
Formulating models

• We can use information from data to 
formulate mathematical models

• These models rely on assumptions about 
the data or data not collected

• Different assumptions will lead to different 
models.
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An influenza example

Consider an influenza pandemic moving
through a population. Assumptions we could
make could involve:
• The heterogeneous mixing of the 

population is proportional to the local 
population density

• The urban vs. rural environment 
• Or we could ignore population 

heterogeneity altogether.



Model fitting

• Collected data can determine unknown 
parameters in our model

• We select the curve from each model that 
"best fits" the data

• We then choose the most appropriate 
model for our particular situation.



Complexity may be a problem

• A three-dimensional model for the spread 
of measles might involve partial differential 
equations for the movement of infectious 
droplets in three spatial dimensions, plus 
one temporal dimension

• This will be enormously complicated
• The equations may not even be solvable. 



Interpolation

• There is little hope for constructing a 
master model that can be solved and 
analysed analytically

• Or there may be so many variables that 
one would not even attempt to construct 
an explicit model

• In such cases the data must be used to 
determine values outside the collected 
range (interpolation).



Possible tasks for data analysis

1. Fitting a selected model type or types to 
the data

2. Choosing the most appropriate model 
from competing types that have been 
fitted 
• Eg. is the best fitting exponential model a 

better model than the best-fitting least-
squares model?

3. Making predictions from the collected 
data (interpolation and extrapolation).



Our three tasks

In Task 1, the precise meaning of "best'' 
model must be identified and the resulting 
mathematical problem resolved

In Task 2, a criterion is needed for 
computing models of different types 

In Task 3 criteria must be established for 
determining how to make predictions in 
between the observed data points.



Model fitting à Explain data

When model-fitting, 
• We strongly suspect a relationship of a 

particular type 
• We are willing to accept some deviation 

between the model and the collected data 
points 

• We want a model that satisfactorily 
explains the situation under investigation.



Interpolation à predicting

When interpolating, 
• We are strongly guided by the data that 

have been carefully collected 
• We seek a curve that captures the trend of 

the data
• We want to predict in between the data 

points.



Model fitting vs. interpolation

• In all situations we may ultimately want to 
make predictions from the model

• When model fitting, we emphasize the 
proposed models over the data

• When interpolating, we place greater 
confidence in the collected data and 
attaches less significance to the form of 
the model. 
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points (see Figure 8.2). In this case, the interpolating curve passes through
the data points and captures the trend of the behaviour over the range of
observations.
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Fig. 8.2. Interpolating the data using a smooth curve.

1918 pandemic influenza

• Consider this data 
of fatal cases of 
1918 influenza in 
Philadelphia over 
a number of days

• How can we fit 
curves to this data 
and make 
predictions?
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Fig. 8.2. Interpolating the data using a smooth curve.

If we have faith in the data...
• Spline interpolation 

passes a smooth 
curve through the 
points

• Captures the data 
trend over the 
observation range 

• We'll study this in 
more detail shortly.



Maybe a parabolic trend...?
• A parabolic model 

would be of the 
form
y=C1x2+C2x+C3

• The data would be 
used to determine 
C1, C2 and C3

• In such a way that 
selects the "best" 
parabola.

86 8 Fitting curves to data

However, we know that data isn’t always perfect, so a curve that passes
precisely through every data point may actually be less useful than a curve
that misses them all, but captures the ‘trend’.

Suppose that in studying the data the modeller makes assumptions leading
to the expectation of a quadratic model, or parabola, of the form y = C1x2 +
C2x + C3. In this case, the data of Figure 8.1 would be used to determine
the arbitrary constants C1, C2 and C3 in order to select the “best” parabola.
See Figure 8.3. The fact that the parabola may deviate from some or all of
the data points would be of no concern. Outside the range of data points, the
curves may vary significantly; e.g. in the vicinity of x5, the predictions made
by the curves in Figures 8.2 and 8.3 are quite di�erent.

time (days)

N
u

m
b

e
r 

o
f 

fa
ta

l 
c
a

s
e

s

x
2

x
1

x
4

x
5

x
3

Fig. 8.3. Fitting a parabola to the data points.

