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Abstract The majority of cells infected with the human immunodeficiency virus
are activated CD4+ T cells, which can be treated with antiretoviral drugs. However,
an obstacle to eradication is the presence of viral reservoirs, such as latently infected
CD4+ T cells. Such cells may be less susceptible to antiretroviral drugs and may
persist at low levels during treatment. We introduce a model of impulsive differential
equations that describe T cell and drug interactions. We make the extreme assumption
that latently infected cells are unaffected by drugs, in order to answer the research
question: Can the viral reservoir of latently infected cells be eradicated using current
antiretroviral therapy? We analyse the model in both the presence and absence of drugs,
showing that, if the frequency of drug taking is sufficiently high, then the number of
uninfected CD4+ T cells approaches the number of T cells in the uninfected immune
system. In particular, this implies that the latent reservoir will be eliminated. It follows
that, with sufficient application of drugs, latently infected cells cannot sustain a viral
reservoir on their own. We illustrate the results with numerical simulations.
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1 Introduction

HIV primarily attacks memory CD4+ T helper cells. Once infected, cells produce a
great many virus particles. In turn, the immune system mounts a response, creating
antibodies that control, to some extent, the number of virus particles. Further control is
available in the form of antiretroviral drugs, primarily drawn from two major classes,
reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs) (Janeway et al.
2001). If drugs are taken with sufficient frequency, the virus is largely controlled and
remains below the level of detection (Chun and Fauci 1999). However, antiretrovi-
ral drugs cannot eradicate the virus, as viral rebound occurs when drugs are stopped
(Arlen et al. 2006). It has been suggested that HIV has a number of reservoirs where it
will lay dormant. Primary among these reservoirs are latently infected CD4+ T cells
(Blankson et al. 2002). Virus that resides in latently infected CD4+ T cells has been
shown to be virologically quiescent and lacking the ability to produce multiply spliced
HIV RNA or viral particles (Chun et al. 2005). Latently infected cells have low fre-
quency, less than one latently infected cell per million resting CD4+ T cell (Chun et al.
1997). The size of the total viral reservoir is not large; approximately 103–106 cells per
patient (Ramratnam et al. 2000). However, this reservoir appears to decay slowly, with
a halflife of 6–44 months (Ramratnam et al. 2000; Finzi et al. 1999). Hence, although
infected, these cells do not produce virus until activated, thus potentially providing a
longer-lived hiding place where virus may evade control by either the immune system
or treatment (Blankson et al. 2002; Wodarz and Nowak 2002).

RTIs prevent infection of cells, whereas PIs can transform an infected cell into cells
that, while nevertheless infected, will only produce noninfectious virus (Janeway et al.
2001). However, latently infected cells may result in the regular, albeit low-level, cre-
ation of newly infected cells (Blankson et al. 2002). Consequently, in this paper, we
analyse a mathematical model that includes latent infection, as well as control of infec-
tion by drugs and an immune-system response. We assume that, since the viral genome
has already been transcribed into the host DNA, latently infected cells are unaffected
by RTIs. While we expect that latently infected cells may absorb PIs and that such
cells, when activated, will result in activated cells that produce noninfectious virus, we
will instead assume that antiretroviral drugs have no effect on the proportion of cells
that are latently infected. This is in line with some experimental findings, that suggest
that antiretroviral drugs do not effectively block replication of virus from the latent
viral reservoir (Chun et al. 2003). We also assume that such cells live significantly
longer than productively infected CD4+ T cells. This is the most extreme case.

A number of mathematical models have included latently infected cells. Culshaw
et al. (2003) modelled cell-to-cell spread of HIV with a time delay, although they
neglected free virus; they demonstrated that latently infected cells may be instru-
mental in sustaining infective oscillations. Curlin et al. (2007) modelled induction-
maintenance (IM) therapy, with latent cells included; they suggested that both IM
and antiretroviral therapy may fail if the latent pool was too large. Hadjiandreou
et al. (2007) constructed a model of the complete timecourse of HIV/AIDS, including
immunological compartments such as macrophages, latently infected cells and cyto-
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toxic T-lymphocytes. Jones and Perelson (2007) modelled viral blips and showed that
a latent reservoir could produce viral transients when activated by opportunistic infec-
tions. Sedaghat et al. (2007) employed a simple model for the dynamics of the latent
reservoir to show that the stability of the latent reservoir was unlikely to arise from
ongoing replication during antiretroviral therapy. Shi et al. (2008) formulated a cellu-
lar automata model for HIV dynamics and drug treatment that showed that the chronic
phase of infection is sustained by the activation of latently infected cells.

