only new measles cases each
week

Newborns are born susceptible

Only recovered individuals die
— since everyone catches it or is vaccinated.



Difference equations
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* We use difference equations rather than
ODEs, since time is discrete

* |nstead of derivative, we update each class

at each timestep

 Many updates don’'t change the state of that

variable

— if there were susceptibles last week, there will
be susceptibles this week.



The basic model

St_|_1 — St — Oé]tSt —+ B
i1 = alyS
Rt_|_1 :Rt+]t—B

t

Anyone infected last week is now recovered

* We're ignoring death due to the disease

— reasonable in the Global North, less so
elsewhere

* Birth and death are constant, not
proportional to population size

* The infectious period = the time step.



Equilibria

Equilibria occur when there’s | St+1 = 5t —alyS; + B
no change in time Iy = oSy

. Riq1=Ri+1,—B
For discrete systems, that AR
means the timestep becomes irrelevant

l.e. St+1=S=S, li+1=l=l and Ri1=R=R
Note: if I=0, then there’s no solution if B>O0...
...and no info if B=0

The only equilibrium is (S,I,R)=(1/a,B,R),
where R is arbitrary.



Adding vaccination

B----»|s|——[||——[R]---->B
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St_|_1 — (1 — p)St — Oé]tSt -+ B
i1 = ol Sy

Riy1 = Ry + I — B+ pSy

» Vaccination takes some susceptibles directly
to the recovered class

* A proportion p are vaccinated each week.



Total population

o Set N=Si+Hli+R¢
» Adding the equations together, we have
Ni+1=St+li+Ri=Nt

* We've thus deduced that the population size
remains constant over time

— not true in general
— we could thus write N¢=N.



Decoupling

* The third equation decouples from the model
— since St+1 and l+1 do not depend on R

* We can thus look at the susceptible and
infected classes only

St_|_1 — (1 — p)St — ozItSt -+ B
It_|_1 = CkItSt.



Finding equilibria

Equilibria must satisfy St+1=St and lt+1=l
Plugging into the model, we have
S=(1-p)S—alS+ B
I =alS
From the second equation, either |=0 or
S=1/a
We thus have two cases
— let’'s do them both.



Equilibria

S=(1-p)S—alS+B

I =alS
=0 S=1/a
S=S-pS+B 1/a=(1-p)/a-1+B
pS=B |I=B-p/a
S=B/p; (only exists if B-p/a>0);

* Hence the equilibria are

o= (50).(10-2)



Existence of equilibria

* The endemic equilibrium only exists if
B-p/a>0

— if the vaccination rate is high or the
transmission low, it won’t exist

* |If there’'s no vaccination (p=0), there’s no
disease-free equilibrium

— just as there wasn’t in the basic model
* |f there's no disease, the system would blow
up

— the death assumption assumes that everyone
passes through to the recovered stage.



Jacobian

 The Jacobian is given by

B 1—p—al, —aS5,
Jp = - aly oSy ] p>0
. _1 — Oé[t —OéSt L
JO__ aly ozSt] p=0

 The linearisation is thus

St_|_1 T St -
(It—|—1> = J; (Lﬁ) for e =0,p

 Let's first figure out how stability works in
one-dimensional discrete-time systems.



One-dimensional stability

An equilibrium xo of xw+1=f(xt) is (locally)
stable if |f'(x0)|<1 and unstable if |[f'(xo)|>1
— See Appendix J for details

In one dimension, f'(xo) is just the (single)
eigenvalue of the (1x1) Jacobian matrix
— we’ll generalise this shortly

If |f'(x0)|=1, the results aren’t predictable
...but they weren’t predictable for Amax=0 either

In general, f'(Xxo) can be complex

— so we have stability when the eigenvalues are
within the unit circle.



Eigenvalue comparison

e ODEs  Discrete-time
systems
Im Im
Re(A)<0

Re A< 1‘\" Re




Stability in two dimensions

* First let’s look at p=0
* The Jacobian at the endemic equilibrium is

1 l—aB -1
(i)
(Remember that this is the only equilibrium
in the case p=0)

 Let's find the eigenvalues.



