Formulating models

 \We can use information from data to
formulate mathematical models

* These models rely on assumptions about
the data or data not collected

 Different assumptions will lead to different
models.
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An influenza example

Consider an influenza pandemic moving
through a population. Assumptions we could
make could involve:

* The heterogeneous mixing of the
population is proportional to the local
population density

e The urban vs. rural environment

» Or we could ignore population
heterogeneity altogether.



Model fitting

» Collected data can determine unknown
parameters in our model

 \We select the curve from each model that
"best fits" the data

* We then choose the most appropriate
model for our particular situation.



Complexity may be a problem

* A three-dimensional model for the spread
of measles might involve partial differential
equations for the movement of infectious
droplets in three spatial dimensions, plus
one temporal dimension

* This will be enormously complicated
* The equations may not even be solvable.



Interpolation

* There is little hope for constructing a
master model that can be solved and
analysed analytically

* Or there may be so many variables that
one would not even attempt to construct
an explicit model

* |n such cases the data must be used to

determine values outside the collected
range (interpolation).



Possible tasks for data analysis

1. Fitting a selected model type or types to
the data

2. Choosing the most appropriate model
from competing types that have been
fitted

Eg. is the best fitting exponential model a
better model than the best-fitting least-
squares model?
3. Making predictions from the collected
data (interpolation and extrapolation).



Our three tasks

In Task 1, the precise meaning of "best"
model must be identified and the resulting
mathematical problem resolved

In Task 2, a criterion is needed for
computing models of different types

In Task 3 criteria must be established for
determining how to make predictions in
between the observed data points.



Model fitting - Explain data

When model-fitting,

* We strongly suspect a relationship of a
particular type

* We are willing to accept some deviation
between the model and the collected data
points

* We want a model that satisfactorily
explains the situation under investigation.



Interpolation - predicting

When interpolating,

» We are strongly guided by the data that
have been carefully collected

* \We seek a curve that captures the trend of
the data

* We want to predict in between the data
points.



Model fitting vs. interpolation

* In all situations we may ultimately want to
make predictions from the model

* When model fitting, we emphasize the
proposed models over the data

* When interpolating, we place greater
confidence in the collected data and
attaches less significance to the form of

the model.



1918 pandemic influenza

* Consider this data
of fatal cases of
1918 influenza in o
Philadelphia over
a number of days

« How can we fit
curves to this data
and make .
predictions?

Number of fatal cases

X. X X, X
time (days)



If we have faith in the data...

« Spline interpolation
passes a smooth
curve through the
points

« Captures the data
trend over the
observation range

« We'll study this in
more detail shortly.

Number of fatal cases




Maybe a parabolic trend...”?

« A parabolic model
would be of the
form o

y=C,x2+C,x+C,

e The data would be
used to determine

C,, C, and C,

* |n such a way that
selects the "best"

Number of fatal cases

parabola. X, X, x X,

time3 (days)



Splines vs. parabolas

 We don't care if the parabola deviates from
some or all data points

« Qutside the range of data points, the curves may
vary significantly

- Beyond x., the predictions will be quite different.

Number of fatal cases
Number of fatal cases

X X
timg (davs) 4 5 12 timee’(davs)



Sources of error

 We need to be informed about sources of
possible error

* Otherwise undue confidence may be
placed in intermediate results

* This will cause faulty decisions in
subsequent steps.



W =

Classification of errors

Formulation error
Truncation error
Round-off error
Measurement error.



Formulation errors

« Come from assuming certain variables are
negligible

* Or from simplifying relationships among
variables

* E.g. ignoring spatial heterogeneity - we
may be neglecting important relationships
among individuals that facilitate disease
transmission

Formulation errors are present
In even the best models.



Truncation errors

« Come from the numerical method used to
solve a mathematical problem

* E.g. truncating polynomial approximations
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2 6 24

Computers and calculators
do this all the time.



Round-off errors

Come from using a finite digit machine for
computation

Eg. the number 1/3 is represented by
0.33333333 in 8-digit arithmetic

3 x 1/3 =0.99999999, rather than 1
The error of 108 is due to round-off

We must always expect
round-off errors to be present.



Measurement errors

« Come from imprecision in the data
collection

* May include human errors in recording or
reporting the data, or the actual physical
limitations of the laboratory equipment.



Confidence Iin the data

« Data points can be
thought of an an
iInterval of confidence

 To "best fit" a line
through these points,
we might want to
minimize the sum of
these deviations.




