
Advanced epidemic models

• Forms of the infection rate 
• Adding demography 
• The effects of media 
• Hospital bed capacity.
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Mass-action transmission

• Form of infection: S′=-βSI 
• No transmission if S=0 or I=0 
• But this isn’t the only possible formulation 
• Assumes a well-mixed population 
• E.g., influenza 
• It’s density dependent 
• The more people infected, the more likely 

you are to catch it 
• The contact rate thus depends on the 

density of people around you.
S=Susceptible, 
I=Infected, 
β=transmission



Standard incidence

• Form of infection: S′=-cSI/(S+I) 
• E.g., HIV 
• It’s frequency dependent 
• It doesn’t matter how many people have the 

disease around you, only how many you 
come into contact with 

• Unlike mass action, it’s bounded if the 
population gets large 

• If N=S+I is constant, then this is  
equivalent to mass action. S=Susceptible, 

I=Infected, 
c=contact rate



Power relationship

• Form of infection: S′=-βSpIq 
– where p and q are two further parameters we 

might have some control over 
• Another choice that satisfies the condition 

that no transmission occurs if S=0 or I=0 
• E.g., if it takes two zombies to infect a single 

human, then p=1 and q=2.

S=Susceptible, 
I=Infected, 
β=transmission



Asymptotic contact

• Form of infection:  

where ϵ ranges between 0 and 1 
• If ϵ = 0, we have the power relationship 
• If ϵ = 1, we have a generalised form of 

standard incidence 
• Note that S and I must be proportions 

(and hence unitless) 
• This generalises all previous models 
• But the possibilities are endless.

S0 = � �SpIq

1� ✏+ ✏(S + I)

S=Susceptible, 
I=Infected, 
β=transmission



Model choice

• The choice of model depends on the biology 
• There’s also the issue of mathematical 

tractability 
– we need to be able to analyse these models 

• Or we may perform a purely numerical 
analysis, though that can miss things 

• Even simple models can give rise to very 
complicated behaviour 

• Sometimes we may trade accuracy for 
insight.



Demography

• We want to include births and deaths 
– immigration can be subsumed into “births” 

• In the absence of infection, we could write  
S′=π(S)-dS 
where π(S) is a growth function and d is the 
background death rate 

• It turns out that this means individuals are 
alive for 1/d time units 

• This is the easiest way to include the death 
rate.

S=Susceptible



Constant death?

• Why not S′=π(S)-d? 
• Answer: because populations could becme 

negative 
• E.g., suppose S(0)=0 and π(0)=0 (if there’s 

nobody around, the population can’t grow) 
• Then S′(0)=-d<0 
• Hence the population will decrease from 0, 

becoming negative 
• We’d like to avoid negative people ☺.

S=Susceptible,
π=growth, 
d=death



Constant birth, linear death

• The birth rate can be constant 
• Hence S′=r-dS 
• Equilibrium at S=r/d 
• S′<0 if S>r/d while S′>0 if S<r/d 
• For this simple model, all solutions approach 

the equilibrium.

S=Susceptible,
r=growth, 
d=death



All solutions converge

r/d

• All solutions tend towards r/d monotonically.
r=growth, 
d=death



Logistic growth

• In this case, the growth rate is given by 

• Since there’s already a linear factor rS, we 
can absorb the -dS term into this 

• Hence we have 

• There is no change if S=0 or S=K 
• If S<K, then S′>0, and if S>K, then S′<0 
• We call K the carrying capacity.
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S=Susceptible,
r=growth



Logistic growth

K

• Solutions that start with small initial conditions are 
“flatter” at first 

• There’s a point of inflection that changes some 
solutions from concave up to concave down.

K=carrying 
capacity



Linear growth, linear death

• Previously we had constant birth and linear 
death 

• The logistic term had nonlinear growth and 
linear death 

• Why not linear growth and linear death? 
• E.g., S′=rS-dS 
• However, it turns out that there are problems 

when both terms are of the same order.