Finding eigenvalues

1 l—aB—-X\ -1
det (JO (a,B) —)\I> = det [ 0B 1\

=(1—-aB-X)(1—-)\+aB
=N —(2-aB)A+1

.~ 2—aB++/aB(aB —4)
B 2

* There are two cases here:
» aB>4
» aB<4.



aB>4

~ 2—aB—\/aB(aB —4)
B 2
2—4—+/aB(aB —4)
2
B vaB(aB —4)
2

A2

<

» Since the part under the square root is
positive, it follows that |A2|>1

* Hence the equilibrium is unstable
— the behaviour of A1 is irrelevant.



aB<4

In this case, the roots are complex conjugates
But this is no problem
We can write \,, — 222~ V;‘BM —oB)i
Then

2 —aB\® aB(4-aB)
|)\1,2—\/< 5 >+ 1

B \/4 —4aB + (aB)? + 4aB — (aB)?
B 4

= 1.



Knife-edge stability

Since |[A12|=1, we cannot say much about its
stability

It might be stable
Or it might not be

We would need more sophisticated methods
to determine this
— beyond the scope of this course

For now, all we can really say is that the
equilibrium is not asymptotically stable.



The case p#0

The Jacobian at the DFE Is

B [1—-p —aB/p
r <E’O> Lo aB/p]
This is upper triangular, so the eigenvalues

are Az 4=1-p, aB/p
Since 0<p<1, |As3|<1

Hence the DFE is stable if
aB

p
ie.,ifaB <p

We can thus define Ro= aB/p.

})\4‘ = <1




Endemic equilibrium

Recall that the endemic equilibrium is (l,B .

This only exists if Ro>1; i.e., if aB>p
The Jacobian at this equilibrium is

1 1 —p—a(B
Jp<_7B—B>: p Oé(

84 (87

aB —p

This is not upper triangular, so we need to

calculate the eigenvalues.

1

p

a(B——

«

1 —aB -1

)

84

8

)



Two eigenvalues

l—aB—-X -1
aB —p 1 — A

=(1—aB—-XAN({1—-X)+aB—p
=N —-2—-aB)+1—p

det(J, — AI) = det [

where
A= (2—-aB)*—4(1-p)
— o*B% — 4aB + 4p
* Once again, we have two cases.



Case (i):A=0

The roots are real
— also recall that aB>p

First we have

. 2—aB+/(aB)? —4aB +4p

2
_ 2 —aB++/(aB)?
2

=1
We can also show As>-—1
— see Appendix K

Hence |As|<1.

A5




Examining As

Instead of proving anything, let’'s test two
values

If aB=1, then

\ 2—1—+/1—4(1)+4p
6:
2

1= /=3+4p
B 2

For the range of p that gives real roots (eg p
slightly smaller than 1), we have |As|<1

Hence the endemic equilibrium is stable In
this example.




Another example

e |f aB=4, then
2—4— /16 —4(4) + 4p
g = ;
-2 VA
B 2
=-1-2p< -1

* Hence |As|>1 in this example

* Since As can be both inside and outside the
unit circle, we can conclude that the
equilibrium is sometimes stable and
sometimes unstable.



Case (ii): A<0

* \WWe have complex roots, so

2 —aB\® -—A
|A576’\/( )

B \/4—4&B+a282 — a?B? +4aB — 4p

4
4 —4p
:\/ 4
=/1—p

<1

* Hence the endemic equilibrium is stable
when Ro>1 and complex roots arise.




Complex roots

» Just as in the ODE case, complex roots
imply oscillations

* Since we have stability, these are damped
oscillations

* Hence, possible behaviours are

— damped oscillations (complex roots) and a
stable endemic equilibrium

— potentially stable or unstable endemic
equilibrium without oscillations

— unstable DFE
— a DFE that is not asymptotically stable.



Lab work

* |In the lab, we’ll plot solutions for different

cases
* We'll choose parameter values and plot both

time series and phase portraits

— we'll numerically deal with the case p=0 where
we couldn’t determine stability

« We'll also adjust the model to account for
more realistic birth and death rates

— as well as a non-weekly recovery rate.
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