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1 Introduction

Impulsive differential equations have a host of applications to both biological
and physical problems [8, 12, 15, 18, 19, 24, 25, 27, 28]. Classic monographs
on the subject (see, for example, [13, 23]) preface the exposition of the theory
by writing that it is often natural to assume that sufficiently short pertur-
bations in the system occur instantaneously, since their length is negligible
in comparison with the duration of the process. A key part of the study of
these equations is the existence, uniqueness and stability of their periodic
solutions.

In the past few decades, many advances have been made in the theory of
impulsive differential equations (see [7, 14, 17, 22, 26, 29] among others) and
impulsive semidynamical systems ([2, 3, 4, 16]). The theory has therefore
undergone extensive research; as such, scientists and those in industry have
many tools with which to analyze mathematical models formulated in terms
of impulsive differential equations.

In modelling with impulsive differential equations, the standing hypothe-
sis is that these models can accurately describe continuous phenomena if the
the impulse effects occur during “short” periods of time in comparison the
overal dynamic process, to such a degree that they can be assumed to occur
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instantaneously. This hypothesis led Church and Smith? [5] to pose the fol-
lowing question: “Is it always safe to assume that sufficiently short processes
occur instantaneously?” They found that this is not always true, albeit for
a limited class of equations. They propose that an answer to this question
may lie in the study of certain functional differential equations, which they
call “impulse extension equations”.

In the present article, we extend the results of Church and Smith? as
follows. Chapter 2 contains background material on impulse extension equa-
tions. Chapter 3 pertains to initial-value problems and theorems on existence
and uniqueness of solutions. Chapter 4 is devoted to linear systems, where
it is shown that these systems admit matrix solutions that, under fairly mild
assumptions, are “invertible enough” to develop a Floquet theory for peri-
odic systems. In Chapter 5, the Floquet theorem is proven and associated
linear stability results and theorems on existence of periodic solutions are
provided. Throughout, comparisons are made to analogous results for im-
pulsive differential equations, demonstrating that the progress made here is
both consistent with and generalizes results from linear impulsive differential
equations. We conclude with a discussion.

2 Impulse extension equations

Consider an impulsive differential equation with impulses at fixed times

dx

dt
= f(t, x) t 6= τk

∆x = Ik(x) t = τk.
(1)

with t ∈ R, phase space Ω ⊂ Rn, f : Ω → Rn, Ik : Ω → Rn and sequence of
impulses τk for k ∈ Z; for the moment, we will not state any regularity re-
quirements (see, for example, the monographs [1, 13, 23] for typical regularity
requirements). We will now construct a (functional) differential equation with
continuous solutions that in some sense “approximates” the above impulsive
differential equation. It will often be notationally convenient to identify an
impulsive differential equation (1) with a triple (f, Ik, τk), where each symbol
represents the function, sequence of functions and sequence appearing in (1).
The only assumption that must be imposed at this point is monotonicity and
unboundedness of the impulse times. That is, τk < τk+1 for all k ∈ Z and
τk →∞ as k →∞. We begin with some definitions.

Definition 2.1. Consider an impulsive differential equation (f, Ik, τk) as in
(1).

• A step sequence over τk is sequence of positive real numbers ak such
that τk+ak < τk+1 for all k ∈ Z. We denote Sj = Sj(ak) ≡ [τj , τj+aj)
and S = S(ak) ≡

⋃
j∈Z Sj.



Impulse Extensions 165

• A sequence of functions ϕk : Sk × Ω→ Rn is an impulse extension for
(f, Ik, τk) compatible with ak if for all k ∈ Z and x ∈ Ω, the function
ϕk(·, x) is locally integrable and∫

Sk(ak)

ϕk(t, x)dt = Ik(x).

• Given a step sequence ak and a compatible impulse extension ϕk for the
impulsive differential equation (f, Ik, τk), the impulse extension equa-
tion associated to (f, Ik, τk) induced by (ak, ϕk) is the (functional) dif-
ferential equation

dx

dt
= f(t, x) t /∈ S

dx

dt
= f(t, x) + ϕk(t, x(τk)) t ∈ Sk.

(2)

As described by Church and Smith? [5] for linear systems specifically, dif-
ferential equations of this type can be seen as continuous versions of impulsive
systems, where the “impulse” Ik(x) is carried by the function ϕk(t, x). This
can be justified as follows. If the vector field is “turned off” artificially, so
that we set f(t, x) = 0, then a solution for t ∈ Sk of the initial-value problem
with x(τk) = xk is a solution of the differential equation

dx

dt
= ϕk(t, xk).

Consequently, a unique solution exists (see Carathéodory conditions [9]) and
is given by

x(t) = xk +

∫ t

τk

ϕk(s, xk)ds.

For t = τk + ak, we obtain

x(τk + ak) = xk + Ik(xk) = xk + ∆xk.

Therefore the impulse extension ϕk “applies” the effect of the impulse over a
finite, nonzero length of time ak. However, in reality, the vector field is not
“off”, so the other dynamics might contribute.

It is worth mentioning that the impulse extension equation (2) is not
the only way to describe an “impulsive equation with non-instantaneous im-
pulses”. Hernández and O’Regan [11], for example, consider another such
abstract impulsive differential equation for which the impulses are not in-
stantaneous. Their equation is formulated in terms of Banach spaces,

dx

dt
= Ax(t) + t(t, x(t)) t ∈ (si, ti+1]

u(t) = gi(t, u(t)) t ∈ (ti, si],
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where X is a Banach space, A : D(A) ⊂ X → X generates a C0 semigroup
of bounded linear operators on X, f : [0, a] × X → X is a suitable func-
tion, the times ti, si ∈ R satisfy the inequalities ti < si < ti+1 for all i ≥ 0,
and there are functions gi : C((ti, si] × X;X) for each i ∈ N. The primary
difference between our approach and theirs is in how the impulse effect is
specified. In their approach, solutions u : t 7→ u(t) ∈ X are required to sat-
isfy the very general X-valued equation u(t) = g(t, u(t)) for all t ∈ (ti, si]. In
ours, solutions are required to satisfy a very particular functional differential
equation, which serves to make the connection to (discontinuous) impulsive
differential equations very explicit. Since our goal was to compare impul-
sive systems to suitable continuous systems that formally resemble them,
our explicit approach is ideally suited. The drawback, of course, is the lack
of generality. It is worth mentioning that equation (2) could be posed in a
Banach-space framework, if one wished to study it in more generality (for
example, if one wanted to repeat the construction for impulsive partial dif-
ferential equations). See also the discussion in Section 3.3 for how equation
(2) can be suitably interpreted as a delay differential equation.

3 Formulations of the initial-value problem and
existence and uniqueness of solutions

One aspect that makes equation (2) interesting is that there are several in-
equivalent ways to pose initial-value problems for it. This will be the focus
of the present section.

3.1 One-point formulation

The first formulation is one that we consider to be, in a sense, most “natural”,
when viewing the impulse extension equation (2) as being derived from an
impulsive differential equation (1). This begins with a classification of the
phase space R× Ω. First, if X ⊂ Rn, we denote X◦ its interior.

Definition 3.1. Consider an impulse extension equation (2) with impulse
space S =

⋃
k[τk, τk + ak). Denote

S+ =
⋃
k∈Z

(τk, τk + ak] =
⋃
k∈Z
S+
k .

The point (t0, x0) ∈ R× Ω is

• admissible for (2) if (t0, x0) ∈ (R \ S◦)× Ω,

• indeterminate for (2) if (t0, x0) ∈ S+ × Ω,

• strongly indeterminate for (2) if (t0, x0) ∈ S◦ × Ω

• k-indeterminate for (2) for some k ∈ Z if (t0, x0) ∈ S+
k × Ω.
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Definition 3.2. A function φ : I → Rn defined on an interval I ⊂ R is a
classical solution of (2) if it satisfies the following conditions.

1. φ is absolutely continuous,

2. (t, φ(t)) ∈ R× Ω,

3. if I ∩ Sk is nonempty, then τk ∈ I,

4. φ(t) is differentiable almost everywhere in I,

5. dφ
dt (t) = f(t, φ(t)) almost everywhere on I \ S,

6. dφ
dt (t) = f(t, φ(t)) + ϕk(t, φ(τk)) almost everywhere on I ∩ Sk.

Given an initial condition

x(t0) = x0, (3)

with (t0, x0) ∈ R×Ω, the function φ(t) is a solution of the one-point initial-
value problem (2)-(3) if, in addition, φ(t0) = x0.

The reason for imposing conditions 1 and 2 should be obvious. Condition
3 guarantees that, for each time t in the domain of a solution, the evaluation of
its derivative according to equation (2) can always be determined. Conditions
4, 5 and 6 ensure that the function φ satisfies the differential equation (2)
almost everywhere.

Existence and uniqueness of solutions of the one-point initial-value prob-
lem for an admissible point can be handled similarly to ordinary differential
equations. The proof of the following lemma is obvious and is omitted.

Lemma 3.1. If f(t, x) is continuous and ϕk(t, y) is continuous in t for all
k ∈ Z and y ∈ Ω, then, for every admissible point (t0, x0), the one-point
initial-value problem (2)-(3) has a solution defined on an interval I ⊂ R. If
f is locally Lipschitz continuous in x, then there is an interval I on which
there is defined a unique solution. If t0 /∈ {τk + ak}k∈Z, then the interval I
can be chosen to contain a subinterval of the form [t0 − ε, t0 + ε] for some
ε > 0.

