
Discrete Dynamical Systems

We now look at one-dimensional maps f : R→ R. A map yn+1 = f(yn), n = 0, 1, ... is called a discrete dynamical system.
The solution is the sequence y0, y1, y2... A fixed point satisfies ȳ = f(ȳ). A periodic orbit of order n satisfies
y0 = fn(y0) for some n > 0 but y0 6= fm(y0) for 0 ≤ m ≤ n− 1.

Example 1. The discrete logistic equation
Let’s consider a disease spreading annually (for example, smallpox). We can assume:

f(0) = 0 if nobody is infected, no subsequent infections
f(yn) > 0 no negative population, disease can’t die out in finite time

f is differentiable

Linear growth: f(yn) = ryn r > 0

However spatial considerations require something less than linear or else the disease would take over the
world. Therefore we want the growth rate to be slowing down as yn increases. ie f is concave down therefore
f ′′(yn) < 0 ∀yn > 0.

By Taylor’s theorem,

f(yn) = f(0) + f ′(0)yn + f ′′(0)
2! y2

n + 0(y3
n)

f(yn) > 0 when yn > 0 so f ′(0) > 0→ f ′(0) = r

f ′′(0) = −2b

∴ f(yn) ≈ 0 + ryn + −2b
2! y

2
n = ryn − by2

n

ryn is the linear growth term
by2

n is the competition term

As the disease spreads, infected invididuals compete for the same limited number of susceptibles.
We plot this by putting yn on the x-axis and yn+1 on the y-axis.

We can rescale:

xn = b

r
yn → yn = r

b
xn

r

b
xn+1 = r

r

b
xn − b

r2

b2 x
2
n → xn+1 = rxn − rx2

n = rxn(1− xn)

We follow the progression by determining x0, x1, x2, ... But since the old y-axis value always becomes
the new x-axis value, there’s an easier way to do this, called cobwebbing. Immediately, any point where the
curve and the line xn+1 = xn meet is a fixed point.

∴ x = rx− rx2 → rx2 + (1− r)x = 0→ x[rx+ 1− r] = 0→ x = 0, r − 1
r

What happens at r = 1?
If 0 < r < 1 then x = 0 is stable (r = 0.5)
If r > 1 then x = r−1

r may be stable (r = 2)
If r > 1 then there may be an unstable equilibrium and a periodic orbit (r = 3.2)
If r > 1 then there may be chaos (r = 4).
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The unscaled discrete logistic function
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Suppose x̄ is an equilibrium and x0 is close to x̄. ie x0 = x̄+ ε, where ε is small but could be positive or
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Cobwebbing
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negative.

x1 = f(x0) = f(x̄+ ε) = f(x̄) + f ′(x̄)ε+ 0(ε2) ≈ x̄+ f ′(x̄)ε
If f ′(x̄) > 0 then x1 and x0 lie on the same side of x̄.
If f ′(x̄) < 0 then x1 and x0 lie on opposite sides of x̄
If |f ′(x̄)| > 1 then x1 is further from x̄ than x0 → x̄ is unstable.
If|f ′(x̄)| < 1 then x1 is closer to x̄ than x0 → x̄ is stable.
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The discrete logistic equation for r = 0.5 (zero is stable)
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The discrete logistic equation for r = 2 (zero is unstable, the other equilibrium is stable)
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The discrete logistic equation for r = 3.2 (both equilibria are unstable and a stable periodic orbit arises)
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The discrete logistic equation for r = 4 (chaos)
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