S=Susceptible,
r=growth, 
d=death



Explicitly solving

• Rewriting, we have S′=(r-d)S 
• The solution is S(t)=S(0)e(r-d)t 
• If r>d, solutions increase to infinity 

(impossible) 
• If r<d, the entire population dies out (unlikely) 
• What if r=d? Would that take care of it? 
• Unfortunately, this is a knife-edge case 
• Tiny fluctuations in the birth or death rate can 

result in catastrophic consequences. S=Susceptible,
r=growth, 
d=death



The effects of media

• The media is a powerful tool for affecting 
people’s behaviour  

• The media can go into overdrive when 
there’s a pandemic 

• Or they might ignore the disease for longer 
than they should 

• The response is not always straightforward, 
however. 



Including behaviour changes

• We’ll focus on the transmission rate, 
although it’s not the only possibility 

• It might change due to people mixing less as 
a result of media reporting on the disease 

• The more people infected, the lower the 
contact rate and hence the transmission rate 

• In a pandemic, you still have to go to work, 
but you might not go to a hockey game.



The model

• Using (say) logistic growth and standard 
incidence, our model might look like 

where β is no longer a constant 
• For example, β(I) = β0e-mI so that the 

transmission function decreases as the 
number of infected individuals increases 

• It eventually approaches zero as the whole 
population becomes infected.
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S=Susceptible,r=growth, 
K=carrying capacity, 
β=transmission



Transmission decreases uniformly

I

β(I)

β0

β=transmission, 
I=infecteds



Delays in health reporting

• The media response is not instantaneous 
• Information takes time to be released and 

reported 
– even in the 24 hour news cycle ☺ 

• If it takes 𝛕 days for the health system to 
release numbers of infected people, then 
that will introduce a delay into the system 

• The media transmission function is then  
β(I) = β0e-mI(t-𝛕) 
– (I depends on time, so β does as well).

β=transmission, 
m=media decay 
I=infecteds, 𝛕=delay



Transmission decreases after a delay

I

β(I)

β0

I(τ)

β=transmission, 
I=infecteds, 𝛕=delay



Hospital bed capacity

• As well as the infection rate and 
demography, we might have control over the 
recovery rate 

• Medical resources will determine the 
treatment and recovery rate 
– but resources may be limited 

• We’ll use the hospital bed capacity as a 
proxy 

• It has a maximum and a minimum 
– eg hospitals may get inundated in a pandemic, 

but some mimimum treatment will still occur.



The model

• We’ll consider an SIR model 

• Our standard incidence denominator 
involves all populations 

• The disease-specific death rate is 𝜈 
• The recovery rate µ depends on the hospital 

beds and the number of infected individuals.

S0 = r � dS � �SI

S + I +R

I 0 =
�SI

S + I +R
� dI � ⌫I � µ(b, I)I

R0 = µ(b, I)I � dR

S=Susceptible,I=infecteds, 
R=recovered, r=growth, 
d=death, β=transmission, 
b=beds



Conditions on µ(b,I)

We want the following conditions: 
• µ is positive for b > 0 
• µ(b,0) = µ1 > 0, the maximum per captia 

recovery rate due to sufficient resources 
• As I increases, µ decreases 
• Some minimum number of individuals will 

get treated even during a pandemic, so 

• As b increases, µ increases 
– more beds = more recovery.

lim
I!1

µ(b, I) = µ0 > 0

I=infecteds,  
µ=recovery,  
b=beds



The recovery function
• The simplest function that satisfies these 

requirements is
µ(b, I) = µ0 + (µ1 � µ0)
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I=infecteds,  
µ=recovery,  
µ0=min recovery, 
µ1=max recovery, 
b=beds



• For a given number of hospital beds, the 
recovery function looks like this:

Recovery as a function of I

I

µ1

µ0

µ(b,I)

µ=recovery,  
µ0=min recovery, 
µ1=max recovery, 
b=beds



Lab work

• In the lab, we’ll determine some of the 
differences between mass action and 
standard incidence 

• We’ll add demography and look at the 
effects of media 

• We’ll also analyse the basics of the hospital 
bed model.
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