Forward continuation of solutions can be accomplished by similar means
as with ordinary differential equations; as the proof is nearly identical (at each
step, either t ∈ S or t /∈ S, so typical ODE arguments related to forward
continuation apply), we omit it.

Theorem 3.1. Suppose f(t, x) is locally Lipschitz continuous in x, continu-
ous in t and ϕk(t, x) is continuous in t for all k ∈ Z and x ∈ Ω. Let (t0, x0)
be admissible for (2). If φ : I → Ω is any solution of the initial-value problem
(2)-(3) defined on an interval I containing t0, then there is a unique forward
continuation of φ to a maximal forward interval of existence I+. Moreover,
if φ+ : I+ → Ω is solution of the initial-value problem and I+ is the maxi-
mal forward interval of existence, then (t, φ+(t)) approaches the boundary of
R× Ω as t approaches sup I+.



168 K. Church and R. Smith?

For an indeterminate point (t0, x0), there may be no solution x(t) of
the impulse extension equation that satisfies x(t0) = x0. We refer to such an
initial-value problem as an indeterminate initial-value problem. The following
sufficient condition for existence of a solution for the indeterminate initial-
value problem arises when one attempts to emulate the Peano existence proof
from ordinary differential equations in the impulse extension equations case.
We state it without proof, as the proof is nearly identical to the ordinary
differential equations case (see [9] for such a proof).

Theorem 3.2. Suppose f(t, x) and ϕk(t, x) are continuous. Let (t0, x0) ∈
R×Ω be k-indeterminate for the impulse extension equation (2). For α, β >
0, define the set

U(α, β) = (τk, t0 + α)×Bβ(x0)

where Bβ(x0) is the open ball of radius β centered at x0. Suppose there exist
α, β > 0 such that Bβ(x0) ⊂ Ω and

max{α, t0 − τk} ·

(
sup
U(α,β)

|f(t, x)|+ sup
U(α,β)

|ϕk(t, x)|

)
≤ β. (4)

Then there exists a classical solution x(t) of (2) that is defined on [τk, t0 +α]
and satisfies x(t0) = x0. That is, a solution of the one-point initial-value
problem x(t0) = x0 exists.

The “usual” proof fails because the maximum term on the left of (4)
cannot necessarily be made sufficiently small by an appropriate choice of α,
and because U(α, β) does not become arbitrarily small when we take α and
β small. As an example of this failure in action, consider the following simple
(linear) example.

Example 3.1.

dx

dt
= 0 t /∈ S

dx

dt
= −x(3k) t ∈ [3k, 3k + 2).

(5)

Let us attempt to solve the initial-value problem x(1) = x1 for arbitrary
x1 ∈ R. By definition of a classical solution, this amounts to finding a
solution x(t) that satisfies x(0) = x0 for some x0 ∈ R and x(1) = x1. It
is easy to check that for, x0 ∈ R, the solution of the initial-value problem
x(0) = x0 is

x(t;x0) =


(1− t)x0 t ∈ [0, 2)
−x0 t ∈ [2, 3)

−(4− t)x0 t ∈ [3, 5)
x0 t ∈ [5, 6),
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extended periodically with period 6. However, note that x(1;x0) = 0 for
all x0 ∈ R. Consequently, there is no solution of the initial-value problem
x(1) = x1 for x1 6= 0. There are however infinitely many solutions to the
initial-value problem x(1) = 0.

Consistent with this is the form that equation (4) takes. We find that, for
this equation, for t0 = 1 and x1 ∈ R, we require

max{α, 1} · (|x1|+ β) ≤ β.

However, this obviously fails for all x1 6= 0. Conversely, when x1 = 0, the
inequality holds for all α ≤ 1, so Theorem 3.2 implies the existence of a
solution x(t) of the impulse extension equation satisfying x(1) = 0. The
results of the theorem are therefore consistent with the above analysis.

Under this formulation of the initial-value problem, we take a single point
as the initial condition. The result is that some initial-value problems are
well-posed, while others are not. Specifically, a one-point initial-value prob-
lem with an admissible initial condition is well-posed under fairly typical
regularity requirements, while those with indeterminite initial conditions are
not.

3.2 Two-point formulation

By doubling the dimension of the ambient space Ω, the impulse extension
equation (2) can be converted into an impulsive differential equation, some of
whose solutions will in fact be solutions of one-point initial-value problems.

Consider the impulse extension equation (2). If X ⊂ R, we denote by
1X(t) the indicator function on the set X. Define the function Φ : R×Ω→ Ω
by

Φ(t, y) =

∞∑
k=−∞

1Sk(t) · ϕk(t, y).

Consider now the impulsive differential equation

dx

dt
= f(t, x) + Φ(t, y) t 6= τk

dy

dt
= 0 t 6= τk

∆x = 0 t = τk

∆y = x− y t = τk,

(6)

where (x, y) ∈ Ω× Ω.
We will discuss the structure of equation (6). If t /∈ S, then Φ(t, y) = 0,

so the solutions are govered by the ordinary differential equation

dx

dt
= f(t, x) t /∈ S

dy

dt
= 0 t /∈ S.
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If t = τk, then any solution (x(t), y(t)) satisfies x(τ+
k ) = x(τk) and y(τ+

k ) =
x(τk). Consequently, for t ∈ S◦k , since Φ(t, y) = ϕk(t, y), solutions satisfy the
ordinary differential equation

dx

dt
= f(t, x) + ϕk(t, x(τk)) t ∈ Sk

dy

dt
= 0 t ∈ Sk.

The above two differential equations are essentially the impulse extension
equation (2) except with an extra component for the ẏ equation. An initial-
value problem for this impulsive differential equation with initial data t0 ∈ R
and (x0, y0) ∈ Ω × Ω then requires finding a solution (x(t), y(t)) of (6) that
satisfies x(t0) = x0 and y(t0) = y0. That is, we now require two points in
the ambient space Ω.

It can be verified that if x(t) is a classical solution (as in Definition 3.2)
of the impulse extension equation (2) defined on some interval I ⊂ R, then
the function (x(t), y(t)) with

y(t) =
∑
τk∈I

1[τk, τk+1)(t) · x(τk),

is a solution of (6).1

Therefore all classical solutions of (2) can be seen as solutions of the
impulsive system (6). However, the converse is not true. Specifically, the
following proposition is easily verified.

Proposition 3.1. Suppose Z(t) = (x(t), y(t)) is a solution of (6) defined on
some I ⊂ R. Then x(t) is a classical solution of (2) if and only if inf I /∈ S◦
and, for all τk ∈ I, there exists vk ∈ Ω such that Z(τ+

k ) = (vk, vk).

In this way, we see that a classical solution x(t) of the initial-value prob-
lem (2)-(3) with k-indeterminate initial data (t0, x0) is in fact a solution
(possibly with domain restricted) of the parameterized family of boundary
value problems (6)-(7)

Z(t0) = (x0, v)

Z(τ+
k ) = (v, v)

(7)

with parameter v ∈ Ω, where we have used the notation appearing in Propo-
sition 3.1.

The advantage of this formulation is that it allows techniques of impulsive
differential equations and non-autonomous dynamical systems to be used,
since then, under suitable regularity, solutions of an initial-value problem
with initial time t0 will be defined for all time t ≥ t0. Unfortunately, the set

1As a note of possible clarification, if inf I = τk − α and τk − α > τk−1, then we may
define y(t) = c, where c is any constant, for τk − α ≤ t < τk.
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of techniques of impulsive differential equations that are applicable is slightly
limited. Specifically, since the jump operator is linear and non-invertible, im-
pulsive Floquet theory [1] is not applicable. Consequently, inferring stability
or instability of a periodic orbit in a nonlinear system becomes more compli-
cated.

3.3 Infinite-dimensional formulation

Equation (2) can naturally be interpreted as a delay differential equation
with variable delay. Specifically, we write the differential equation in the
equivalent form

dx

dt
= f(t, x(t)) +

∞∑
k=−∞

1Sk(t)ϕk(t, x(t− r(t))), (8)

where r : R→ [0, sup ak] is defined by

r(t) =

{
t− τk t ∈ Sk

0 t /∈ S.

Definition 3.3. A function φ : I → Rn defined on an interval of the form
I = [t0− sup ak, t0 +A] for some t0 ∈ R and A > 0 is a quasi-solution of the
impulse extension equation (2) if it satisfies the following conditions.

1′. φ is absolutely continuous,

2′. (t, φ(t)) ∈ R× Ω,

3′. φ(t) is differentiable almost everywhere in [t0, t0 +A] and satisfies equa-
tion (8) almost everywhere on this interval.

Existence of a solution at t0 ∈ R with initial data x0 ∈ C([− sup ak, 0],Rn)
can then be considered in the typical way; see [10], for example. It is also
easy to see that every classical solution generates a family of quasi-solutions.

This construction is somewhat artificial and is presented mainly because
it is one of the most general ways in which an initial-value problem for the
impulse extension equation (2) can be posed.

4 Linear impulse extension equations

For the rest of this paper, we will be working with the one-point formula-
tion of the initial-value problem. We now consider linear impulse extension
equations, beginning with a definition.
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Definition 4.1. An impulse extension equation is linear is it is of the form

dx

dt
= A(t)x+ g(t) t /∈ S

dx

dt
= A(t)x+ g(t) + ϕBk (t)x(τk) + ϕhk(t) t ∈ Sk,

(9)

ϕk(t, x) = ϕBk (t)x + ϕhk(t) is an impulse extension, and the following condi-
tions are met:

• The functions A : R → Rn×n and g : R → Rn are bounded and mea-
surable on all compact subsets of R.