Recently, it has been shown that the mechanics of HIV drug interaction should
be included in mathematical models (Smith? 2008). Here, the effect of the drugs is
assumed to be instantaneous at dosing times tk and sk , for RTI and PI dosing, respec-
tively. This results in a system of impulsive differential equations, whereby solutions
are continuous for t �= tk and t �= sk (satisfying the associated system of ordinary
differential equations) and undergo an instantaneous change in state when t = tk or
t = sk (see Bainov and Simeonov 1989, 1993, 1995; Lakshmikantham et al. 1989 for
more details). Impulsive differential equations have been used to model HIV dynamics
in a variety of settings (Krakovska and Wahl 2007; Smith? and Wahl 2004; Smith?
and Schwartz 2008), and have been used for general disease models (d’Onofrio 2002).
Despite the discontinuities in solutions in some variables (as well as the discontinuities
in the derivatives of most others), impulsive differential equations have been shown
to have good approximations to nonimpulsive models (Smith? and Schwartz 2008).

This paper is organised as follows. In Sect. 2, we introduce the mathematical model.
In Sect. 3, we analyse the stability of the disease-free equilibrium in the absence of
drugs, the disease-free impulsive orbit in the presence of drugs and determine the out-
comes when there is sufficiently frequent dosing of either RTIs or PIs. In Sect. 4, we
perform numerical simulations to compare our theoretical predictions with realistic
dosing regimens. We conclude with a discussion.

2 The model

We include CD4+ T cells that may be susceptible, infected or latently infected. A frac-
tion of infected cells will be latently infected; such cells do not produce infectious virus
and may have longer life than productively infected cells. Upon activation, latently
infected cells become productively infected cells. Infected T cells produce infectious
virus and, in turn, the immune system responds to the presence of infectious virus by
creating antibodies.

In our model, we describe latently infected cells by a separate compartment, rather
than via a delay (Mittler et al. 1998; Nelson et al. 2001, 2000; Nelson and Perelson
2002). This has the advantage of explicitly accounting for the viral dynamics (Smith?
2008), although it has the disadvantage of introducing more parameters. We assume
that some cells become latently infected upon contact with the virus at rate αL , but that
they are not productively infected (Kirschner et al. 1997) until they leave the latent
state (Wu and Ding 1999) with rate pL .

Susceptible cells may be inhibited with either RTIs, PIs or may be infected. Infected
cells may be inhibited with PIs, and cells inhibited with one drug may be inhibited
with the other. Drug effects may wear off, and the rate of such waning may differ
for each drug. Drugs are modelled via impulsive differential equations, so that they
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Fig. 1 The model. Susceptible T cells (TS ) are produced from the lymphic source at rate λ. Uninfected
cells may be inhibited with RTIs (TR ), PIs (TP N I ) or both drugs (TR P ). Drug effects wear off at rates
m R and m P . Infected cells (TI ) produce infectious virus (VI ); the presence of such virus also prompts
an antibody response (AB ) from the immune system. Infected cells may be subsequently inhibited by PIs
(TP I ), whereupon they no longer produce infectious virus. Susceptible cells and cells inhibited with PIs
may become infected; a fraction of these will be latently infected (TL ). Uninfected cells inhibited with RTIs
cannot become infected while they remain in this state; conversely, RTIs have no effect on already-infected
cells. We assume that neither drug has an effect on latently infected cells, thus modelling the most extreme
case. See Table 1 for the complete list of coefficients

decay exponentially during each cycle as they are metabolised and then undergo an
instantaneous change in state when the next dose is received. In order to assess the
effects of the viral reservoir of latently infected cells, we will assume that such cells
are (a) unaffected by either drug and (b) live as long as susceptible cells (Kirschner
et al. 1997). The model is illustrated in Fig. 1.

