
Measles with vaccination

• Higher-order discrete-time dynamical 
systems

• Driven by an underlying timestep
• In this case, measles infection lasts a week
• We also add in fixed vaccination rates.
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Assumptions

• Assume the births and deaths are equal 
each week
– not true in general, but okay on a weekly 

timescale
• Individuals recover from measles within a 

week
– so there are only new measles cases each 

week
• Newborns are born susceptible
• Only recovered individuals die

– since everyone catches it or is vaccinated.



Difference equations

• We use difference equations rather than 
ODEs, since time is discrete

• Instead of derivative, we update each class 
at each timestep

• Many updates don’t change the state of that 
variable
– if there were susceptibles last week, there will 

be susceptibles this week.
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Measles with vaccination

As seen in Chapter 10, when dealing with discrete time, there can be un-
expected results. There we dealt with only one-dimensional models, so here
we’ll investigate a higher-order model. The key to these models is having an
underlying timestep that drive the dynamics.

By the end of this chapter, you should be comfortable with discrete-time
modelling, both in construction and analysis. You should be able to appreciate
some of the similarities and some of the di↵erences between discrete-time and
continuous models.

13.1 The model

Suppose we have a constant number of births and deaths B, so that the
number of births equals the number of deaths each week. This isn’t necessarily
true in the long term, but on a weekly basis it’s an okay assumption.

Individuals recover from measles within a week, so there are only new
measles cases each week. Newborns are born susceptible, while everyone
catches the measles (or gets vaccinated), so only recovered individuals die.

Because time is discrete, we can use di↵erence equations instead of ODEs.
This means that, instead of having a derivative, we will have update each
class at each timestep. Of course, many updates don’t change the state of that
variable, so if there were susceptibles last week, then there will be susceptibles
this week. The basic model is an SIR model, as shown in Figure 13.1.
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pFig. 13.1. The progression of measles.

The model is given by



The basic model

• We’re ignoring death due to the disease
– reasonable in the Global North, less so 

elsewhere
• Birth and death are constant, not 

proportional to population size
• The infectious period = the time step.

St+1 = St � ↵ItSt +B

It+1 = ↵ItSt

Rt+1 = Rt + It �B

Anyone infected last week is now recovered



Equilibria

• Equilibria occur when there’s 
no change in time

• For discrete systems, that 
means the timestep becomes irrelevant

• i.e. St+1=St=S, It+1=It=I and Rt+1=Rt=R
• Note: if I=0, then there’s no solution if B>0...

...and no info if B=0
• The only equilibrium is (S,I,R)=(1/α,B,R), 

where R is arbitrary.

St+1 = St � ↵ItSt +B

It+1 = ↵ItSt

Rt+1 = Rt + It �B



Adding vaccination

• Vaccination takes some susceptibles directly 
to the recovered class

• A proportion p are vaccinated each week.

St+1 = (1� p)St � ↵ItSt +B

It+1 = ↵ItSt

Rt+1 = Rt + It �B + pSt
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St+1

= St � ↵ItSt + B

It+1

= ↵ItSt

Rt+1

= Rt + It � B.

"
Anyone infected last week is now recovered.

What changes each week are that measles can infect you and you then
recover the following week, which is why the solo It term doesn’t appear in
the second equation but instead moves individuals to the recovered class at the
next timestep. You might also be born (as a susceptible) or die (as a recovered
individual, which is too bad for you, but at least you survived the measles).
We’re ignoring death due to disease, which is a reasonable assumption in the
developed world, although it might not be in the developing world.

Key di↵erences between this and ODE models are:

• birth and death are both constant, not proportional to population size
• the infectious period is the same length as the time step.

Let’s add vaccination, which takes some susceptibles directly to the recov-
ered class. If a proportion p of susceptibles are vaccinated each week, then the
model becomes

St+1

= (1 � p)St � ↵ItSt + B

It+1

= ↵ItSt

Rt+1

= Rt + It � B + pSt.

See Figure 13.2.
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Fig. 13.2. The addition of vaccination.