• The functions ϕBk : Sk → Rn×n and ϕhk : Sk → Rn are bounded and
measurable for all k ∈ Z.

Let us present some examples of linear impulse extensions. It will be
assumed that the phase space is Rn. For these examples, we will let ∆x =
Ik(x) = Bkx+ hk be a linear jump condition to be described by an impulse
extension, with impulse times τk.

Example 4.1. Perhaps the simplest impulse extension is the constant ex-
tension. Given a compatible step sequence ak, the constant extension is the
pair (ϕBk , ϕ

h
k) defined by

ϕBk (t) =
1

ak
Bk, ϕhk(t) =

1

ak
hk.

It is easy to verify that the function ϕk(t, x) = ϕBk (t)x+ϕhk(t) constitutes an
impulse extension for any impulsive differential equation with the affine jump
∆x = Bkx+ hk. The extension is linear because of the above decomposition.

Example 4.2. Impulse extensions can be constructed from matrix exponen-
tials. For each k ∈ Z, let Mk and Nk be n × n matrices all of whose eigen-
values have positive real part. Given a square matrix H, define the function

Ck(t;H) =
ak

(τk + ak − t)2
H exp

(
−H

(
t− τk

τk + ak − t

))
.

Then we can construct a linear extension (ϕBk , ϕ
h
k) as follows:

ϕBk (t) = Ck(t;Mk)Bk ϕhk(t) = Ck(t;Nk)hk.

We now show that this defines a valid impulse extension. These functions are
each bounded on Sk, so it suffices to show that

∫
Sk Ck(t;H)dt = E whenever

all eigenvalues of H have positive real part, for then, we will have∫
Sk
ϕBk (t)x+ ϕhk(t)dt = EBkx+ Ehk = Bkx+ hk
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as required. We calculate∫
Sk
Ck(t;H)dt = H

∫ τk+ak

τk

ak
(τk + ak − t)2

exp

(
−H

(
t− τk

τk + ak − t

))
dt

= H

∫ ak

0

ak
(ak − u)2

exp

(
−H

(
u

ak − u

))
du

= H

∫ ∞
0

exp(−Hr)dr

= E,

where the fourth equality follows by the eigenvalues of H having positive real
part. We conclude that the pair (ϕBk , ϕ

h
k) defines a linear impulse extension.

In fact, for each k, we have a choice; the function ϕBk (t) = BkCk(t;Mk) is
another suitable candidate for the matrix-valued part ϕBk .

4.1 Existence and uniqueness of solutions

We establish here the existence and uniqueness of solutions of the linear im-
pulse extension equation (9). Lemma 3.1 is not applicable since the functions
appearing in (9) are in general not continuous, so we must use alternative
techniques. This being said, the proofs are simple but tedious. They may be
found in the appendix.

Lemma 4.1. Let (t0, x0) be admissible for (9). Then the initial-value prob-
lem for (9) with τk−1 + ak−1 < t0 ≤ τk with initial condition x(t0) = x0 has
a unique solution defined for all t > τk−1 + ak−1.

With impulsive differential equations, the condition required for unique-
ness of solutions is det(E + Bk) 6= 0, where the impulse condition is ∆x =
Bkx+ hk at time t = τk. The condition for (9) is similar.

Lemma 4.2. Let (t0, x0) be k-indeterminate for (9). The initial-value prob-
lem for (9) with initial condition x(t0) = x0 has a solution if and only if

X−1(t0; τk)x0 −
∫ t0

τk

X−1(s; τk)
[
g(s) + ϕhk(s)

]
ds

is in the range of L(t0; τk), where for t0 ∈ Sk, L(t0, τk) is defined by

L(t0; τk) ≡ E +

∫ t0

τk

X−1(s; τk)ϕBk (s)ds, (10)

and X(t; s) is the Cauchy matrix of the homogeneous ordinary differential
equation x′(t) = A(t)x. If a solution exists, then it exists for all t > τk−1 +
ak−1. The solution is unique for t ≥ τk−1 +ak−1 if and only if detL(t0; τk) 6=
0.
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By combining the above two lemmas, we can state a global existence,
uniqueness and continuability result.

Theorem 4.1. For (t0, x0) ∈ R × Rn, the initial-value problem for (9)with
initial condition x(t0) = x0 has a unique solution defined for all t ∈ R if and
only if one of the following is satisfied:

• t0 ∈ [τk + ak, τk+1] and detL(τj + aj ; τj) 6= 0 for all j ≤ k,

• t0 ∈ S◦k , detL(t0; τk) 6= 0 and detL(τj + aj ; τj) 6= 0 for all j < k.

Moreover, all solutions defined locally are uniquely continuable to R if and
only if detL(τk + ak; τk) 6= 0 for all k ∈ Z.

With linear impulsive differential equations, to have global existence and
uniqueness of solutions for all initial-value problems, we require

det(E +Bk) 6= 0

for all k [1], where the “homogeneous part” of the jump condition is given
by ∆x = Bkx. With impulse extension equations, we require

det

(
E +

∫ t

τk

X−1(s; τk)ϕBk (s)ds

)
for all k and all t ∈ (τk, τk + ak], where the “homogeneous part” of the
impulse extension is given by ϕBk (t). Formally, in the determinant conditions
above, the integrals in the extension case play the role of the matrix Bk in
the impulsive case. In the limiting case where

ϕBk (t) = δ(t− τk)Bk,

and δ(t) is the Dirac delta function, we have∫ t

τk

X−1(s; τk)ϕBk (s)ds =

∫ t

τk

δ(s− τk)X−1(s; τk)Bkds

= X−1(τk; τk)Bk

= EBk

= Bk

for t > τk. Therefore, in the limiting case of an impulsive differential equa-
tion, the existence and uniqueness criteria reduce to the impulsive existence
and uniqueness conditions. In this sense, the conditions are consistent.
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4.2 The homogeneous equation, matrix solutions and
the predictable set

In this section, we will be interested in matrix solutions of the homogeneous
impulse extension equation (11),

dx

dt
= A(t)x t /∈ S

dx

dt
= A(t)x+ ϕBk (t)x(τk) t ∈ Sk.

(11)

associated to the inhomogeneous equation (9). By Theorem 3.5, existence
of a unique solution to a k-admissible initial-value problem x(t0) = x0 is
equivalent to the invertibility of L(t0; τk). In general, this is not satisfied for
all times t0 ∈ Sk, as can be verified by considering Example 3.1, where one
finds that L(1; 0) = 0. Since we will soon be interested in the stability of
periodic equations, this observation suggests our matrix solutions will not,
in general, be invertible everywhere. We begin with a definition.

Definition 4.2. A function U : I ⊂ R → Rn×n is a matrix solution of the
homogeneous impulse extension equation (11) if the following conditions are
satisfied.

1. For all x0 ∈ Rn, x(t) = U(t)x0 is a solution of (11).

2. U(t∗) is nonsingular for some t∗ ∈ I.

A matrix solution U(t) is maximal if there is no matrix solution V : I+ →
Rn×n with I+ ) I such that U(t) = V (t) on I.

We remark that U(t) is a matrix solution if and only if it satisfies the
matrix impulse extension equation

U ′(t) = A(t)U(t) t /∈ S
U ′(t) = A(t)U(t) + ϕBk (t)U(τk) t ∈ Sk,

(12)

and there is at least one time t∗ at which U(t∗) is invertible. Notice that
matrix solutions always exist, because one can construct one by choosing any
t0 ∈ R \ S+ and solving the set of n initial-value problems

xi(t0) = ei,

and then, U(t) = [x1(t) · · ·xn(t)] is a matrix solution. The standard basis
{ei} can of course be replaced by any basis, and the result holds.

One property of fundamental matrix solutions used in the classical proof
of Floquet’s theorem (of which we prove an analogue later) is that, for any
two fundamental matrix solutions X(t) and Y (t), there is a unique invertible
matrix C such that Y (t) = X(t)C for all t ∈ R. In the classical case,
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fundamental matrices are invertible everywhere, so one can simply choose
C = X−1(0)Y (0). However, it is not the case that a matrix solution need be
invertible everywhere, so this may not be possible. Because this property is
so crucial, we state a definition.

Definition 4.3. Let U denote the set of all maximal matrix solutions for
the homogeneous equation (11). U satisfies the uniqueness property if, for
each pair X(t), Y (t) ∈ U , there exists a unique invertible matrix C such that
Y (t) = X(t)C whenever t is in the domain of both X and Y .

The uniqueness property is satisfied under fairly mild conditions. The
following notion will be central to both this, and later, stability results.

Definition 4.4. The predictable set, P ⊂ R, of a linear impulse extension
equation (9), is the set of all t0 ∈ R such that, for any x0 ∈ Rn, (9) has a
unique local solution x : I → Rn with inf I < t0, satisfying x(t0) = x0.

We have the following proposition, which follows directly from Lemma
4.2.

Proposition 4.1. Define the map p : S+ → R by

p(t) = detL(t; max{τk : τk ≤ t}),

where one will recall that S+
k = (τk, τk + ak] and S+ =

⋃
k S

+
k . Then

P = R \ p−1(0).

The utility of the predictable set is that it it precisely the set on which
any matrix solution can hope to be invertible.

