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Introduction

The traffic on the bridges has been a big problem for residents for a long time. Some of 

us experience it everyday, others hear it on the radio. The traffic has been considered heavy every 

morning  for  years.  Our project  consists  of  reproducing  the  traffic  flow coming into  Ottawa  from 

Gatineau-Hull during the morning rush hour. We are mainly concerned about the traffic flow on the 5 

bridges leading into the Ottawa region. By the end of the project,  we hope to be able to demonstrate 

different situations to see how they will influence this problem. In particular, we would like to give a 

prediction of the benefits arising from adding the planned bridge on Kettle Island.

It is worth mentioning that a Canadian company known as Castleglenn Consultants Inc. does 

this kind of work all the time for cities around Canada. They specialize in transportation planning and 

traffic  engineering  and  design  services  in  the  fields  of  functional  planning,  traffic  engineering, 

highway-roadway design and project management throughout communities in Alberta and Ontario. You 

must have seen the people sitting at busy corners looking bored and counting cars. This is how they 

collect their data, and then they create models for different cities. Unfortunately, their data or models 

are not open to the public and we were  not able to compare them with our model. 

Constructing our model

Our first  model consisted of a straight highway, with a constant number of vehicles 

heading in  the same direction at constant speed. Using this model allowed us to verify our equations to 

determine if they had to be altered (which indeed turned out to be the case).

The first  thing  we need to  determine is  the  speed of  cars  on a  street  as  a  function  of  the 

population of cars P on it. From simple geometry, we know the the average space per car, E, is

Average space per car=E=
D M

P

Diagram 1: Geometric argument for determining the average space per car.



Then, if we assume that on average people maintain a speed such that the space in front of them 

is equivalent to the distance they cover in 2 seconds, their speed V must satisfy

V∗ 2 seconds=E−l=
D M

P
−l

Which gives us the average speed per car, 

Average car speed on street i=V i=Min { Di M i

l
−Pi× 3.6

2
, V i

max} (1)

where:

Di is the length of the street (here a “street” is a segment joining two consecutive intersections).

Mi is a multiplying factor, mostly related to the number of lanes.

Pi is the number on vehicles on the street.

l is the average length of a vehicle (in metres).

V
i
max is the speed limit on street i.

3.6 is the conversion factor m/s -> km/h.

We divide by 2 because we use the two-second-rule to determine how fast the vehicles can go 

without being too close to each other.

Of course, a model composed of one street is of very limited interest. So the next step 

was to add intersections. Intersections are where cars can enter a street, increasing it's population. For 

illustration purposes,  let's  suppose we have an intersection between streets  i and  j.  and that in the 

direction of traffic flow,  street i is  after  street j.  We want  to  describe the  change in  population on 

street i. For this define a parameter Φ
j
, the maximum output of street j. It is defined as the maximum 

number of cars that can exit the street in ideal conditions in one minute. Φ is mostly determined by the 

Diagram 2: Applying the two second rule to determine car speed.



length of green lights and the intersection's geometry (if there a lane is added for people turning right or  

left). In cases where there there are more than one streets to which to exit, we assume that Φ is the 

same in all cases. This of course can be quite far from the truth (such as when comparing the maximum 

output for cars turning left or continuing) but not doing so would add undue complexity to our model. 

We further assume that the critical factor in allowing cars to leave a street is the speed of the cars on the  

street they are moving to and that all other factors are negligible. This seems reasonable, as should 

correctly  model  the  case  where  cars  can  either  turn  onto  a  traffic-jammed road  or  continue  to  a 

relatively empty one. Finally, since  Φ
j
 is determined considering the maximum car speed, that also 

appears in the equation. So the increase in population on street i can be written as 

dPi

dt
=Min {Φ j×

V i

V i

max
, P j} (2)

The minimum is only there to avoid adding more cars than the total car population on street j.

If  many streets j are entering street i, then we must sum over these streets. Of course, a certain 

fraction of the cars on each of these entering streets will continue to the street we are studying. This 

fraction may or may not be 1 for one or many of the streets, depending on the intersection. We write 

R(j, i) for the fraction of cars going from street j to street i. We assume this fraction to be independent 

of time over our period of study (i.e. rush hour). Then equation (2) becomes 

dPi

dt
=∑

j

R j , i ×Min{Φ j×
V i

V i

max
, P j} (3)

Of  course,  we  must  also  consider  cars  leaving  street  i.  The  equation  for  exiting  cars  is 

constructed following the same reasoning. The result is very similar to (3), although care must be taken 

not  to  misplace  the  indices.  Putting  the  two  together  we  get  the  general  equation  for  population 

variation on any given street:

dPi

dt
=[∑j

R  j ,i ×Min{Φ j×
V i

V i

max
, P j }]−[∑k

R i , k ×Min {Φi×
V k

V k

max
, Pi}] (4)

where the j-streets are entering street i and it is exiting to the k-streets.