Thus, the model is

dVI

dt
= nI TI − dV VI

d AB

dt
= pAVI − dA AB

dTS

dt
= λ − rI TS VI − dSTS − rR TS R − rP TS P + m R TR + m P TP N

dTI

dt
= qI TS VI − dI TI + pL TL − δA AB TI − rP TI P + m P TP I

dTL

dt
= αL TS VI + αL TP N VI − dL TL − pL TL (1)

dTR

dt
= rR TS R − dSTR + m P TR P − m RTR − rP TR P

dTR P

dt
= rR TP N R − dSTR P − m P TR P − m RTR P + rP TR P

dTP N

dt
= rP TS P − dSTP N − rI TP N VI − rRTP N R − m P TP N + m R TR P

dTP I

dt
= qI TP N VI − dI TP I − δA AB TP I + rP TI P − m P TP I
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for t �= tk, sk . The behaviour of drugs is given by

d R

dt
= −dR R t �= tk

(2)
d P

dt
= −dP P t �= sk .

The impulsive conditions are

∆R = Ri t = tk
(3)

∆P = Pi t = sk .

The parameters are summarised in Table 1. All parameters and initial conditions
are assumed to be nonnegative.

3 Analysis

3.1 The absence of drugs

In the absence of drugs, there are two equilibria. The disease-free equilibrium is given
by

(VI , AB, TS, TI , TL , TR, TR P , TP N , TP I ) =
(

0, 0,
λ

dS
, 0, 0, 0, 0, 0, 0

)

The endemic equilibrium is given by

(VI , AB, TS, TI , TL , TR, TR P , TP N , TP I ) = (
V̄I , ĀB , T̄S, T̄I , T̄L , 0, 0, 0, 0

)
,

where

ĀB = pA

dA
V̄I

T̄L = α

dL + pL
V̄I T̄S

V̄I = dAnI

δA pAdV (dL + pL)
(qI (dL + pL) + pLαL)T̄S − dSdA

δA pA

and where T̄S is the positive root of

rI dAnI

δA pAdV (dL + pL)
(qI (dL + pL) + pLαL)T 2

S

+
[

rI dAnI

δA pAdV (dL + pL)
(qI (dL + pL) + pLαL) − dSdA

δA pA
+ dS

]
T̄S − λ = 0.
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Table 1 List of symbols

Parameter Units Explanation Value

VI virions mM−1 Infectious virus –

AB antibodies mM−1 Antibodies –

TS cells mM−1 Susceptible CD4+ T cells –

TI cells mM−1 Infected CD4+ T cells –

TL cells mM−1 Latently infected CD4+ T cells –

TR cells mM−1 CD4+ T cells inhibited with
RTIs

–

TR P cells mM−1 CD4+ T cells inhibited with
both RTIs and PIs

–

TP N cells mM−1 Uninfected CD4+ T cells
inhibited with PIs

–

TP I cells mM−1 Infected CD4+ T cells inhib-
ited with PIs

–

λ cells days−1 Production rate of CD4+ T
cells

280

dV days−1 Clearance rate of infectious
virus

3

dA days−1 Clearance rate of antibodies 0.5

dS days−1 Death rate of uninfected CD4+
cells

0.1

dI days−1 Death rate of infected CD4+
cells

0.5

dL days−1 Death rate of latently infected
CD4+ cells

0.1

nI virions cells−1days−1 Rate of production of virions
per productively infected cell

265.5

rI cells−1 day−1 Rate of infection of susceptible
cells

0.0032

qI virions−1days−1 Rate of increase of infected
cells

0.8rI

pA antibodies virions−1days−1 Production rate of antibodies in
response to virus

0.01

δA days−1 Loss of infected cells due to
antibodies

0.01

pL days−1 Rate at which latently infected
cells become productive

0.05

αL virions−1days−1 Production rate of latently
infected cells in response to
virions

0.2rI

R mM Reverse transcriptase inhibitor
(RTI)