Lemma 4.3. Let U : I → Rn×n be a matrix solution of the homogeneous
IEE (11). If U(t0) is invertible and inf I < t0, then t0 is predictable; that is,
t0 ∈ P. Also, if this is the case, then U(t)U−1(t0)x0 is, locally, the unique
solution of the initial-value problem x(t0) = x0.

Proof. Suppose U(t0) is invertible. Then, for all x0 ∈ Rn, the function

x(t;x0) = U(t)U−1(t0)x0

is a solution of the homogeneous equation satisfying x(t0;x0) = x0. If (t0, x0)
is k-indeterminate and U is defined for some t < t0 (which, by hypothesis,
it is) it follows by Lemma 4.2 that L(t0; τk) must have full rank because
the indeterminate initial-value problem x(t0) = x0 has a solution for any
x0 ∈ Rn. Therefore detL(t0; τk) 6= 0, so that t0 ∈ P. Conversely, if t0 /∈ S+,
then t0 ∈ P; see Proposition 4.1. It follows that U(t)U−1(t0)x0 is, locally,
the unique solution of the IVP x(t0) = x0 because of Lemma 4.2.
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The converse to this statement is not, in general, true. It is possible for
t0 to be predictable and for a matrix solution U(·) to be non-invertible at t0,
even if U(t) exists for some t < t0. There is a situation in which the converse
holds, however. If each “endpoint” of impulse effect, τk + ak, is predictable,
then the predictable set is precisely where any maximal matrix solution will
be invertible. As an added benefit, the uniqueness property holds and any
maximal matrix solution is defined on the entire real line.

Theorem 4.2 (Predictable Endpoints). The following are equivalent.

1. τk + ak ∈ P for all k ∈ Z; that is, every endpoint of the impulse effect
is predictable.

2. Every maximal matrix solution of the homogeneous equation (11) has
domain equal to R.

3. The set of maximal matrix solutions of the homogeneous equation (11)
satisfies the uniqueness property.

4. Any matrix solution is invertible at t ∈ R if and only if t ∈ P.

Proof. We demonstrate several equivalences and implications. First, we show
that Statements 1 and 2 are equivalent. We then show that these two together
imply Statement 4. We then proceed to show that Statement 4 impllies
Statement 3, which implies Statement 2, which implies Statement 1. These
results prove the theorem.

(1 ⇔ 2) First, by Theorem 4.1 and Proposition 4.1, Statements 1 and 2
are equivalent. Indeed, the first of these results states that any local solution
of (11) is uniquely continuable to R if and only if detL(τk + ak; τk) 6= 0 for
all k ∈ Z. This is precisely the statement that τk + ak ∈ P for all k, by the
latter proposition. Since the columns of a matrix solution are all solutions
of (11), these statements remain true if “solution” is replaced with “matrix
solution”.

(1 and 2 ⇒ 4) Suppose t0 ∈ P ∩ S+
k . By Statements 1 and 2, we have

detL(t0; τk) 6= 0 and detL(τj + aj ; τj) 6= 0 for all j ∈ Z. By Theorem
4.1, there is a unique, global solution of the initial-value problem x(t0) = 0.
Suppose the conclusion is false, so that U(t0) is not invertible. Then there
are two distinct x, y ∈ Rn for which U(t0)x = 0 = U(t0)y. By definition of
the matrix solution, both U(t)x and U(t)y are solutions of the initial-value
problem x(t0) = 0, and, since U(t∗) is invertible for some t∗, these solutions
are distinct because U(t∗)x 6= U(t∗)y, which is a contradiction. We conclude
that U(t0) is invertible. An identical argument serves to prove the result for
t0 ∈ P \ S+. Therefore U(t) is invertible on P. The converse has previously
been established in Lemma 4.3.

(4 ⇒ 3) Let X(t) and Y (t) be two maximal matrix solutions. Define
C = X−1(τ0)Y (τ0), which exists and is invertible by Statement 4. We will
show that Y (t) = X(t)C. Define the function Z(t) = Y (t) − X(t)C. It is
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easily verified that Z(t) is a solution of the matrix impulse extension equation
(12) and, by construction, that Z(τ0) = 0. The unique solution of the initial-
value problem x(τ0) = 0 of the homogeneous equation is precisely the trivial
solution, x(t) = 0; see Theorem 4.1. Since each column z(t) of Z(t) is
a solution of the homogeneous equation and z(τ0) = 0, we conclude that
Z(t) = 0 and, consequently, that Y (t) = X(t)C. Uniqueness is clear.

(3 ⇒ 1) Finally, we demonstrate that Statement 3 implies Statement
1. Suppose not; that is, the set of maximal matrix solutions satisfies the
uniqueness property, but there exists an integer k such that τk +ak /∈ P. Let
Y (t) be a matrix solution that satisfies Y (τk + ak) = E, and let X(t) be the
matrix solution that satisfies X(τk) = E, where E is the appropriate identity
matrix. By the discussion following Definition 4.2, these matrix solutions
exists. By the uniqueness property, there exists an invertible matrix C such
that X(t) = Y (t)C. However, one finds by Theorem 4.1 that X(τk+ak) does
not have full rank, which is a contradiction, because Y (τk +ak)C = EC = C
has full rank.

Another reason the predictable endpoints condition is useful is the fol-
lowing obvious corollary.

Corollary 4.3. Let τk + ak ∈ P for all k ∈ Z. The set of all maxi-
mal solutions of the homogeneous impulse extension equation (11) is an n-
dimensional, real vector space with the usual operations.

Finally, the structure of solutions of the inhomogeneous equation (9) can
be described in terms of those of the homogeneous equation (11). The fol-
lowing proposition should be familiar, and we omit the proof.

Proposition 4.2. The following statements hold.

1. Let u, v denote two solutions of the inhomogeneous equation (9). Then
u− v is a solution of the corresponding homogeneous equation (11).

2. Let x be a solution of the inhomogeneous equation (11) and let t∗ be in
its domain. Then

x(t) = xh(t) + x0(t),

where xh is a solution of the homogeneous equation satisfying xh(t∗) =
x(t∗) and x0 is a solution of the inhomogeneous equation satisfying
x0(t∗) = 0. If U(·) is a matrix solution invertible at t∗, then xh and x0

are unique, and
xh(t) = U(t)U−1(t∗)x(t∗).

5 Linear periodic equations

Definition 5.1. A linear impulse extension equation is periodic with period
T and cycle number c if the following identities are satisfied:
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P5.1 A(t) and g(t) are T periodic,

P5.2 c ∈ N is the smallest integer for which τk+c = τk + T , ak+c = ak and
the shift property

ϕαk+c(t+ T ) = ϕαk (t)

holds for all t ∈ Sk and integers k, where α ∈ {B, h} and (ϕBk , ϕ
h
k) is

the linear extension pair.

We will call these statements together condition [P]. This definition can
be obviously extended to the general impulse extension equation (2). Be-
fore delving into the main results, we show that condition [P] simplifies the
description of the predictable set.

Lemma 5.1. If condition [P] holds, then t ∈ R is predictable if and only if
t+ T is.

Proof. We have, using the properties [P] described in Definition 5.1,

L(t+ T ; τk+c) = E +

∫ t+T

τk+c

X−1(s; τk+c)ϕ
B
k+c(s)ds

= E +

∫ t+T

τk+T

X−1(s; τk + T )ϕBk+c(s)ds

= E +

∫ t

τk

X−1(s+ T ; τk + T )ϕBk+c(s+ T )ds

= E +

∫ t

τk

X−1(s; τk)ϕBk (s)ds

= L(t; τk).

Therefore, by Proposition 4.1, if t ∈ S+, then t ∈ P if and only if t+ T ∈ P.
Since R \ S+ ⊂ P and (R \ S+) + T = R \ S+, the lemma is proven.

5.1 Homogeneous equations

We will prove a generalization of Floquet’s theorem for the periodic homo-
geneous impulse extension equation (11).

Theorem 5.1. Let the condition [P] hold and suppose τk + ak is predictable
for all k ∈ Z. Then each matrix solution U(t) of the homogeneous periodic
impulse extension equation (11) can be respresented in the form

U(t) = φ(t)eΛt, (13)

where Λ ∈ Cn×n is constant and the matrix φ(·) is differentiable almost
everywhere, complex-valued, T -periodic and non-singular on P.
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Proof. Let U(t) be a matrix solution. We claim first that U(t + T ) is also
a matrix solution. We show this by demonstrating that Y (t) = U(t + T )
satisfies (12). For t /∈ S, we have

dY

dt
(t) = A(t+ T )U(t+ T ) = A(t)Y (t),

and, for t ∈ Sk, if we remark that t + T ∈ Sk+c and τk+c = τk + T (see
Definition 4.1), then

dY

dt
(t) = A(t+ T )U(t+ T ) + ϕBk+c(t+ T )U(τk+c) = A(t)Y (t) + ϕBk (t)Y (τk).

So Y (t) satisfies (12) and therefore Y (t) = U(t + T ) is a matrix solution.
By the uniqueness property, let M be the unique invertible matrix such that
U(t+ T ) = U(t)M . Define the following:

Λ =
1

T
lnM

φ(t) = U(t)e−Λt.
(14)

Note that Λ exists since M is non-singular [9], although it need not be unique
(however, any logarithm will suffice). With these representations, formula
(13) holds, and we have

φ(t+ T ) = U(t+ T )e−Λ(t+T ) = U(t)Me−ΛT e−Λt = U(t)e−Λt = φ(t),

so φ(t) is T -periodic. It has the same regularity as U(t), and is therefore
differentiable almost everywhere. Since U(t) is invertible on P, φ(t) is as
well.