13.2 Finding equilibria

First, let’s look at the whole population. If we set Nt = St + It + Rt, then,
adding the equations together, we have

Nt+1

= St + It + Rt = Nt.



Total population

• Set Nt=St+It+Rt

• Adding the equations together, we have
Nt+1=St+It+Rt=Nt

• We’ve thus deduced that the population size 
remains constant over time 
– not true in general
– we could thus write Nt=N.



Decoupling

• The third equation decouples from the model
– since St+1 and It+1 do not depend on Rt

• We can thus look at the susceptible and 
infected classes only

St+1 = (1� p)St � ↵ItSt +B

It+1 = ↵ItSt.



Finding equilibria

• Equilibria must satisfy St+1=St and It+1=It
• Plugging into the model, we have

• From the second equation, either I=0 or 
S=1/α

• We thus have two cases
– let’s do them both.

S = (1� p)S � ↵IS +B

I = ↵IS



Equilibria

   I=0
  S=S-pS+B
pS=B
  S=B/p;

   S=1/α
1/α=(1-p)/α-I+B
    I=B-p/α

(only exists if B-p/α>0);

S = (1� p)S � ↵IS +B

I = ↵IS

•  Hence the equilibria are

(S, I) =

✓
B

p
, 0

◆
,

✓
1

↵
, B � p

↵

◆
.



Existence of equilibria

• The endemic equilibrium only exists if 
B-p/α>0
– if the vaccination rate is high or the 

transmission low, it won’t exist
• If there’s no vaccination (p=0), there’s no 

disease-free equilibrium
– just as there wasn’t in the basic model

• If there’s no disease, the system would blow 
up
– the death assumption assumes that everyone 

passes through to the recovered stage.



Jacobian

• The Jacobian is given by

• The linearisation is thus

• Let’s first figure out how stability works in 
one-dimensional discrete-time systems.

Jp =


1� p� ↵It �↵St

↵It ↵St

�
p > 0

J0 =


1� ↵It �↵St

↵It ↵St

�
p = 0

✓
St+1

It+1

◆
= Ji

✓
St

It

◆
for i = 0, p



One-dimensional stability

• An equilibrium x0 of xt+1=f(xt) is (locally) 
stable if |f′(x0)|<1 and unstable if |f′(x0)|>1
– See Appendix J for details

• In one dimension, f′(x0) is just the (single) 
eigenvalue of the (1×1) Jacobian matrix
– we’ll generalise this shortly

• If |f′(x0)|=1, the results aren’t predictable
...but they weren’t predictable for λmax=0 either

• In general, f′(x0) can be complex
– so we have stability when the eigenvalues are 

within the unit circle.



Eigenvalue comparison

• ODEs • Discrete-time 
systems

Re

Im

Re(λ)<0
Re

Im

|λ|<1



Stability in two dimensions

• First let’s look at p=0
• The Jacobian at the endemic equilibrium is

(Remember that this is the only equilibrium 
in the case p=0)

• Let’s find the eigenvalues.

J0

✓
1

↵
, B

◆
=


1� ↵B �1
↵B 1

�



Finding eigenvalues

• There are two cases here:
‣ αB>4
‣ αB<4.

det

✓
J0

✓
1

↵
, B

◆
� �I

◆
= det


1� ↵B � � �1

↵B 1� �

�

= (1� ↵B � �)(1� �) + ↵B

= �2 � (2� ↵B)�+ 1

�1,2 =
2� ↵B ±

p
(2� ↵B)2 � 4

2

=
2� ↵B ±

p
↵B(↵B � 4)

2



αB>4

• Since the part under the square root is 
positive, it follows that |λ2|>1

• Hence the equilibrium is unstable
– the behaviour of λ1 is irrelevant.