For  implementation,  we  replace  the  sum  over  exiting  streets  by  a  sparse  n×n  matrix 

containing the R(j,  i) values, where n is the number of streets in our system. Then the corresponding 

matrix for the entering streets is simply the transpose of the first. In this way our two sums become two 

matrix multiplications, which is easier to handle programmatically.



In this way we can describe the rate of change of population on each street by a differential 

equation. Taken together, the set of equations describes how cars move around in the system. However, 

we still have no way of getting them in or out of the system. We will now address that.

Defining entry points

Two of us know from personal experience that the latest one can leave while still hoping to be 

in Ottawa by 8:00 a.m. is between 7:15 and 7:30. As more people leave before that than after, we will 

take 7:15 a.m. as the time where the amount of people leaving their home peaks.

In this case, since we do not know how these people are distributed, it seems natural to assume 

that they follow a normal distribution. We further assume that people going to work will leave between 

5:00 a.m. and 10:00 a.m., so we want to chose a standard deviation σ
N
 that will place 90% of them 

within this time frame. If we scale time in minutes, we find that the appropriate values are μ
N
 = 135 and 

σ
N
 = 62. That yields the following curve, which represents the rate  N(t) at which people leave their 

homes for work at any given time t.

Therefore, to add cars into the system, all we do is define a certain number of  entry points. 

These are streets with an extra property: the total number of people who work downtown and who will 

pass through them, which we will note P. Then at any given time t, the rate at which people are being 

Figure 1: Distribution of the system entry time



added to this street is simply  P N(t).  In this way, incoming people are treated simply by adding a 

positive term to the differential equations of the entry points.

An important advantage of our definition of entry point is that makes it easy to represent the 

incoming population of one or more sectors with only one street, helping make the model workable.

Defining exit points

In it's essence,  an  exit  point is  very similar to a entry point:  it  will  be treated by adding a 

negative term to it's differential equation. However, it is not quite clear what this term should look like. 

The first simulations were run using just a constant term. As might be expected, this led to bridges that 

were much too easy to empty and virtually no traffic jam in the key areas.

We wanted to base the exit rate on data the model was generating to avoid making more or less 

arbitrary assumptions about the traffic on the Ottawa side. For this reason an attempt was made to use 

the speed on the bridge as a factor to determine it's exit rate. However this turned out to be no better  

then the constant term, as the positive feedback between the speed and the exit rate brought them to a 

complete stop from which they could not recover.

Lacking better options, we finally did make a more or less arbitrary assumption on the density 

of traffic on the Ottawa side. We figured it would reach it's peak at 8:00 a.m. and should vary according 

to something resembling a normal distribution  T(t).  We settled on a standard deviation of  σ
T
 = 40, 

which concentrates most of the traffic between 6:50 and 9:10. The exit rate from the bridge should be 

smallest when traffic density is greatest. However, even at that point it should not be zero; we fixed it's 

minimum at 5% of the bridges maximum output Φ, which we defined earlier. This leads us to define 

the exit rate as follows:

dP

dt
=−Φ

1.05 sup T t −T t 
sup T t 

or equivalently,

dP

dt
=−Φ 1.05−T t σT 2 π 

Since  this  makes  the  maximum exit  rate  1.05 Φ instead of  1 Φ,  we  simply scale  back the 

maximum output for the bridges by 5%. Otherwise this suits our needs quite well.



Statistics and Data

With our model defined, we need to shape it to the situation at hand, namely the Gatineau road 

system. The first step is to identify which roads are essential to modeling the morning rush hour traffic. 

These are shown on Figure 2, overlayed on top of a map of the area. We purposely did not integrate 

entry points directly into the network. Otherwise, because their extra term does not consider the car 

speed on the street, too many cars could appear on an already packed street. Some of these entry points 

actually represent a number of residential streets between two considered intersections.

Now we need to define how many people will enter from each of our entry points. We know 

that the active population of Gatineau is 176 100 people. However, a sizable portion of these do not 

require to cross a bridge to reach their workplace, and thus would not influence the traffic we are 

studying. We have no data on the number of people who are in this situation, but we know that there 

are too many to simply ignore them. Therefore we fixed the proportion of active people that work 

Figure 2: Basic map of Gatineau we used. The road system was divided into 42 streets for internal 

representation, drawn in red. Blue points are standard intersections. Cars enter from the black points, and 

exit to the green ones.



downtown at 45%. Some of these work in downtown Hull, contributing up to there but not onto the 

bridges. For simplicity, and not having actual data to estimate their number, we did not account for 

them and supposed every  considered  worker  crosses  a  bridge  to  Ottawa.  That  puts  at  80 000 the 

number of Gatineau workers who will cross a bridge at rush hour. There are also some coming from 

two smaller municipalities; when we apply the same proportions we did for the Gatineau workers, these 

add another 4000 to the system.