–

P mM Protease inhibitor (PI) –

rR mM−1days−1 Rate at which RTIs inhibit
CD4+ T cells

20

rP mM−1days−1 Rate at which PIs inhibit CD4+
T cells

20

m R days−1 Rate at which RTIs are cleared
from intracellular compart-
ments

0.6931
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Table 1 continued

Parameter Units Explanation Value

m P days−1 Rate at which PIs are cleared
from intracellular compart-
ments

3.4567

dR days−1 Rate at which RTIs are cleared
from the body

0.6654

dP days−1 Rate at which PIs are cleared
from the body

1.3863

Ri mM RTI dosage 4.65

Pi mM PI dosage 1.85

tk days RTI dosing times –

sk days PI dosing times –

τ days RTI dosing period 0.5

σ days PI dosing period 1

All parameters have sample values listed, whereas state variables (marked by a dash) vary according to
model (1)

The Jacobian matrix is J = [J1|J2], where

J1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dV 0 0 nI 0

pA −dA 0 0 0

−rI TS 0 −dS − rI VI − rR R − rP P 0 0

qI TS −δATI qI VI −dI − δA AB − rP P pL

αL (TS + TP N ) 0 αL VI 0 −dL − pL

0 0 rR R 0 0

0 0 0 0 0

−rI TP N 0 rP P 0 0

qI TP N −δATP I 0 rP P 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

and

J2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0

0 0 0 0

m R 0 m P 0

0 0 0 m P

0 0 αL VI 0

−dS − m R − rP P m P 0 0

rP P −m R − m P − dS rR R 0

0 m R −rR R − m P − rI VI − dS 0

0 0 qI VI −dI − δA AB − m P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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If there is no virus and no drugs, then the Jacobian matrix is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−dV 0 0 nI 0 0 0 0 0

pA −dA 0 0 0 0 0 0 0

−rI TS 0 −dS 0 0 m R 0 m P 0

qI TS 0 0 −dI pL 0 0 0 m P

αL TS 0 0 0 −dL − pL 0 0 0 0

0 0 0 0 0 −dS − m R m P 0 0

0 0 0 0 0 0 −m R − m P − dS 0 0

0 0 0 0 0 0 m R −m P − dS 0

0 0 0 0 0 0 0 0 −dI − m P

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix has characteristic equation

0 = (dA + Λ)(dS + Λ)(dS + m R + Λ)(m R + m P + dS + Λ)

×(m P + dS + Λ)(dI + m P + Λ) det M,

where

M =
⎡
⎣−dV − Λ nI 0

qI TS −dI − Λ pL

αL TS 0 −dL − pL − Λ

⎤
⎦

Clearly, the only positive eigenvalues for J will be positive eigenvalues of M . We thus
have

det M = −(dV +Λ)(dI +Λ)(dL + pL + Λ) + nI pLαL TS + (dL + pL + Λ)nI qI TS

= −Λ3 − Λ2[dV + dI + dL + pL ] − Λ[dI (dL + pL) + dV (dL + pL)

+ dV dI − nI qI TS] − dV dI (dL + pL) + nI pLαL TS + (dL + pL)nI qI TS .

Since nI is large compared to the death rates, M (and hence J ) will have a positive
eigenvalue. It follows that the disease-free equilibrium is unstable in the absence of
drugs.

3.2 The presence of drugs

When drugs are present, there are no equilibria, due to impulses in the drug dynam-
ics. However, we can still calculate equilibrium-like orbits that exhibit no variation in
any state variables except for the drugs. These orbits are the impulsive analogue of
equilibria.

If drugs are present and there is no virus, then the disease-free impulsive orbit is

(VI , AB, TS, TI , TL , TR, TR P , TP N , TP I ) =
(

0, 0, T̂S, 0, 0, T̂R, T̂R P , T̂P N , 0
)

,
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where

T̂P N = rP PT̂S + m RT̂R P

dS + rR R + m P
(4)

T̂R = rR RT̂S + m P T̂R P

dS + m R + rP P
(5)

T̂S = f1

f2
TR P (6)

T̂R P = λ

f3
(7)

with

f1 = dS(dS + rP P + m R)(dS + rR R + m P ) + m P (dS + m R)(dS + rR R + m P )