Of course, we may find it necessary to both fit a model and to interpolate
in the same problem. The best-fitting model of a given type may prove to
be unwieldy or even impossible for subsequent analysis involving operations
like integration or di�erentiation. In such situations, the model may have to
be replaced with an interpolating curve (such as a polynomial) that is more
readily di�erentiated or integrated.

For example, a step function used to model the sudden onset of a pandemic
might be replaced by a trigonometric approximation to facilitate subsequent
analysis. In these instances, we want the interpolating curve to approximate
closely the essential characteristics of the function it replaces.
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However, we know that data isn’t always perfect, so a curve that passes
precisely through every data point may actually be less useful than a curve
that misses them all, but captures the ‘trend’.
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to the expectation of a quadratic model, or parabola, of the form y = C1x2 +
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Of course, we may find it necessary to both fit a model and to interpolate
in the same problem. The best-fitting model of a given type may prove to
be unwieldy or even impossible for subsequent analysis involving operations
like integration or di�erentiation. In such situations, the model may have to
be replaced with an interpolating curve (such as a polynomial) that is more
readily di�erentiated or integrated.

For example, a step function used to model the sudden onset of a pandemic
might be replaced by a trigonometric approximation to facilitate subsequent
analysis. In these instances, we want the interpolating curve to approximate
closely the essential characteristics of the function it replaces.

Splines vs. parabolas
• We don't care if the parabola deviates from 

some or all data points
• Outside the range of data points, the curves may 

vary significantly
• Beyond x5, the predictions will be quite different.



Sources of error

• We need to be informed about sources of 
possible error

• Otherwise undue confidence may be 
placed in intermediate results

• This will cause faulty decisions in 
subsequent steps.



Classification of errors

1. Formulation error
2. Truncation error
3. Round-off error
4. Measurement error.



Formulation errors

• Come from assuming certain variables are 
negligible

• Or from simplifying relationships among 
variables 

• E.g. ignoring spatial heterogeneity à  we 
may be neglecting important relationships 
among individuals that facilitate disease 
transmission

Formulation errors are present 
in even the best models.



Truncation errors

• Come from the numerical method used to 
solve a mathematical problem

• E.g. truncating polynomial approximations

Computers and calculators 
do this all the time.



Round-off errors

• Come from using a finite digit machine for 
computation

• Eg. the number 1/3 is represented by 
0.33333333 in 8-digit arithmetic

• 3 x 1/3 =0.99999999, rather than 1
• The error of 10-8 is due to round-off 

We must always expect 
round-off errors to be present.



Measurement errors

• Come from imprecision in the data 
collection 

• May include human errors in recording or 
reporting the data, or the actual physical 
limitations of the laboratory equipment.



Confidence in the data
• Data points can be 

thought of an an 
interval of confidence

• To "best fit" a line 
through these points, 
we might want to 
minimize the sum of 
these deviations.



Minimizing the sum of deviations

• A, B and C are quite 
close to the line

• But D is very far
• If we have confidence 

in D's accuracy, we 
should be concerned 
about predictions 
made from this model 
near D.



Minimizing the largest deviation
• In this case no point 

is exactly on the line
• But no point is too far 

from it either
• A visual inspection 

suggests this is a 
pretty good fit.



Simple models may be sufficient

• These visual methods for fitting a line to 
data points may appear imprecise 

• However, the methods are often quite 
compatible with the accuracy of the 
modelling process itself

• The grossness of the assumptions and the 
imprecision involved in the data collection 
may not warrant a more sophisticated 
analysis.
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Transforming the data
• To fit curves other than 

lines, we have to transform 
the data

• Consider the number of new 
cases of HIV infections 
detected in 1981:

• What sort of curve should 
we fit?

Month Jan Feb Mar Apr
New cases 51 179 370 1207
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Fig. 8.7. Plot of collected data for new HIV infections in 1981.
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Fig. 8.8. Plot of y versus ex for the original data.