Now, to determine how many of these 84 000 workers will come from each entry point, we used 

the following population distribution given in  Figure 3. We then had to further divide those workers 

among our identified entry points; this was done according to our knowledge of the area.

Finally,  we need to  determine  the  properties  of  each  street  which used in  constructing our 

model. This includes: street length (D) and width (M), speed limit (Vmax), maximum output (Φ) and, for 

every other street, the proportion of cars that will be moving to it. The first three components can be 

determined with satisfactory precision. So can the proportion of cars moving into each other street, in 

the majority of cases (for many of them, the is only one subsequent street). That leaves the maximum 

output as the only other ingredient (along with the number of downtown workers) in our formula with a 

high guesswork content.

Figure 3: Population distribution among the Gatineau sectors



Results

Assumptions and neglected elements

Before discussing our results, we must point out some of the aspects that might affect them. For 

example, the assumptions upon which are built the entry point and exit point equations are potentially 

important sources of error. We have also already mentioned the guesswork involved in determining 

how many people contribute to traffic and the maximum output of the streets. These last two factors 

have the greatest potential to modify results. Notably, there are 42 output factors to determine, which 

puts a lot of variability in our results.

The other principal assumptions/neglected elements are :

• Every vehicle was assumed the same length. 

• Although a very approximate factor is added for Ottawa traffic, our model essentially stops 

after the vehicles cross their respective bridge, and we consider them to have arrived at their 

destination and their influence on the model negligible. We realize that the cars continue to 

move in traffic into the city, and that this will affect traffic flow on the bridge, but we do have to  

stop at some point. 

• We have neglected reserved lanes, as in taxi and bus lanes. We assumed that every lane on the 

studied street are used for common traffic.

• We have studied the traffic going into Ottawa and not coming out. That being said, especially 

during rush hour, this should not be particularly significant.

• As mentioned before, we have neglected the population that work in the Gatineau-Hull area, as 

we assumed that the majority of the population work in the Ottawa region.

• We have also neglected the Alonzo bridge as a route to get into Ottawa.

• We did not consider random events and/or acts of God.

• We do not consider the time it takes to drive a street's length, because during rush hour you 

don't really have a chance to roll your normal speed. For this reason, however, this model would  

be no good at modeling light traffic. Then again, that hardly requires an elaborate model, as the 

only things you really need to consider are distance and speed limit.



Results and Analysis

Although we were worried at first that MatLab might balk at having to solve 42 simultaneous 

differential equations, it turns out this is not a problem at all. This is probably thanks to the fact that 

apart from the entry and exit points, each equation is a linear. Therefore scalability, should we ever 

consider it, should not be a problem.

Our first objective was to tweak our system parameters to obtain something resembling actual 

traffic. This is important, because otherwise there is not really any use in trying to get a prediction out 

of the model. From our first simulations, the main difficulty was evident: traffic seemed to jam at the 

entry points, covering the rest of the distance to Ottawa with relative ease. Instead, what we should see 

is traffic begin to slow downtown, especially on the bridges, and then the effect should cascade up 

through the road network, reaching the entry points last. The two most obvious ways this might happen 

is  if  the  numbers  of  workers  is  overestimated  and  if  the  maximum  output  of  the  key  streets  is 

underestimated. Incidentally, those are the two factors which were the least precisely determined.

However, “tweaking” wasn't a solution, as it turns out that our model is extremely robust with 

regard to  parameter changes.  Which in  a  sense is  not  entirely  bad,  as it  means that whether  your 

neighbour leaves at 6:50 or 7:20 won't really affect traffic as a whole. But in our case, removing a 

neighbourhood did not  seem to make much more of  a  difference than the neighbour  leaving late. 

(Unfortunately, we lacked the foresight to record one of these earlier versions, so you cannot see for 

yourself how little things change.) We cut populations down by ¼, then ⅓ for the problematic sectors 

(for a total of ½). We also multiplied some maximum output by factors of between 2 and 4, some entry 

points reaching 135 cars per minute. This is pretty much the limit of what we consider to be believable 

numbers for these parameters, and yet some streets still contain cars until 1 p.m. (down from about 

5 p.m. originally). So rather than continue making up numbers, we will concentrate at what else there is 

to say about and from the model in it's current form.

Analysing our data poses a slight problem because there are 42 different street populations to 

follow. We can plot a subset of these populations, as we did to monitor the populations on the entry 

points (Figure 4 is such a plot). To see the whole picture, we built a visual representation of our map 

that shows the car concentrations change through time.