�2 =
2� ↵B �

p
↵B(↵B � 4)

2

<
2� 4�

p
↵B(↵B � 4)

2

= �1�
p

↵B(↵B � 4)

2



αB<4

• In this case, the roots are complex conjugates
• But this is no problem
• We can write
• Then

�1,2 =
2� ↵B ±

p
↵B(4� ↵B)i

2

���1,2

�� =

s✓
2� ↵B

2

◆2

+
↵B(4� ↵B)

4

=

r
4� 4↵B + (↵B)2 + 4↵B � (↵B)2

4
= 1.



Knife-edge stability

• Since |λ1,2|=1, we cannot say much about its 
stability

• It might be stable
• Or it might not be
• We would need more sophisticated methods 

to determine this
– beyond the scope of this course

• For now, all we can really say is that the 
equilibrium is not asymptotically stable.



The case p≠0

• The Jacobian at the DFE is

• This is upper triangular, so the eigenvalues 
are λ3,4=1-p, αB/p

• Since 0<p<1, |λ3|<1
• Hence the DFE is stable if

• We can thus define R0= αB/p.

Jp

✓
B

p
, 0

◆
=


1� p �↵B/p
0 ↵B/p

�

���4

�� =
����
↵B

p

���� < 1

i.e., if ↵B < p



Endemic equilibrium

• Recall that the endemic equilibrium is
• This only exists if R0>1; i.e., if αB>p
• The Jacobian at this equilibrium is

• This is not upper triangular, so we need to 
calculate the eigenvalues.

✓
1

↵
, B � p

↵

◆

Jp
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1

↵
, B � p

↵
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�
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�
1
↵

�

↵
�
B � p

↵

�
↵
�
1
↵

�
#

=


1� ↵B �1
↵B � p 1

�



Two eigenvalues

where

• Once again, we have two cases.

det(Jp � �I) = det


1� ↵B � � �1
↵B � p 1� �

�

= (1� ↵B � �)(1� �) + ↵B � p

= �2 � (2� ↵B) + 1� p

�5,6 =
2� ↵B ±

p
�

2

� = (2� ↵B)2 � 4(1� p)

= ↵2B2 � 4↵B + 4p.



Case (i): Δ ≥ 0

• The roots are real
– also recall that αB>p

• First we have

• We can also show λ5>–1
– see Appendix K

• Hence |λ5|<1.

�5 =
2� ↵B +

p
(↵B)2 � 4↵B + 4p

2

<
2� ↵B +

p
(↵B)2

2
= 1



Examining λ6

• Instead of proving anything, let’s test two 
values

• If αB=1, then

• For the range of p that gives real roots (eg p 
slightly smaller than 1), we have |λ6|<1

• Hence the endemic equilibrium is stable in 
this example.

�6 =
2� 1�

p
1� 4(1) + 4p

2

=
1�

p
�3 + 4p

2



Another example

• If αB=4, then

• Hence |λ6|>1 in this example
• Since λ6 can be both inside and outside the 

unit circle, we can conclude that the 
equilibrium is sometimes stable and 
sometimes unstable.

�6 =
2� 4�

p
16� 4(4) + 4p

2

=
�2�

p
4p

2
= �1� 2

p
p < �1



Case (ii): Δ ≤ 0

• We have complex roots, so

• Hence the endemic equilibrium is stable 
when R0>1 and complex roots arise.

���5,6

�� =

s✓
2� ↵B

2

◆2

+
��

4

=

r
4� 4↵B + ↵2B2 � ↵2B2 + 4↵B � 4p

4

=

r
4� 4p

4

=
p
1� p

< 1



Complex roots

• Just as in the ODE case, complex roots 
imply oscillations

• Since we have stability, these are damped 
oscillations

• Hence, possible behaviours are
– damped oscillations (complex roots) and a 

stable endemic equilibrium
– potentially stable or unstable endemic 

equilibrium without oscillations
– unstable DFE
– a DFE that is not asymptotically stable.



Lab work

• In the lab, we’ll plot solutions for different 
cases

• We’ll choose parameter values and plot both 
time series and phase portraits
– we’ll numerically deal with the case p=0 where 

we couldn’t determine stability
• We’ll also adjust the model to account for 

more realistic birth and death rates
– as well as a non-weekly recovery rate.
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