+ m R(dS + m P )(dS + rP P + m R) (8)

f2 = rR RrP P(2dS + m R + m P + rR R + rP P) (9)

f3 =
[

dS + rR R + rP P − m RrR R

dS + rP P + m R
− m PrP P

dS + rR R + m P

]
f1

f2

− m Rm P

dS + rP P + m R
− m Rm P

dS + rR R + m P
(10)

Define τ ≡ tk+1 − tk and σ ≡ sk+1 − sk . Then, the drugs satisfy the impulsive
period orbits

R(t) = Ri e−dRt

1 − e−dRτ

and P(t) = Pi e−dP t

1 − e−dPσ

for tk < t < tk+1, with endpoints

R(t+k ) = Ri

1 − e−dRτ
R(t−k+1) = Ri e−dRτ

1 − e−dRτ

(11)

and P(s+
k ) = Pi

1 − e−dPσ
P(s−

k+1) = Pi e−dP τ

1 − e−dPσ
,

respectively.
The following lemmas are straightforward, but useful.

Lemma 1 Suppose x is a variable satisfying

x ′(t) < c − q(φ)x(t),
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where c is a constant and q(φ) is independent of x and t. Then

(a) If x(0) < c
q(φ)

, it follows that

x(t) <
c

q(φ)

for all t .
(b) If x(0) < c

q(φ)
and limφ→0 q(φ) = ∞, it follows that

x(t) → 0

as φ → 0 for all t .

Proof See Lemma 4.1 in Smith? and Wahl (2004).

Lemma 2 Suppose x is a variable satisfying

x ′(t) > c(t) − qx(t),

where q is a constant and c(t) is bounded as t → ∞. Then

x(t) > x(0)e−qt + c(t)

q
− 1

q

t∫
0

c′(u)e−q(t−u)du → c∞
q

as t → ∞, with

c∞ = lim
t→∞ c(t).

Proof We have

x ′(t) + qx(t) > c(t)

d

dt

[
eqt x(t)

]
> c(t)eqt

eqt x(t) − x(0) >

t∫
0

c(u)equdu

x(t) > x(0)e−qt + c(t)

q
− 1

q

t∫
0

c′(u)e−q(t−u)du

��
Theorem 1 If RTIs are taken with sufficient frequency, then cells inhibited with RTIs
approach the levels of CD4+ T cells in the uninfected immune system, while all other
cells approach zero. That is,
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TR + TR P → λ

dS

and TS, TI , TL , TP N , TP I → 0,

as t → ∞ and τ → 0, for any fixed σ .

Proof First, note that, since dI , dL ≥ dS , we have

T ′
S + T ′

I + T ′
L + T ′

R + T ′
R P + T ′

P N + T ′
P I ≤ λ − dS(TS + TI + TL + TR + TR P

+ TP N + TP I ).

Thus,

TS + TI + TL + TR + TR P + TP N + TP I ≤ λ

dS
. (12)

Then

V ′
I ≤ nI λ

dS
− dV VI .

By Lemma 1,

VI ≤ nI λ

dSdV
. (13)

Consequently, using Lemma 1,

AB ≤ pAnI λ

dAdSdV
. (14)

By Lemma 5.3 of Smith? and Wahl (2004),

TS ≤ f (t, τ, σ ), (15)

where f (t, τ, σ ) → 0 as τ → 0 or σ → 0 and t → ∞. Using Theorem 5.1 of Smith?
and Wahl (2004),

TP N ≤ γ (t, τ, σ ) (16)

where γ (t, τ, σ ) → 0 as τ → 0 and t → ∞, for each fixed σ .
Hence, using Lemma 1 and (13),

TL ≤ αLnI λ( f (t, τ, σ ) + γ (t, τ, σ )

dSdV (dL + pL)

→ 0 (17)

as τ → 0 or σ → 0 and t → ∞.
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We can write

T ′
I + T ′

P I = qI VI (TS + TP N ) − dI (TI + TP I ) + pL TL − δA AB TI .