Minimizing the sum of deviations

A, B and C are quite
close to the line

 ButDis very far

* If we have confidence
In D's accuracy, we
should be concerned
about predictions
made from this model
near D.

absolute
deviation




Minimizing the largest deviation

 |n this case no point
Is exactly on the line

« But no point is too far
from it either

* Avisual inspection
suggests this is a
pretty good fit.




Simple models may be sufficient

* These visual methods for fitting a line to
data points may appear imprecise

 However, the methods are often quite
compatible with the accuracy of the
modelling process itself

* The grossness of the assumptions and the
Imprecision involved in the data collection

may not warrant a more sophisticated
analysis.
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Transforming the data

 To fit curves other than
lines, we have to transform
the data 1400,

e Consider the number of new ™ *
cases of HIV infections
detected in 1981:

1000

800+

New cases

600+

Month ‘Jan‘ Feb ‘ Mar‘ Apr o .
New cases | 51 | 179 |370 | 1207 = ¢
« What sort of curve should A

we fit?



e Let's fit models of the
form y = CeX

Maybe exponential?

* Plot y vs. eX

* The slope of the line

IS

C

1207 - 51
 54.6 — 2.7

~ 22.3.
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Or transform the data first

» Take logs of both sides
y = CeX
In y = In[Ce”]

In y = In C + In[ex] Q(ab) = In(a)+In(b)

In y = In C + X Qjande are inverses

* Thus if we plot In y vs. x, the intercept
should be In C.



Plotting transformed points

 The transformed data
IS
x| 1| 2] 3 | 4

Iny | 3.932 | 5.167 | 5.914 | 7.096

* From the intercept,

In C~=2.9776
C ~ 62.9776
~19.6
* Which is more ,

accurate? X values



Other transformations

Whenever we have unknowns in the
power, use a logarithm

E.g. the power law
y =x3
In y =In(x?3)
Iny=alnx <In(b0)=cln(b)
A linear relationship between In y and In x
The slope is a.




Avian influenza

» Consider the number of birds needing to
be culled per positive case of bird flu:
x| 3 | 7 | 20 | 148
y | 8 | 65 | 549 |36300
* Fitting a line of best fit using linear
regression (eg your calculator) gives

r=0.9956
* Seems pretty good.




A very poor fit

» But plotting these
data against the
line of best fit tells
a different story

 Look at the inset:
this is a terrible fit.
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A different relationship

* Instead, let’s try
y:Xa 12/

 When we plotiny
vs |In x, we find

r=0.9996 and the
slope is 2.1496

e Thusa=2.1.




A much better fit

« Now plot y=x21 -

* This is a really
good fit

 Fitting the curve to
the original data is
when we make
decisions about :
which curve is best.
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Biannual influenza outbreaks

 Consider this
seasonal influenza
data

* Suppose we
suspect the data fit =
a model of the form §° .
y = Ce1/x -

o
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Variations are condensed

 Transform the data
as before

y = Ce1X
In y = In(Ce’*)
Iny=Ine”™ +In C
Iny=1/x+InC
* PlotIn yvs. 1/x

« See how distance
IS distorted?
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A line fits this quite well

« Fitting a line to the
transformed data is
a pretty good fit 0.5]

 The deviations are |
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A poor fit in the original data

* But in the original
data, the fitted
model y = Cel/* fits 0.8/
the model poorly

* No seasonal peaks

 Heads up to « near
x =0.
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What's gone wrong?

* Answer: the data were never supposed to
fit a model of the form y = Cex

« But we wouldn't know that from the
transformation, which is a pretty good fit

* Many computer codes fit models by first
making a transformation

Be careful: always verify your
model using the original data.



Lab work

* In the lab we'll fit both polynomials and
splines to data

« We'll also transform our data and use that
to estimate parameters

 We'll also use our data and models to
make predictions.



Formulation

‘ Curve fitting ’

Truncation

\ 4

Interpolation Model fitting

Round-off

A 4

Good data ‘ Not as good data ’

Measurement ’

A4
polynomials

[ Transforming ]

Visual

fitting the data

Minimizing Minimizing
sum of largest
deviations deviation

‘ Semi-log plot ’ Log-log plot
[ Regressional coefficients can mislead \

[ Transformations ]

Exponential Power law

Fitting polynomials ] can mislead

Fit spline !

Distorts
Transform data ’ distance

Estimate parameters ’

Verify using

original data

Make predictions ]