An alternative technique involves taking the logarithm of each side of the
equation y = Cex to obtain



Maybe exponential?
• Let's fit models of the 

form y = Cex

• Plot y vs. ex

• The slope of the line 
is

x 1 2 3 4

ex 2.7 7.4 20.1 54.6
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An alternative technique involves taking the logarithm of each side of the
equation y = Cex to obtain
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An alternative technique involves taking the logarithm of each side of the
equation y = Cex to obtain



Or transform the data first

• Take logs of both sides
y = Cex

ln y = ln[Cex]
ln y = ln C + ln[ex]

ln y = ln C + x
• Thus if we plot ln y vs. x, the intercept 

should be ln C.

ln(ab) = ln(a)+ln(b)

ln and e are inverses



Plotting transformed points
• The transformed data 

is

• From the intercept,
ln C ≈ 2.9776

 C ≈ e2.9776

  ≈ 19.6
• Which is more 

accurate?

x 1 2 3 4
lny 3.932 5.167 5.914 7.096

92 8 Fitting curves to data

ln y = ln[Cex]
ln y = lnC + ln ex (since ln(ab) = ln(a) + ln(b))
ln y = lnC + x (remember ln and e are inverses) .

Note that this expression is an equation of a line in the variables ln y and
x. The number lnC is the intercept when x = 0. The transformed data are
shown in Table 8.2 and plotted in a “semi-log” plot, Figure 8.9.

x 1 2 3 4
ln y 3.932 5.167 5.914 7.096

Table 8.2. Transformed data
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Fig. 8.9. Plot of ln y versus x for the transformed data.

From Figure 8.9 we can determine that the intercept lnC is 2.9776, giving
C = e2.9776 � 19.6. So which C is the right one? Answer: probably neither.
Which C do we have more faith in? Answer: definitely the second one! It uses
more data points (using all four to determine the line of best fit and hence
the intercept), whereas the first C only uses two data points to determine the
slope. And we can see from Figure 8.8 that this isn’t going to be the exact
slope of the fitted line anyway. Of course, a smarter approach to this would
be to use linear regression to calculate the slope of the best-fit line.

So does that mean we should always transform our data into something
where we can fit a line, if that’s possible? Well... not necessarily. As we’ll



Other transformations

• Whenever we have unknowns in the 
power, use a logarithm

• E.g. the power law
y = xa

ln y = ln(xa)
ln y = a ln x

• A linear relationship between ln y and ln x
• The slope is a.

ln(bc) = c ln(b)



Avian influenza

• Consider the number of birds needing to 
be culled per positive case of bird flu:

• Fitting a line of best fit using linear 
regression (eg your calculator) gives

r=0.9956
• Seems pretty good.

x 3 7 20 148
y 8 65 549 36300



A very poor fit

• But plotting these 
data against the 
line of best fit tells 
a different story

• Look at the inset: 
this is a terrible fit.
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Fig. 8.10. Plot of y versus x and a line of best fit for the avian influenza data.
Inset: a rescaling around the first three data points.
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Fig. 8.11. Plot of ln y versus ln x and a line of best fit for the avian influenza data.

8.4.2 Transformations can also be misleading

At this point, we must make an important observation. Suppose we do invoke
a transformation and plot ln y versus x, as in Figure 8.12 and find the line
that successfully minimises the sum of the absolute deviations of the trans-
formed data points. The line then determines lnC, which in turn produces the



A different relationship

• Instead, let’s try 
y=xa

• When we plot ln y 
vs ln x, we find 
r=0.9996 and the 
slope is 2.1496

• Thus a ≈ 2.1.
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8.4.2 Transformations can also be misleading

At this point, we must make an important observation. Suppose we do invoke
a transformation and plot ln y versus x, as in Figure 8.12 and find the line
that successfully minimises the sum of the absolute deviations of the trans-
formed data points. The line then determines lnC, which in turn produces the



A much better fit

• Now plot y=x2.1

• This is a really 
good fit

• Fitting the curve to 
the original data is 
when we make 
decisions about 
which curve is best.
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Fig. 8.12. Comparing the exponential curve with the original avian influenza data.
Inset: a rescaling of the first three data points.

proportionality constant C. Although it is not obvious, the resulting model
y = Cex is not the member of the family of exponential curves of the form
kex that minimises the sum of the absolute deviations from the original data
points (when we plot y versus x).