As usual, if one wishes to have this representation in terms of real matri-
ces, then the choice of

Λ =
1

2T
lnM2

and
φ(t) = U(t)e−Λt

would satisfy (13) and these matrices would be real; however, φ(t) would be
2T -periodic.

Definition 5.2. The eigenvalues of the matrix M appearing in (14) are
called the Floquet multipliers of the periodic IEE.

It is not difficult to verify that the Floquet multipliers do not depend on
the choice of matrix solution used to calculate M ; choosing another matrix
solution X1(t) and using this to derive the matrix M1, one finds that M and
M1 are similar.

As they do with ordinary and impulsive differential equations, the Floquet
multipliers of a linear, homogeneous periodic equation characterize both its
stability and the existence of periodic solutions.
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Corollary 5.2. Let the IEE (11) satisfy condition [P] with period T . This
IEE has a kT -periodic solution if and only if there exists a multiplier µ ∈
σ(M) such that µk = 1.

Proof. Without loss of generality, let τ0 = 0. We seek conditions under which
U(kT )x0 = U(0)x0 for some x0, for this is precisely the condition under which
we have a kT -periodic solution. By Theorem 5.1, this is equivalent to having
φ(0)eΛkTx0 = φ(0)x0. Since 0 ∈ P and Λ = 1

T lnM , this is equivalent to
Mkx0 = x0. The result follows.

Corollary 5.3. Let τk + ak ∈ P for all k ∈ Z. Let N ⊆ P be a subset of the
predictable set. The linear homogeneous IEE is

• asymptotically stable2 on N and uniformly attracting on R if and only
if ρ(M) < 1,

• stable on N if and only if ρ(M) ≤ 1 and, for any eigenvalue µ of M with
unit modulus, the geometric and algebraic multiplicities of µ coincide.

• Suppose N is bounded and separated from R\P. The above results hold
with uniform stability.

• Suppose, for all t0 ∈ N , there exists t̂0 ∈ [τ0, τ0 + T ] ∩ N such that
t0 = t̂0 + jT for some j ∈ Z. If N and R \ P are separated, the above
results hold with uniform stability.

Proof. We will prove the uniform attractivity first. Let x(t) and y(t) be
two solutions of (11). Since U(τ0) is nonsingular, we must have x(t) =
U(t)U−1(τ0)x(τ0) and y(t) = U(t)U−1(τ0)y(τ0) by Lemma 4.3. Then

x(t)− y(t) = U(t)U−1(τ0) · [(x(τ0)− y(τ0)].

It follows that x(t) is uniformly attracting on R if and only if U(t) → 0 as
t → ∞. By the Floquet factorization U(t) = φ(t)eΛt, since φ is continuous
and T -periodic, this occurs if and only if Re(σ(Λ)) < 0, or, equivalently,
ρ(M) < 1.

We now prove stability results. Note that, by the previous calculation,
it suffices to check the stability of the trivial solution x = 0. Let N ⊆ P.
By Lemma 4.3 and Theorem 5.1, the solution of the initial-value problem
x(t0; t0, x0) = x0 for t0 ∈ N can be written

x(t; t0, x0) = φ(t)eΛtKt0x0,

where Kt0 = e−Λt0φ−1(t0). Since φ(t) is periodic, all solutions remain
bounded for all t ≥ t0 if and only if ||eΛt|| ≤ K for some constant K > 0,

2Note that, here, it is important to specify stability with respect to specific initial times.
That is, a solution x(t) is stable at t0 if, given ε > 0, solutions y(t) that are within δ(ε, t0)
of x(t) at time t = t0 remain within ε of x(t) for all t ≥ t0. Asymptotic stability and
attractivity are defined analogously and uniform properties are properties for which δ can
be chosen independently of t0.
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which is true if and only if all eigenvalues of Λ have negative real parts and any
eigenvalue λ with zero real part has geometric multiplicity equal to its alge-
braic multiplicity [9]. Since exp : C→ C is holomorphic and M = exp(ΛT ),
the spectral mapping theorem (see [20], Theorem 2.1.10) implies that any
eigenvalue mj of M is of the form mj = eλjT for an eigenvalue λj of Λ, with
multiplicities preserved. These will all have modulus less than or equal to one
if and only if the eigenvalues of Λ all have real part less than or equal to zero,
thus establishing the required equivalence of ρ(M) ≤ 1 with Re(σ(Λ)) ≤ 0.
If this condition is satisfied, then if ε > 0 is given and

δ =
ε

K||Kt0 ||max||φ(·)||
,

then ||x0|| < δ implies ||x(t; t0, x0)|| < ε for all t ≥ t0, so we have stability.
Note that δ exists since φ(t) is bounded and nonzero. Conversely, if any
multiplier has modulus greater than 1, then Λ has an eigenvalue with positive
real part and at least one column of eΛt grows without bound, so we have
instability. Since these results hold for any t0 ∈ N , the stability results
follow.

We now deal with uniform stability, under the assumptions that N is
bounded separated from R\P. As in the proof of (non-uniform) stability, let
x(t; t0, x0) denote the solution of the initial-value problem x(t0; t0, x0) = x0,

for t0 ∈ N . As before, we write Kt0 = e−Λt0φ−1(t0). The quantity K̂ =
supt0∈N ||Kt0 || exists, since t0 7→ φ(t0) is continuous and is only singular at
t0 ∈ R\P, which is separated from the bounded set N . The rest of the proof
proceeds as above, where we ensure ||eΛt|| ≤ K for t ≥ t0 ≥ inf N and take

instead δ = ε/(KK̂ max ||φ(·)||). Since δ is independent of t0, the result is
proven.

If N is not bounded but every t0 ∈ N can be written t̂0 + jT = t0 for
some t̂0 ∈ [τ0, τ0 + T ] ∩ N , it suffices to prove uniform stability for initial
conditions t0 ∈ [τ0, τ0 + T ] ∩N . This last follows by periodicity of equation
(11). The proof is nearly identical to the above, except that we take instead

K̂ = supt0∈[τ0,τ0+T ]∩N ||Kt0 || and ensure that ||eΛt|| ≤ K for t ≥ t0 ≥ τ0.

To determine stability on the predictable set of the periodic IEE, all that
is needed is a monodromy matrix M and its eigenvalues. As can be verified
by the variation of constants formula for ordinary differential equations (see
later the proof of Proposition 5.1 for a similar calculation), the solution of
(11) satisfying x(τ0) = x0 is given by, for t ∈ [τk, τk+1),

x(t;x0) = Y (t)x0 := X(t; τk)L(t; τk)

[
0∏

r=k−1

X(τr+1; τr)L(τr + ar; τr)

]
x0,

(15)

where t = min{t, τk + ak}, X(t; s) is the Cauchy matrix of x′(t) = A(t)x
and L(t; s) is defined as in (10). Using this, we can construct a monodromy
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matrix, since the above expression implies that Y (t) is a matrix solution. We
have Y (τ0) = I, so the monodromy matrix isM = Y −1(τ0)Y (T+τ0) = Y (τc).
Therefore

M =

0∏
k=c−1

X(τk+1; τk)L(τk + ak; τk), (16)

where c is the cycle number.
Outside of the predictable set, a subspace of solutions can merge into a

single point, so that any of these solutions is within any δ > 0 of another,
no matter how small δ is. However, as time progresses and the predictable
set is reached, these solutions that have merged must once again split off.
However, making δ smaller has no effect on how far apart these solutions can
drift. Hence stability is not present at “unpredictable” times.

5.2 Inhomogeneous equation

We next deal with stability of the inhomogeneous equation. This is deter-
mined completely by the associated homogeneous equation.

Corollary 5.4. Consider a linear inhomogeneous periodic equation (9). Let
condition [P] hold, let τk + ak ∈ P for all k ∈ Z, and let M denote the
monodromy matrix of the associated homogeneous equation. Then the inho-
mogeneous equation (9) has the same stability properties as the homogeneous
equation (11), as determined in Corollary 5.3.

Proof. Let x(t) and y(t) be solutions satisfying x(t0) = x0 and y(t0) = y0

respectively. It is simple to verify that z(t) = x(t) − y(t) is a solution of
the associated homogeneous equation (11) satisfying z(t0) = x0 − y0. If
t0 ∈ P and U(t) is the matrix solution of the homogeneus equation satisfying
U(t0) = E, then

x(t)− y(t) = U(t)(x0 − y0).

Therefore stability of the linear equation (9) is completely determined by the
stability of the homogeneous equation (11), which is furnished by Corollary
5.3.

Now we turn our attention to the existence of periodic solutions of the
inhomogeneous equation (9). We require an analytical respresentation of its
solutions. The following proposition will suffice.

Proposition 5.1. Consider the linear impulse extension equation (9). For
each integer k ≥ 1, there exists vk ∈ Rn such that the solution x(t;x0) of the
initial-value problem x(τ0) = x0 can be written

x(τk;x0) =

 0∏
j=k−1

X(τj+1, τj)L(τj + aj , τj)

x0 + vk = U(τk; τ0)x0 + vk,
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where X(t, s) is the Cauchy matrix of the homogeneous ordinary differential
equation ẋ = A(t)x, L(t, s) is as defined in (10) and U(t; τ0) is a principal
matrix solution at τ0 of (11). Specifically, the vk are independent of x0 and
are generated by the recurrence relation

v0 = 0

vk+1 = X(τk+1, τk)L(τk + ak, τk)vk +X(τk+1, τk)Qk

Qk =

∫ τk+1

τk

X−1(s, τk)g(s)ds+

∫
Sk
X−1(s, τk)ϕhk(s)ds.