We recorded two such simulations using our lightly improved parameters for your own viewing 

pleasure. The closer a street's colour is to red, the denser the cars are packed. Time is indicated at the 

bottom,  in  hours:minutes:seconds.  These  two simulations  were  produced to  compare  the  effect  of 

changing the value of sigma from 50 to 90 for the entry points' equations, which turned out to be very 

small. We produced simulations to compare the other factors, but like the plots, it really is just more of 

the same. 

One thing that is important to keep in mind when looking at these simulations is that the short 

entry streets do not have any meaningful length, since they represent the streets of entire residential 

sectors. As such, the density of cars on them can quickly become very high without it being a cause for 

concern (as noted previously though, the fact that this density is not zero at noon is problematic).

Now if we look at what happens around the bridges, in downtown Hull, we notice that traffic 

starts  to  form  in  areas  where  two  major  arteries  meet.  This  corresponds  to  the  actual  traffic 

phenomenon, so at least the structure of the model seems sound. Playing the simulations slowly or 

frame by frame between 6 and 7 a.m. really shows cascading affect of traffic, as intended. However, 

Figure 4: Car population on the entry points as a function of time. Here σ
N
 = 50. Time is in 

minutes



there really isn't any congestion in downtown Hull before the Ottawa traffic kicks in at around 7:30. 

And as soon as it's over, downtown Hull begins to empty itself, followed by the rest. The fact that 

downtown empties itself before the incoming streets is unquestionable proof that the congestion around 

the bridges as it appears in our model is almost entirely due to the simulated Ottawa traffic, and not the 

one produced by our model. This tells us two important things :

• That traffic on the Quebec side is highly dependent upon traffic on the Ottawa side.

• Consequently, if adding a bridge on Kettle island reduces Quebec side traffic, it would be a side 

effect of reducing traffic in Ottawa.

The second observation is a disappointing, because it means that we cannot attain our main 

objective, which was to evaluate the effect of adding a bridge on Kettle Island.

There is another problem we realized in the last couple days that also prevents us from simply 

adding the Kettle Island bridge to the model to see what happens. The way we constructed the model, 

for every intersection we predetermine what proportion of the cars go in each direction. This is great 

because it completely avoids the problem of determining routes for each car. It works because we never 

care about which car is on a certain street but only how many. However, this also means that any time 

we want to close, reduce or add a street, we have to manually reroute the traffic. This pretty much 

renders the model useless for such things as modelling the effects  of construction or accidents on 

traffic, since it would more or less regurgitate the new routes as determined by the human operator.



Conclusion

In conclusion, what can be said from our results ? With it's shortcomings, our model is not yet a 

viable candidate to answer specific questions about traffic flow in our region. However, it does exhibit 

characteristic traffic behaviour, even it isn't the one we want. Therefore, it is still a reasonable basis for 

more general conclusions. We feel that our model still makes a good case of demonstrating two such 

conclusions. First, that traffic flow is a very stable phenomenon. Whether our model amplified this or 

not, it still demonstrates how difficult it can be to influence traffic by changing parameters such as the 

maximum output. Although we did not attempt to model cases where streets were added or removed, 

but we suspect this has a much greater effect than the parameters we did play with. This would, among 

other things, demonstrate the value of reducing traffic by adding roads or lanes.

The  second  conclusion  we  reached  was  that  modelling  at  least  part  of  Ottawa's  traffic  is 

absolutely essential to getting an accurate model for Gatineau's traffic. Of course, this isn't exactly 

groundbreaking news, but we initially believed we could get a something at least resembling the true 

traffic by considering only cars in Gatineau. Our results show that this is not the case. In a sense, our 

model is just good enough to show that it isn't good enough.

We already discussed  many of  the shortcomings of  our  model,  but  this  does  not  mean it's 

potential is limited to the above two conclusions. With some precise data on certain key points where 

we  were  unable  to  reproduce  real  traffic,  we  could  probably  correct  much  of  the  inconsistencies 

between reality and our results. Then we could write an algorithm to determine the routes different 

groups of cars would follow and from that obtain the R(j,i) ratios used to calculate traffic. That would 

allow us to model the effects of modifying the road network. Finally, as noted, we would also need to 

consider at the least Ottawa's downtown traffic. This is nothing more than translating a map of Ottawa 

into data the model  can manipulate.  However,  Ottawa's  road network is  much more intricate  than 

Gatineau's, for which manually entering the data was quite error prone due to the sheer amount of it. 

Because of this, adding Ottawa's road network would also require cooking up some sort of interface to 

avoid manually everything into gigantic  matrices of numbers.  Of course,  doing this would require 

much more time then we have for this time of project, but it does show that the work we have done is 

the first step towards a working, complete model.

As such, although we did not reach our objective, we nevertheless consider our model to be 

valuable in it's own right.