Using Lemma 1, (13), (14) and (17), we have

TI + TP I ≤ qI
nI λ

dSdV
( f (t, τ, σ ) + γ (t, τσ )) + pL

αL nI λ
dSdV (dL+pL )

( f (t, τ, σ ) + γ (t, τ, σ ))

dI + δA
pAnI λ

dAdSdV

→ 0

as τ → 0 and t → ∞, for each fixed σ .
Finally, using (12), (13), (15) and (16) we have

T ′
S + T ′

R + T ′
R P + T ′

P N = λ − rI VI (TS + TP N ) − dS(TS + TR + TR P + TP N )

> λ − rI
nI λ

dSdV
( f (t, τ, σ ) + γ (t, τ, σ )) − dS(TS + TR + TR P + TP N ).

Thus, using Lemma 2, we have

TR + TR P

>
λ

dS
− rI

dS

nI λ

dSdV
( f (t, τ, σ ) + γ (t, τ, σ )) + (TR(0) + TR P (0) + TS(0) + TP N (0))e−dSt

+ 1

dS

t∫
0

rI

dS

nI λ

dSdV

{[
∂

∂u
f (u, τ, σ ) + γ (u, τ, σ )

]}
e−q(t−u)du − TS − TP N

>
λ

dS
− rI

dS

nI λ

dSdV
( f (t, τ, σ ) + γ (t, τ, σ )) + (TR(0) + TR P (0) + TS(0) + TP N (0))e−dSt

+ 1

dS

t∫
0

rI

dS

nI λ

dSdV

{[
∂

∂u
f (u, τ, σ ) + γ (u, τ, σ )

]}
e−q(t−u)du − f (t, τ, σ ) − γ (t, τ, σ )

→ λ

dS

as t → ∞ and τ → 0, for any fixed σ . ��
Theorem 2 If PIs are taken with sufficient frequency, then uninfected cells inhibited
with PIs approach the levels of CD4+ T cells in the uninfected immune system, while
all other cells approach zero. That is,

TR P + TP N → λ

dS

and TS, TI , TL , TR, TP I → 0,

as t → ∞ and σ → 0, for any fixed τ .
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Proof From (11), it follows that as σ → 0, rP P → ∞. Thus, from (8)–(9), we
have

lim
rP P→∞ f1 = ∞

lim
rP P→∞ f2 = ∞

lim
rP P→∞

f1

f2
= 0.

We also have

rP P
f1

f2
= dS(dS + rR R + m P )(dS + rP P + m R)

rR R(2dS + m P + m R + rP P + rR R)

+ m R(dS + m P )(dS + rP P + m R) + m P (dS + m R)(dS + rR R + m P )

rR R(2dS + m P + m R + rP P + rR R)
.

Thus, using L’Hôpital’s rule,

lim
rP P→∞ rP P

f1

f2
= dS(dS + rR R + m P) + m R(dS + m P )

rR R
.

Using (10), we have

lim
rP P→∞ f3 = lim

rP P→∞

[
rP P

f1

f2
− m PrP P

dS + rR R + m P

f1

f2
− m P m R

dS + rR R + m P

]

= lim
rP P→∞

[
(dS + rR R)rP P f1/ f2

dS + rR R + m P
− m P m RrR R

rR R(dS + rR R + m P )

]

= dS(dS + rR R)(dS + rR R + m P ) + m R(dS + rR R)(dS + m P )

rR R(dS + rR R + m P )

− m P m RrR R

rR R(dS + rR R + m P )

= dS(dS + rR R)(dS + rR R + m P ) + m RdS(dS + m P + rR R)

rR R(dS + rR R + m P )

= dS(dS + rR R + m R)

rR R
.
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Consequently,

lim
rP P→∞ TS = lim

rP P→∞
f1

f2
lim

rP P→∞ TR P

= 0

lim
rP P→∞ TR = lim

rP P→∞
rR RTS

dS + rP P + m R
+ lim

rP P→∞
m P TR P

dS + rP P + m R

= 0

lim
rP P→∞ TR P = λrR R

dS(dS + rR R + m R)

lim
rP P→∞ TP N = lim

rP P→∞
rP P f1/ f2 + m R

dS + rR R + m P
TR P

= (dS + m R)

rR R
TR P .

Thus

lim
rP P→∞(TR P + TP N ) = dS + m R

rR R
TR P + TR P

= dS + rR R + m R

rR R
TR P

= λ

dS
.