We defer the proof of this proposition to the appendix, since the existence
of such vk is guaranteed by Proposition 4.2 and the explicit recurrence rela-
tion is provided by a tedious inductive argument along with the variation of
constants formula for ordinary differential equations.

Theorem 5.5. Consider a linear, periodic impulse extension equation (9)
with period T and cycle number c. This equation has a unique T -periodic
solution if and only if det(E −M) 6= 0, where M is as in equation (16).

Proof. By the periodic structure of (9) guaranteed by the conditions [P],
x(t;x0) is a T -periodic solution satisfying x(τ0) = x0 if and only if

x(τ0 + T ;x0) = x0 = x(τ0;x0).

By the identity τc = τ0+c = τ0+T , this is equivalent to having x(τc;x0) = x0.
By Proposition 5.1 and equation (16), we have the representation

x0 = x(τc;x0) =

 0∏
j=c−1

X(τj+1, τj)L(τj + aj , τj)

x0 + vc = Mx0 + vc.

Equivalently,

(E −M)x0 = vc. (17)

The above equation has a unique solution x0 and, consequently, a unique
periodic solution exists if and only if det(E −M) 6= 0. Equivalently, M has
no eigenvalues equal to 1.

Notice that the predictable endpoints condition is not necessary here,
because any solution x(t) defined on the interval [τ0, τ0 + T ] and satisfying
x(τ0) = x(τ0 + T ) is uniquely continuable to a periodic soluton on R. This
is because of how condition [P] is specified.

Theorem 5.5 provides an impulse extensions analogue of the “non-critical
case” from impulsive differential equations. The “critical case”, where det(E−
M) = 0, is more difficult. This amounts to determining conditions by which
(17) has a solution x0. To do this, we will now have to make slightly stronger
assumptions with respect to the predictable set.



Impulse Extensions 185

Definition 5.3. Let τ0 = 0, let U(t) be the principal matrix solution of (11)
at t0 = 0, and suppose P = R. The adjoint equation to the homogeneous
system (11) is the ordinary differential equation

dy

dt
= −A∗(t)y t /∈ S

dy

dt
= −A∗(t)y −

(
U(τk)U−1(t)

)∗
[ϕBk ]∗(t)y t ∈ S.

(18)

We now prove that the above differential equation truly is adjoint to (11).
We will refer to these equations as mutually adjoint.

Proposition 5.2. Let P = R. The homogeneous equation (11) and the
adjoint equation (18) satisfy the following properties.

1. For any two solutions x(t), y(t) of the mutually adjoint equations (11)
and (18), the following identity is valid

〈x(t), y(t)〉 = 〈x(0), y(0)〉

for all t ∈ R. That is, 〈x(t), y(t)〉 is constant.

2. Any matrix solutions U(t) and Y (t) of the mutually adjoint equations
(11) and (18), respectively, satisfy the identity

Y ∗(t)U(t) = C

for some C ∈ Cn×n.

3. If the identity in Part 2 is valid for a matrix solution U(t) of (11) and
C is a non-singular matrix, then Y (t) is a fundamental matrix of (18).

Proof. To prove part 1, if t /∈ S, the proof is the same as for ordinary differen-
tial equations. We therefore prove only the (more difficult) case where t ∈ Sk.
Supressing the dependence on t (except where there may be ambiguity), we
have

d

dt
〈x, y〉 = 〈x′, y〉+ 〈x, y′〉

= 〈Ax+ ϕBk x(τk), y〉+ 〈x,−A∗y −
(
U(τk)U−1(t)

)∗
[ϕBk ]∗y〉

= 〈Ax, y〉+ 〈ϕBk x(τk), y〉 − 〈x,A∗y〉 − 〈x,
(
U(τk)U−1(t)

)∗
[ϕBk ]∗y〉

= 〈Ax, y〉+ 〈ϕBk U(τk)x(0), y〉 − 〈Ax, y〉 − 〈U(t)x(0),
[
ϕBk U(τk)U−1(t)

]∗
y〉

= 〈ϕBk U(τk)x(0), y〉 − 〈ϕBk U(τk)U−1(t)U(t)x(0), y〉
= 〈ϕBk U(τk)x(0), y〉 − 〈ϕBk U(τk)x(0), y〉 = 0

almost everywhere on Sk. This also holds on R\S. Since x(t) and y(t) are ab-
solutely continuous, their inner product is as well [21]. Therefore 〈x(t), y(t)〉 is
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absolutely continuous with zero derivative almost everywhere. It follows that
〈x(t), y(t)〉 is constant for all t ∈ R. Consequently, 〈x(t), y(t)〉 = 〈x(0), y(0)〉.
This proves Part 1.

Part 2 is a direct consequence of this. Indeed,

Y ∗U [i, j] = [Y ∗]iXj =
∑
k

(Y ∗)i(k)Uj(k) =
∑
k

(Yi)
∗(k)Uj(k) = 〈Yi, Uj〉,

which by Part 1 is constant.
To prove Part 3, suppose Y = (CU−1)∗, so that it is defined by the

identity Y ∗U = C for a nonsingular matrix C. It is easy to verify that, for
t /∈ S, we have

dY

dt
= −A∗Y.

Conversely, if t ∈ Sk, then

dY

dt
=
d(U−1)

dt

∗

C∗

= −
(
U−1

[
AU + ϕBk U(τk)

]
U−1

)∗
C∗

= −
(
U−1AUU−1

)∗
C∗ −

(
U−1ϕBk U(τk)U−1

)∗
C∗

= −
(
U−1A

)∗
C∗ −

(
U−1ϕBk U(τk)U−1

)∗
C∗

= −A∗(U−1)∗C∗ −
(
U(τk)U−1

)∗ [
ϕBk
]∗

(U−1)∗C∗

= −A∗Y −
(
U(τk)U−1

)∗ [
ϕBk
]∗
Y.

Therefore Y (t) is a matrix solution of (18) and, since detY 6= 0, it is a
fundamental matrix for (18).

Notice that, in the limiting case of impulsive differential equations, we
have, for t ∈ (τk, τk+1],

U(t) = X(t; τk)(E +Bk)

0∏
r=k−1

X(τr+1; τr)(E +Br) ≡ X(t; τk)(E +Bk)R

and U(τk) = R, so that

U(τk)U−1(t) = (E +Bk)−1X−1(t; τk)

for t ∈ (τk, τk+1]. Therefore∫
[U(τk)U−1(t)]∗[ϕBk ]∗(t)dt =

[∫
[(E +Bk)−1X−1(t; τk)]∗δ(t− τk)dt

]
B∗k

= [(E +Bk)−1]∗B∗k

= (E +B∗k)−1B∗k .
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Consequently, as the step sequence becomes small3, the adjoint equation (18)
reduces to the impulsive differential equation

dy

dt
= −A∗(t)y t 6= τk

∆y = −(E +B∗k)−1B∗ky t = τk.
(19)

This is precisely the homogeneous adjoint from impulsive differential equa-
tions; see [1] for details.

We establish now the existence criteria for periodic solutions in the critical
case. The proof is somewhat technical, and at times the notation can be a
bit cumbersome; it can be found in the appendix.

Theorem 5.6. Let condition [P] hold and let P = R. Let the homoge-
neous equation (11) have m ≤ n linearly independent T -periodic solutions
p1(t), . . . , pm(t). Then:

1. The adjoint equation (18) has m linearly-indepenent solutions ri(t),
i = 1, . . . ,m.

2. Equation (9) has a nontrivial T -periodic solution if and only if, for
j = 1, . . . ,m, the following condition is satisfied:

c−1∑
k=0

∫
Sk
r∗j (t)Hk(t)[g(t) + ϕhk(t)]dt+

∫ τk+1

τk+ak

r∗j (t)g(t)dt = 0 (20)

where Hk(t), defined by

Hk(t) = X(t, τk)L(t, τk)L−1(τk + ak, τk)X−1(t, τk)

is the homogeneity matrix.4

3. If condition (20) is met, then each T -periodic solution of (9) has the
form

x(t) = c1p1(t) + · · ·+ cmpm(t) + x0(t)

for a particular T -periodic solution x0(t) of (9).

When ϕBk = 0 for all k, the homogeneity matrices Hk become the identity
matrix, and condition (20) reduces to∫ τc

τ0

r∗j (s)g(s)ds+

c−1∑
k=0

∫
Sk
r∗j (s)ϕhk(s)ds = 0

for j = 1, . . . ,m. This formula was previously established by Church and
Smith? in [5]. Condition (20) provides a generalization of this to the case

3Comparison to impulsive differential equations by this type of limit will be rigorously
discussed in a forthcoming paper.

4We name Hk as such because when ϕB
k = 0, the identity Hk = E is valid.
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where we do not necessarily have ϕBk = 0. We do, however, require the strong
assumption that the predictable set is the entire real line.

In the impulsive case, where, formally,

ϕBk = δ(t− τk)Bk

ϕhk = δ(t− τk)hk

and ak → 0 for all k, condition (20) reduces to∫ τc

τ0

ψ∗j (s)g(s)ds+

c−1∑
k=0

ψ∗j (τ+
k )hk = 0

for j = 1, . . . ,m, where ψj are the linearly independent periodic solutions
of the homogeneous adjoint (see equation (19)) of the impulsive differential
equation

dx

dt
= A(t)x+ g(t) t 6= τk

∆x = Bkx+ hk t = τk.