That is, the line may be the best fit in the transformed data, but it doesn’t
follow that the corresponding curve is necessarily the best fit in the original.

When transformations of the form y = lnx are made, the distance concept
is distorted. While a fit that is compatible with the inherent limitations of a
graphical analysis may be obtained, we must be aware of this distortion and,
crucially, verify the model using the graph from which it is intended to make
predictions: namely the y versus x graph in the original data, rather than the
graph of the transformed variables.

For example, consider the data plotted in Figure 8.13, which might repre-
sent biannual outbreaks of influenza. Suppose we have reason to believe the
data are expected to fit a model of the form y = Ce1/x. We want to choose
the “best” C that fits this. Using a logarithmic transformation as before, we
find

ln y = ln
�
Ce1/x

⇥

ln y = lnC + ln
�
e1/x

⇥
(since ln(ab) = ln a + ln b)

ln y =
1
x

+ lnC (since ln and e are inverses).



Biannual influenza outbreaks

• Consider this 
seasonal influenza 
data

• Suppose we 
suspect the data fit 
a model of the form 
y = Ce1/x

• We want to find the 
"best" C.
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Fig. 8.13. Biannual outbreaks of influenza.

A plot of the points ln y versus 1/x based on the original data is shown in
Figure 8.14. Note from the figure how the transformation distorts the distances
between the original data points and squeezes them all together. Consequently,
if a straight line is made to fit the transformed data plotted in Figure 8.14,
the absolute deviations appear relatively small (that is, small compared on
the Figure 8.14 scale rather than on the Figure 8.13 scale).

This means that the model is a reasonably good fit for the transformed
data, with ln C ⇥ �1.25. It might not look so great to our eye, but the
deviations are quite small, so a computer would tell us it’s a very good fit.
We could then solve for C and assume we’ve got the best C (because we had
the best lnC).

But let’s test this out on the original data. If we plot the fitted model
y = Ce1/x to the data in Figure 8.13, you would see that it fits the data
relatively poorly, as shown in Figure 8.15. There are no biannual peaks to
the fitted line and worse, the line would behave quite badly (heading up to
infinity) in the vicinity of 0.

What’s gone wrong here? Answer: The data were never supposed to fit a
model of the form y = Ce1/x. But we wouldn’t know that from the transfor-
mation, which tells us that the fit is actually pretty good.

From this example, we can see that if we are not careful when using trans-
formations, we can be tricked into selecting a relatively poor model. This
realisation becomes especially important when comparing alternative models.
Very serious errors can be introduced when selecting the best model unless
all the comparisons are made with the original data. Otherwise, the choice of
“best” model may be determined by a peculiarity of the transformation rather
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Fig. 8.14. The transformed data points and a line of best fit.

than on the merits of the model and how well it fits the original data. While
the danger of making transformations is evident in this example, it is easy to
be fooled if we are not especially observant, since many computer codes fit
models by first making a transformation.
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Fig. 8.15. A plot of the curve y = Ce1/x based on the value ln C ⇥ �1.25.

Variations are condensed
• Transform the data 

as before
y = Ce1/x

ln y = ln(Ce1/x)
ln y = ln e1/x +ln C
ln y = 1/x + ln C

• Plot ln y vs. 1/x
• See how distance 

is distorted?

ln and e are inverses

ln(ab) = ln(a)+ln(b)



A line fits this quite well
• Fitting a line to the 

transformed data is 
a pretty good fit

• The deviations are 
small

• The best fit gives  
ln C ≈ -1.25.
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A poor fit in the original data
• But in the original 

data, the fitted 
model y = Ce1/x fits 
the model poorly

• No seasonal peaks
• Heads up to ∞ near 

x = 0.
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What's gone wrong?

• Answer: the data were never supposed to 
fit a model of the form y = Ce1/x

• But we wouldn't know that from the 
transformation, which is a pretty good fit

• Many computer codes fit models by first 
making a transformation

Be careful: always verify your 
model using the original data.



Lab work

• In the lab we'll fit both polynomials and 
splines to data

• We'll also transform our data and use that 
to estimate parameters

• We'll also use our data and models to 
make predictions.



Curve fitting
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