��
Remark Note that, since τ → 0 implies that rR R → ∞, we have

lim
rR R→∞

[
lim

rP P→∞ TP N

]
= 0

lim
rR R→∞

[
lim

rP P→∞ TR P

]
= λ

dS
.

Thus, if either, or both, drugs are taken with sufficient frequency, then nonzero cells
inhibited with drugs can maintain CD4+ T cell counts at uninfected levels.

4 Numerical simulations

While the disease-free equilibrium is globally asymptotically stable if either RTIs or
PIs are taken with sufficient frequency, in practice there are limitations on the fre-
quency of dosing and the dosage. Too much drug will be toxic for the patient. Thus,
we ran numerical simulations for realistic dosing regimens and dosages. In this case,
we simulated a realistic drug, the nucleoside RTI Didanosine, supplemented by a
low-level PI.
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When no drugs are taken, the viral load is high (≈5,015 virions/mM) and the res-
ervoir of latently cells is also high (≈132 cells/mM). The dynamics are fast, reaching
approximate equilibrium values after only 10 days (Fig. 2).

When RTIs are taken alone, the viral load is reduced to moderate levels (≈740 viri-
ons/mM) and the reservoir of latently infected cells drops to low levels (≈8.5 cells/mM)
(Fig. 3). In this case, the system does not reach equilibrium, due to impulses, but
approaches an impulsive periodic orbit. Parameters in this case simulate the nucleo-
side RTI Didanosine.

When PIs are taken alone, the viral load is high (≈1,400), but is reduced by a
factor of approximately 4 from the case of no drugs (Fig. 4). However, the reservoir
of latently infected cells is barely reduced (≈130). Note the large viral load variation
in this case.
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Fig. 2 The case of no drugs. Parameters are as in Table 1, except that Ri = 0 and Pi = 0. Initial conditions
were VI (0) = 50, TS(0) = 1, 000 and all other initial conditions zero. Inset: timecourse of solutions from
85 to 100 days, showing the long-term behaviour. The solution settles down into an endemic equilibrium
with high viral load and a high reservoir of latently infected cells
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Fig. 3 Presence of RTIs, absence of PIs. All parameters as in Table 1, except that Ri = 4.65 and Pi = 0.
Inset: timecourse of solutions from 85 to 100 days, showing the impulsive trajectories. The solution settles
down into an impulsive periodic orbit with high viral load and a low level reservoir of latently infected
cells. This level, while not zero, is significantly smaller than the level without drugs
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Fig. 4 Presence of PIs, absence of RTIs. All parameters as in Table 1, except that Ri = 0 and Pi = 1.85.
Inset timecourse of solutions from 85 to 100 days, showing the impulsive trajectories. The solution settles
down into an impulsive periodic orbit with moderately high viral load and a high reservoir of latently
infected cells. Note that this reservoir is almost unchanged from the levels without drugs

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5 x 10
4

time (days)

V
ira

l l
oa

d

85 90 95 100
0

1

2

3
x 10

-3

0 5 10 15 20 25 30
0

50

100

150

200

250

300

time (days)

La
te

nt
ly

 in
fe

ct
ed

 c
el

ls

85 90 95 100
0

0.5

1
x 10

-3

Fig. 5 The case of both drugs. All parameters as in Table 1, including Ri = 4.65 and Pi = 1.85. Inset
timecourse of solutions from 85 to 100 days, showing eradication. Both the viral load and the reservoir of
latently infected cells approach zero

When both drugs are taken, both the viral load and the reservoir of latently infected
cells are driven to zero (Fig. 5). Further simulations demonstrated that, after 200 days,
the latently infected cells were of the order of 10−13 (not shown) Note that, although
the dosing intervals are realistic (twice daily for RTIs and once daily for PIs), the
results nevertheless mimic the limiting case of infinitely frequent dosing predicted in
Sect. 3.