This is precisely the condition for existence of a periodic solution in the
critical case for impulsive differential equations; see [1]. In this way, Theorem
5.6 generalizes the impulsive case as well.

The Massera theorem holds for the linear impulse extension equation (9).
The proof is the same as in the continuous or impulsive case, as it relies
almost entirely on elementary results from linear algebra. Moreover, the
predictable endpoints requirement is not necessary. The proof is available in
the appendix for completeness.

Theorem 5.7. Let the linear IEE satisfy condition [P]. This equation has
a bounded solution for t ≥ τ0 if and only if it has a non-trivial T -periodic
solution.

6 Discussion

The general impulse extension equation (2) has been defined, and it has been
shown that this equation is in some sense an “impulsive differential equation
with continuous impulses”. Specifically, it can be seen as a continuous version
of the impulsive differential equation (1) with impulses at fixed times. Results
on existence and uniqueness of solutions have been obtained for a class of
well-behaved initial-value problems, and one general existence result has been
stated that is applicable to all initial-value problems.

Conditions for global existence and uniqueness of solutions for the linear
impulse extension equation (9) were determined. This is mostly quantified
by the structure that we refer to as the predictable set, P. If P contains all
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endpoints of impulse effect, {τk + ak}k∈Z ⊂ P, then any matrix solution is
uniquely continuable to R and is unique up to multiplication by an invertible
matrix. In the periodic case, this was sufficient to prove an analogue of
Floquet’s theorem for periodic homogeneous systems. This theorem allowed
for the characterization of stability of the homogeneous and inhomogeneous
equations in terms of Floquet multipliers, thereby reducing the problem of
stability to a problem of finding a monodromy matrix.

The existence or nonexistence of periodic solutions for the periodic linear
IEE is also directly related to the monodromy matrix; if M is a monodromy
matrix and det(E − M) 6= 0, the inhomogeneous equation has a unique
periodic solution and the homogeneous equation has none (although this
holds under weaker hypotheses; see Theorem 5.5). In the opposite case, the
homogeneous equation has a periodic solution and Theorem 5.6 provides a
necessary and sufficient condition for existence of a periodic solution of the
inhomogeneous equation phrased in terms of the adjoint equation, provided
the predictable set is the entire real line.

Along the way, it was shown that several results obtained including the
condition for existence and uniqueness of solutions (Corollary 4.1) for the lin-
ear impulse extension equation and the conditions for existence of a periodic
solution in the critical case (Theorem 5.6) are consistent with the the analo-
gous results for impulsive differential equations [1] as well as more restricted
classes of impulse extension equations [5]. This work therefore extends and
generalizes those results.
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Appendix: Proofs

Proof of Lemma 4.1. There are two cases to consider: t0 /∈ S and t0 = τk
for some k. However, the proof of each is essentially the same, so we will
only prove the second, slightly more technical, case. Let x(τk) = x0. We first
construct a solution that is valid for all t ≥ t0. Since we are only interested
in solutions defined for t ≥ t0, we may fix

x′(t) = A(t)x(t) + g(t) + ϕBk (t)x0 + ϕhk(t)

for t ∈ (t0 − ε, t0 + ε) and ε small, since the solution for t < t0 will be
disregarded. Locally then, since this equation is linear, a unique solution
exists by standard results of ordinary differential equations; see Carathéodory
conditions [9]. Moreover, due to linearity, this solution is continuable until
t = τk+ak. Let this solution, defined for τk ≤ t < τk+ak be denoted x(t;x0).
Since the solution is continuous, we define

x(τk + ak;x0) ≡ lim
t→τ−

k

x(t;x0).

Now define the auxiliary initial-value problem

y′(t) = A(t)y(t)

y(τk + ak) = x(τk + ak;x0).

Again, by standard results, this has a unique solution defined for, in par-
ticular, τk + ak ≤ t < τk+1. By continuity, we define y(τk) by a left limit,
similarly to above. Now extend x(t;x0) as follows:

x(t;x0) =

{
x(t;x0) τk ≤ t < τk + ak
y(t) τk + ak ≤ t ≤ τk+1.

It is easy to verify that x(t;x0) as defined above is still a solution of the
initial-value problem. To extend the solution for t > τk+1, the procedure can
be repeated inductively. Since, at each step, the resulting solution is unique,
a unique solution exists and is defined for all t ≥ t0.

To continue backward in time, we consider the auxiliary initial-value prob-
lem

z′(t) = A(t)z(t)

z(τk) = x0.

By standard existence and uniqueness for linear differential equations, a
unique solution exists and is continuable backwards in time until t = τk−1 +
ak+1. If x(t;x0) is the unique maximal forward solution, then its unique
backward continuation for t > τk−1 + ak−1 is given by

x(t;x0) =

{
x(t;x0) t ≥ τk
z(t) τk−1 + ak−1 < t < τk.

This proves the desired result.
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Proof of Lemma 4.2. Suppose a solution exists. Since t0 ∈ Sk, this solution
must be defined at τk. In particular, there must exist some xτk ∈ Rn such
that the solution φ(t) of the initial-value problem

φ′(t) = A(t)φ(t) + g(t) + ϕBk (t)xτk + ϕhk(t)

φ(τk) = xτk
(21)

satisfies φ(t0) = x0. Since the above ODE is linear, it has a solution defined,
in particular, for all t ∈ (τk, τk + ak). By similar arguments to the proof
of Lemma 4.1, this solution φ(t) can be extended backward in time until
t = τk−1 + ak−1 such that, for τk−1 + ak−1 < t < τk, it is continuous and
satisfies the differential equation

φ′(t) = A(t)φ(t) + g(t).

Conversely, if said xτk should exist, then the solution φ(t) defined above is a
solution of the initial-value problem in question, defined for τk−1 + ak−1 <
t < τk + ak. Extending by continuity to t = τk + ak, we can extend further
to all t > τk + ak by applying Lemma 4.2. We conclude that the existence
criteria of the lemma is equivalent to showing that such an xτk exists.

Such an xτk exists if and only if there exists an xτk such that the solution
of the initial-value problem (21) satisfies φ(t0) = x0. The solution of said
initial-value problem is

φ(t) = X(t; τk)xτk +X(t; τk)

∫ t

τk

X−1(s; τk)
[
g(s) + ϕBk (s)xτk + ϕhk(s)

]
ds,

where X(t; s) is the Cauchy matrix of x′(t) = A(t)x(t). Rearranging the
above and imposing the condition φ(t0) = x0, we arrive at the condition

x0 −X(t0; τk)

∫ t0

τk

X−1(s; τk)
[
g(s) + ϕhk(s)

]
ds = X(t0; τk)L(t0; τk)xτk .

Taking into account the invertibility of the Cauchy matrix, we arrive at

X−1(t0; τk)x0 −
∫ t0

τk

X−1(s; τk)
[
g(s) + ϕhk(s)

]
ds = L(t0; τk)xτk .

An xτk exists that satisfies the above relation if and only if the vector on the
left-hand side is in the column space of L(t0; τk). A unique xτk exists if and
only if L(t0; τk) is invertible; or, equivalently, if and only if detL(t0; τk) 6= 0.
This proves the lemma.

Proof of Theorem 4.1. If t0 ∈ [τk, τk + ak), then by Lemma 4.2, a unique
solution exists if and only if detL(t0; τk) 6= 0; if this is satisfied, then a
unique solution x(t) exists for all t > τk−1 + ak−1. Defining the solution at
t = τk−1 + ak−1 ≡ t1 by continuity, to continue backwards in time requires
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solving an initial-value problem of the form x(t1) = xt1 . For τk−1 < t < t1,
we have to solve

φ′(t) = A(t)φ(t) + g(t) + ϕBk−1(t)xτk−1
+ ϕhk(t)

φ(τk−1) = xτk−1
,

where xτk−1
has yet to be determined, such that limt→t−1

φ(t) coincides with

x(t1). By the proof of Lemma 4.2, existence of a unique xτk−1
with this

property is equivalent to having detL(τk−1 + ak−1; τk−1) 6= 0; when this is
satisfied, the solution x(t) exists for all t > τk−2 + ak−2. By an inductive
argument, we see that the solution exists for all t ∈ R if and only if the first
condition detL(t0; τk) is satisfied, along with detL(τj + aj ; τj) 6= 0 for all
j < k.

On the other hand, if t0 ∈ [τk + ak, τk+1), then Lemma 4.1 ensures that
a unique solution exists for all t ≥ τk + ak. Then, to uniquely continue
backward in time beyond t = τk + ak is, by the above argument, equivalent
to having detL(τj + aj ; τj) 6= 0 for all j ≤ k. This completes the proof.

Proof of Proposition 5.1. We proceed by induction on. For k = 1, by the
variation of constant formula for ordinary differential equations, we have

x(τ1;x0) = X(τ1, τ0)x0 +X(τ1, τ0)

∫ τ1

τ0

X−1(s, τ0)
[
g(s) + 1S0(s)ϕh0 (s)

]
ds . . .

+X(τ1, τ0)

∫ τ1

τ0

X−1(s, τ0)1S0(s)ϕB0 (s)x0ds

= X(τ1, τ0)

[
E +

∫
S0
X−1(s, τ0)ϕB0 (s)ds

]
x0 +X(τ1, τ0)Q1

= X(τ1, τ0)L(τ0 + a0, τ0)x0 + v1

=

0∏
j=1−1

X(τj+1, τj)L(τj + aj , τj) + v1,

where, indeed, v1 = X(τ1, τ0)Q1 as required.
Suppose the result holds for some k > 1. Denote x(τk) = x(τk;x0). Then,

by the variation of constants formula, we have

x(τk+1;x0) = X(τk+1, τk)

[
x(τk) +

∫ τk+1

τk

X−1(s, τk)
[
g(s) + 1Sk(s)ϕhk(s)

]
ds

]
. . .

