Bifurcations

Bifurcations are one of the most important techniques in applied math. It is something that mathematicians
can bring to biology that biologists know little about. Consider a family of systems ' = F,(x) where a is a
real parameter. We assume F, depends on a in a C'* fashion. A bifurcation occurs when solutions undergo
a qualitative change as a varies.

Example 1. 2/ =z —a.

Equilibria: 22 —a=0—z=+a ifa>0
z=0 ifa=0
No equilibria at all ifa<0

Therefore, a bifurcation occurs at a = 0 because the fundamental nature of solutions changes there. Recall
that for a 1-dimensional ODE, Z is stable if f/(Z) < 0 and unstable if f'(z) > 0.
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f(2) = 20
f'(Va) =2ya>0 s
fl(=va) =-2y/a <0 1
Therefore \/a is unstable whenever a > 0. a
We illustrate this in a bi furcation diagram
plotting a vs & v
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Note: stable and unstable curves always come in pairs (why?). This type of bifurcation, with no equi-
libria on one side and two on the other, is called a saddle-node bifurcation. (The direction of the arrows may
change, as may the way the curves face.)




Back to our function f(z,)=rz, —ra?

Differentiating;:
f(zn) =1 —2ra,
f(0) =r . 0is stable if r < 1 ( and it is the only equilibrium)
-1 2(r—1
f’<r> :r—u:2—riss‘cableif\2—r| <l—=1<r<3
r T

Bifurcation of the discrete logistic equation from a single stable fixed point to two fixed points.
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What happens beyond r = 37
Period 2: The system oscillates between two points w; and wg. So we = f(w1) and wy = f(w2). So

f(f(w1)) = g(wr)
= f(f(w1)) = rf(w)(1 = fw1)) = rfrwr(l — wi)][l — rwi(1 — wi)]
r2z(l—z)(1 —rz(l — x))

w1
g(w1)
g9(z)

Depending on their value, the curve may intersect the line once, twice, three or four times. If z is an
equilibrium of f, then it is also for g. (¢(z) = f(f(2)) = f(z) = x)
Therefore two points are 0 and %
Question: how do we find the other two?

Answer: Period 2 points of f are fixed points of g so we can look at ¢'.

g'(w1) = f'(w2) f'(w1) since f(w1) = w2
g (w2) = f(w1)f (w2) since f(ws9) = w
Equilibrium values satisfy g(z) —z =0



Period 2 points
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0=r32% — 2322 + (r* + r¥)x + (1 — r?) (divide out an x)
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0=ra®—2rz® + (1 +7)z+ (divide by r?)

=(z— - 1)[7“952 —(r+1l)z+1+ %] (factor out (z — T; ) because we know this is a fixed point)
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These roots are only real when r < —1 or r > 3. Therefore, period 2 points only exist beyond r = 3.
Stability?



19" ()] = | (w2) ' (w1)] = Jr(1 = 2w2)r(1 — 2w1)| = 17(1 — 2(w1 + wa) + dwiws)
2 T+ 11: I r—+ 1 2

Note that, from g, (z — w;)(x — wy) = 2° — 5 =27 — (w1 +w2)T + wiwe
T r
1 1
Therefore, wi + wy = rt and wiwy = %
r r
1 1
Therefore, |g'(w1)] = [r2(1 — 27+ + 4752y
,

=2 —2r(r+1)+4(r+1)| = |44 2r —
' (w1)] =1 = ¢'(w1) = £1
Jw)=1—=4+2r—r*=1=r"-2r-3=0—=(r—3)(r+1)=0
r =3, —1 as before

Jw)=—-1—=4+2r—r*=-1=r*-2r-5=0—-r=

2+v24

r =1+ 6 = 3.45 is the next bifurcation point
That is, the period 2 orbit is stable for 3 < r < 3.45

Bifurcation of the discrete logistic equation from a stable fixed point to a period 2 orbit.
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Bifurcation parameter r

For r > 3.45, the period 2 orbit is unstable and a period 4 orbit appears and is stable for a while. Then
a period 8 orbit appears and so on. We get chaos, and then period 3,6,12,... then period 5,10,20,... This is
called the period-doubling route to chaos.

Period doubling happens in continuous dynamical systems too, although we need at least three dimen-
sions. Another type of bifurcation in 3D is into a torus.




Full chaos bifurcation diagram
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Another example is a TV camera filming its own output, like in the original Doctor Who theme.