5 Discussion

Latently infected cells, even if they live for a maximal time and are wholly unaffected
by either major class of drug, can be eradicated by sufficiently frequent application
of existing antiretroviral drug therapy. While such cells are themselves immune from
drug effects in our model, their dependence on the viral load can result in their theo-
retical elimination, given sufficient drug application. Indeed, such elimination could
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theoretically be achieved using only one of the drugs, although in practice realistic
dosing regimens may or may not have a significant effect on reducing the latently
infected cells (Figs. 3, 4). Using drugs drawn from both major classes, of course, is
better at controlling both the virus and the latently infected cell reservoir (Fig. 5).
These findings are in line with other models, which suggest that eradication could be
achieved, if the drugs are sufficiently potent (Perelson et al. 1997).

When performing numerical simulations, we assumed that the lifespan of latently
infected cells was equal to the lifespan of healthy cells (ie dL = dS). Although viral
infection may shorten the lifespan of a latently infected cell, we consider the worst-case
scenario of a reservoir of latently infected cells that are exempt from drug inhibition
and who live as long as a healthy cell would. Similarly, latently infected cells may be
candidates for inhibition by PIs (see Aggarwala 2007; Chun and Fauci 1999), poten-
tially resulting in a new class of cells: latently infected cells inhibited with PIs, TP L ,
who become TP I cells upon activation. By ignoring such possibilities, we perhaps
underestimate the ability of PIs to control the virus. It should also be noted that, for
the parameters detailed in Figs. 2, 3, 4 and 5, the PI is significantly less optimal than the
RTI. However, even such a weak PI will still contribute to the theoretical eradication
of latently infected cells when combined with a standard RTI (Fig. 5).

In attempting to address the question of latently infected cell reservoirs, we have
ignored other potential reservoirs of HIV, such as dendritic cells, the brain, eyes, tes-
ticles, etc (Chun and Fauci 1999; Curlin et al. 2007). The extent of viral replication
in compartments other than resting CD4+ T cells in patients receiving antiretroviral
therapy for extended periods of time has yet to be fully delineated (Chun et al. 2005).
Consequently, we expect that actual elimination is not possible, but we have demon-
strated that latently infected cells, on their own, cannot sustain a reservoir of virus, if
treatment is sufficiently aggressive. We have also modelled the immune system merely
by production of antibodies, in direct response to viral load. This is an approxima-
tion that overlooks other potential reservoirs: cytotoxic T-lymphocytes, for example,
which are responsible for cell-mediated killing of infected CD4+ T cells (Smith? and
Schwartz 2008), may themselves become infected (albeit at significantly lower rates
than CD4+ T cells) and thus provide a home for future emergence of virions.

It should be noted that the equilibrium-like orbits calculated in Sect. 3.2 may not
be meaningful in a nonautonomous system. However, since the drug concentrations
R and P are bounded as t → ∞, our model is asymptotically autonomous. It fol-
lows, by the theory of asymptotically autonomous systems (Thieme 1992) that the
stability of these equilibrium-like orbits does reflect the long-term behaviour of the
system.

It should also be noted that the methods used here include sufficiently frequent
dosing of PIs. In Smith? and Wahl (2004) and Smith? (2008), it was theorised that
sufficiently frequent dosing of PIs alone may be insufficient to maintain healthy CD4+
T cell counts. While we have shown here that this will not be true in the limit, we have
nevertheless seen that, for realistic dosing regimens, PIs may be unable to reach levels
close to those required for viral eradication. Recently, these results were validated,
in a clinical study that investigated the possible replacement of triple drug therapy
with PI monotherapy, but which showed that such an alternative was not feasible
(Fernández-Montero 2008).
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Future work will examine the effect of viral blips in the context of explicit drug
dynamics, include drug resistance and address the issue of partial adherence to drug
regimens on facilitating reservoirs of virus. We will also adapt the model to account
for other viral reservoirs and more complex depictions of the immune system.

In conclusion, sufficiently aggressive treatment can control both the viral load and
also theoretically eliminate the reservoir of latently infected cells, even under the
extreme assumptions that such cells are unaffected by drugs and live as long as unin-
fected cells. While this follows from the global stability of the disease-free impulsive
orbit under infinitely frequent dosing of either drug, similar results also hold for real-
istic dosing regimens when both drugs are present. It follows that, with sufficient
application of existing antiretroviral therapy, latently infected cells cannot sustain a
viral reservoir on their own. Consequently, any such reservoir must therefore be sup-
plemented from other viral sources.
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