+X(τk+1, τk)

∫ τk+1

τk

X−1(s, τk)1Sk(s)ϕBk (s)x(τk)ds

= X(τk+1, τk)

[
E +

∫
Sk
X−1(s, τk)ϕBk (s)ds

]
x(τk;x0) +X(τk+1, τk)Qk

= X(τk+1, τk)L(τk + ak, τk)

 0∏
j=k−1

X(τj+1, τj)L(τj + aj , τj)

x0 + vk

 . . .
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+X(τk+1, τk)Qk

=

 0∏
j=k

X(τj+1, τj)L(τj + aj , τj)

x0 +X(τk+1, τk)L(τk + ak, τk)vk . . .

+X(τk+1, τk)Qk

=

 0∏
j=k+1−1

X(τj+1, τj)L(τj + aj , τj)

x0 + vk+1.

And, as required, vk+1 satisfies the required recurrence relation. By in-
duction, the lemma is proven, where the representation in terms of matrix
solutions is furnished by equation (15).

Proof of Theorem 5.6.
1. By the conditions of the theorem, (E − M)x = 0 has m linearly

independent solutions xi to which there correspond m linearly independent
T -periodic solutions pi(t) of (11). By elementary linear algebra (see the
Fredholm alternative [6]), this is true if and only if (E − M∗)y = 0 has
m linearly independent solutions yi. Without loss of generality, by taking
τ0 = 0 and and setting U(t) to be the principal matrix solution at t0 = 0 for
(11), we can choose M = U(T ) as the monodromy matrix. Now let Y (t) be
the principal fundamental matrix of the adjoint equation (18) at t0 = 0. By
Proposition 5.2, we have Y ∗(t)U(t) = Y ∗(0)U(0) = E, from which it follows
that M∗ = U∗(T ) = Y −1(T ). Then, for each solution yi of (E −M∗)y = 0,
we have

M∗yi = yi =⇒ Y −1(T )yi = yi =⇒ Y (T )yi = yi.

Since Y (T ) is a monodromy matrix for (18), we conclude that the adjoint
equation hasm linearly independent periodic solutions ri(t) satisfying ri(0) =
yi.

2. We must determine the solvability of (E −M)x0 = vc. By elementary
results from linear algebra, a solution exists if and only if y∗j vc = 0 for each
yj satisfying rj(0) = yj , as described in Part 1. We must now describe the
vector vc in more detail. We claim that vc can be written as a sum of c
products. For brevity, let Xk = X(τk, τk−1) and Lk = L(τk−1 + ak−1, τk−1).
Then, by the recurrence relation of Proposition 5.1, we find

vc =

(
XcLcXc−1Lc−1 · · ·X1

∫ τ1

τ0

X−1(s, τ0)[g(s) + ϕh0 (s)]ds

)
. . .

+

(
XcLc · · ·X3L3X2

∫ τ2

τ1

X−1(s, τ1)[g(s) + ϕh1 (s)]ds

)
. . .

+ · · ·+

(
Xc

∫ τc

τc−1

X−1(s, τc−1)[g(s) + ϕhc−1(s)]ds

)
,
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where, for succinctness, we abuse notation and write ϕhk = 1Skϕ
h
k . The above

sum contains precisely c terms. Let vkc denote the k’th term. Then

vkc = XcLcXc−1Lc−1 · · ·Xk+1Lk+1Xk

∫ τk

τk−1

X−1(s, τk−1)[g(s) + ϕhk−1(s)]ds.

For a > b, let the symbol X(a|b) be defined by

X(a|b) = XaLaXa−1La−1 · · ·Xb+1Lb+1Xb.

With this notation, the identities

X(a|b) = XaLaX(a−1|b), X(a|b)LbX(b−1|d) = X(a|d) (22)

hold when defined, where a > b > d. By taking the constant matrices under
the integral sign, with the above symbolic notation, we can write vk as

vkc =

∫ τk

τk−1

X(c|k) ·X−1(s, τk−1)[g(s) + ϕhk−1(s)]ds

=

∫ τk

τk−1

X(c|k) [LkX(k−1|1)L1] · [LkX(k−1|1)L1]
−1
X−1(s, τk−1)[g(s) + ϕhk−1(s)]ds

=

∫ τk

τk−1

XcLcX(c−1|k)LkX(k−1|1)L1 [LkX(k−1|1)L1]
−1
X−1(s, τk−1)[g(s) + ϕhk−1(s)]ds

=

∫ τk

τk−1

X(c|1)L1 · [X(s, τk−1)LkX(k−1|1)L1]
−1

[g(s) + ϕhk−1(s)]ds

=

∫ τk

τk−1

U(T )[X(s, τk−1)LkX(k−1|1)L1]−1[g(s) + ϕhk−1(s)]ds

=

∫
Sk−1

U(T )U−1(s)Hk−1(s)[g(s) + ϕhk−1(s)]ds+

∫ τk

τk−1+ak−1

U(T )U−1(s)g(s)ds.

(23)

Most of the above calculations involve use of the identities (22). We make a
few clarifications, however. By (15), if t ∈ [τq−1 + aq−1, τk) for some q, then

U(t) = X(t, τq−1)L(τq−1+aq−1) · · ·X(τ1, τ0)L(τ0+a0, τ0) = X(t, τq−1)LqX(q−1|1)L1.

This implies U(T ) = X(τc, τc−1)LcX(c−1|1)L1 = X(c|1)L1. Conversely, if
t ∈ Sk−1, then, by (15), we know

U(t) = X(t; τk−1)L(t; τk−1)

1∏
r=k−1

X(τr; τr−1)L(τr−1 + ar−1; τr−1)

= X(t, τk−1)L(t, τk−1)Xk−1Lk−1 · · ·X1L1

= X(t, τk−1)L(t, τk−1)X(k−1|1)L1.
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It follows that

X(t, τk−1)LkX(k−1|1)L1 = X(t, τk−1)L(τk−1 + ak−1, τk−1) [X(t, τk−1)L(t, τk−1)]
−1
U(t)

= H−1
k−1(t)U(t).

Therefore

[X(t, τk−1)LkX(k−1|1)L1]−1 = U−1(t)Hk−1(t).

We have thus established (23). Now let rj(t) be one of the T -periodic solu-
tions of (18). We next calculate r∗j (0)vkc for each k = 1, . . . , c− 1.

By periodicity, we have r∗j (0) = r∗j (T ). By Lemma 5.2 Part 1, we have
r∗j (T )U(T ) = r∗j (t)U(t) for all t ∈ R, since each column of U(t) is a solution
of (11). This establishes the identity

r∗j (T )U(T )U−1(s) = r∗j (s)U(s)U−1(s) = r∗j (s).

Therefore, multiplying (23) on the left by r∗j (0), we obtain

r∗j (0)vkc =

∫
Sk−1

r∗j (T )U(T )U−1(s)Hk−1(s)[g(s) + ϕhk−1(s)]ds

+

∫ τk

τk−1+ak−1

r∗j (T )U(T )U−1(s)g(s)ds

=

∫
Sk−1

r∗j (s)Hk−1(s)[g(s) + ϕhk−1(s)]ds+

∫ τk

τk−1+ak−1

r∗j (s)g(s)ds.

Since vc =
∑c
k=1 v

k
c , we arrive at

r∗j (0)vc =

c∑
k=1

∫
Sk−1

r∗j (s)Hk−1(s)[g(s)+ϕhk−1(s)]ds+

∫ τk

τk−1+ak−1

r∗j (s)g(s)ds,

from which we obtain the left-hand side of (20) by shifting summation indices.
3. The proof of this assertion is the same as in the case of ordinary

differential equations. As such, we omit it.

Proof of Theorem 5.7. Let ŷ(t) be a bounded solution of (9). By Proposition
5.1 and equation (16), we have ŷ(T ) = Mŷ(0) + v for some v ∈ Rn. Due to
the periodicity hypothesis [P], a straightforward inductive argument shows
that

ŷ(rT ) = Mrŷ(0) +

r−1∑
k=0

Mkv

for any integer r ≥ 1. Now suppose (9) has no nontrivial periodic solutions.
This is equivalent to the equation (E−M)y = v having no solutions. By the
Fredholm alternative theorem, this is true if and only if there is a solution z
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of (E −M∗)z = 0 for which 〈z, v〉 6= 0. Consequently, M∗z = z, from which
it follows that

z = (M∗)kz = (Mk)∗z

for all k ∈ Z. We take the inner product of ŷ(rT ) with z:

〈z, ŷ(rT )〉 = 〈z,Mrŷ(0)〉+

r−1∑
k=0

〈z,Mkv〉

= 〈(Mr)∗z, ŷ(0)〉+

r−1∑
k=0

〈(Mk)∗z, v〉

= 〈z, ŷ(0)〉+

r−1∑
k=0

〈z, v〉

= 〈z, ŷ(0)〉+ r〈z, v〉.

It then follows that 〈z, ŷ(rT )〉 → ∞ as r →∞, contradicting the boundedness
of ŷ(t). We conclude that (9) must have a nontrivial T -periodic solution.
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