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Abstract
Social distancing is now a familiar strategy for managing disease outbreaks, but
it is important to understand the interaction between disease dynamics and social
behaviour. We distinguished the fully susceptibles from the social-distancing suscep-
tibles and proposed a Filippov epidemic model to study the effect of social distancing
on the spread and control of infectious diseases. The threshold policy is defined as
follows: once the number of infected individuals exceeds the threshold value, social-
distancing susceptibles take more stringent social-distancing practices, resulting in a
decreasing infection rate. The target model exhibits novel dynamics: in addition to
the coexistence of two attractors, it also demonstrates the coexistence of three attrac-
tors. In particular, bistability of the regular endemic equilibrium and the disease-free
equilibrium occurs for the system; multistability of the regular endemic equilibrium,
a pseudo-equilibrium and the disease-free equilibrium also occurs for the system.
Discontinuity-induced bifurcations, including boundary-node, focus and saddle-node
bifurcations, occur for the proposed model, which reveals that a small change in
threshold values would significantly affect the outcome. Our findings indicate that for
a proper threshold value, the infections can be ruled out or contained at the previously
given level if the initial infection is relatively small.

Keywords Filippov model · Social-distancing · Sliding dynamics · Boundary
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1 Introduction

Since the beginning of the COVID-19 pandemic, it has become clear that non-
pharmaceutical interventions, including social distancing, can be used to control
epidemics. Social distancing, a practice of keeping physical distance between indi-
viduals during social interactions, plays a vital role in the battle against infectious
diseases (Stockmaier et al. 2021). It acts as a potent barrier to the direct dissemination
of pathogens, particularly those transmitted via respiratory droplets, exemplified by
influenza and COVID-19 (World Health Organization 2021; Yan et al. 2021). Chu
et al. found that keeping a distance of at least one metre reduced the risk of trans-
mission of many respiratory illness by 82% (Chu et al. 2020). Since the spread of
infectious diseases is a complex process involving multiple routes of transmission,
social distancing can help break the chain of transmission by minimizing direct and
indirect contacts between infected and susceptible individuals, which, in turn, slows
down the spread of the disease. Koo et al. found that the combined intervention of
quarantining infected individuals and their family members, workplace distancing
and school closures could reduce the estimated median number of infections by 93%
(Koo et al. 2020). Although ‘social distancing’ is now an familiar measure to combat
infectious diseases, we still have much to learn about its underlying mechanisms and
epidemiological consequences.

The precise nature of social distancing is dynamic and heterogeneous, changing
in response to the evolving epidemic. Zhang et al. (2023) and Chen et al. (2024)
showed that during the COVID-19 outbreak in Shanghai, populationmobility progres-
sively declined through successive phases— from targeted interventions to a citywide
lockdown—reflecting a substantial intensification of social-distancingmeasures; sim-
ilarly, during the acute phase of the global pandemic, stringent non-pharmaceutical
interventions, including social distancing and travel restrictions, led to amarked reduc-
tion in both influenza transmission and human mobility worldwide. Zheng et al.
(2023) further identified that the spatiotemporal spread of the Omicron variant was
significantly influenced by localized mobility patterns, highlighting the critical role
of behavioral adaptations and interventions at the subdistrict level. Li et al. (2024)
developed a mathematical model incorporating behavioral imitation, showing that
individuals’ willingness to adopt social distancing was closely tied to perceived infec-
tion risk. They underscored that social distancing is an adaptive behavior, influenced
by perceived risk, public policy and socio-demographic factors, evolving dynamically
over the course of an outbreak.

Many studies have been dedicated to understanding how and to what extent social-
distancing behaviours affect the transmission of infectious diseases qualitatively and
quantitatively. Maharaj and Kleczkowski (2012) studied the costs and benefits of
individual-based social distancing using an SIR model and found that social distanc-
ing can be effective but may require prolonged measures to prevent disease rebound.
Lobinska et al. (2022) analyzed the probability of emergence of vaccine-resistant
strains under varying degrees of social distancing and suggested maintaining social
distancing until herd immunity was achieved. Gollwitzer et al. (2022) examined the
link between self-reported and objective social distancing and found that self-reported
distancing measures can predict actual distancing behaviour. Duan et al. (2022) and
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Gong et al. (2022) applied an integrated social-cognition model to predict social dis-
tancing among older adults during COVID-19. Their findings highlight the importance
of health knowledge and motivational self-efficacy. Matrajt and Leung (2020) and
Ventura et al. (2022) modelled the effect of social distancing by reducing the contact
rates between individuals in compartment models. Their findings underscore that rig-
orous social distancing can effectively mitigate the spread of an epidemic, but less
stringent measures can contain the transmission but potentially elevate the mortal-
ity rate. Tang et al. 2022, Di Guilmi et al. 2022 and d’Onofrio and Manfredi 2022
extended the classical SEIR model to study the co-evolution of behavioural changes
and COVID-19, incorporating heterogeneity among those who practice social distanc-
ing. They found that behavioural changes significantly affected disease-transmission
dynamics. Huang et al. 2021 developed a communication-contact two-layer network
model to analyze the impact of public social distancing on an infectious disease with
asymptomatic infection and found that social distancing can substantially increase the
outbreak threshold. Dashtbali and Mirzaie (2021) and Saha et al. (2022) formulated
compartmental models to reveal the effect of social distancing and vaccination in con-
trolling COVID-19. Their results showed that a combination of vaccination and social
distancing could effectively reduce disease burden. Chen et al. (2023) proposed an
epidemic control framework using mobility data to set efficient social-distancing tar-
gets. They proposed an efficient social-distancing policy to minimize the aggregated
risks of disease and economic loss.

These studies underscore the crucial role of social distancing in mitigating the
spread of infectious diseases utilizing various models, including behavioural and
social psychological models, epidemiological models, agent-based models and net-
work models. However, most of the existing epidemic models have largely tended
to neglect the impact of individual awareness of the presence of diseases. Instead,
the structure of interactions between individuals is most commonly assumed to be an
average behavioural pattern. In fact, there exists a significant relationship between an
individual’s risk perception and their willingness to engage in preventive measures
including social distancing (Dryhurst et al. 2022). Individuals who possess a compre-
hensive understanding of a disease’s severity are more likely to adhere to preventive
measures, while those with limited knowledge or an underestimated perception of the
threat may neglect these crucial preventive measures (Brewer et al. 2007; Kristiansen
et al. 2007). Epstein et al. (2008) andMpeshe and Nyerere (2021) developed epidemic
models that incorporated distinct groups of susceptibles and infecteds, categorizing
them based on their susceptibility to fear. They found that fear can significantly affect
the dynamics of epidemics, with even small levels of fear-inspired flight dramatically
altering disease spread. Jain et al. (2022) presented an individual-based fearmodelwith
variations in individual fear levels, which was updated based on the changing size of
the epidemic. Their findings suggested that fear can suppress disease transmission but
also lead to multiple epidemic waves. Collinson et al. (2015) and Gevertz et al. (2021)
presented an epidemiological model with explicit compartments for susceptible and
asymptomatic individuals who socially distance due to variations in individual fear
levels. Their findings demonstrated that social distancing can effectively reduce dis-
ease transmission but requires timely implementation.Misra et al. (2011) and Samanta
et al. (2013) modelled the impact of media on the spread of infectious diseases, con-
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sidering variations in infectivity within the susceptible population. They found that
enhanced media reporting can effectively reduce infections.

These models take into account the differences in social-distancing measures
adopted by different individuals during an outbreak. In practice, individuals who adopt
social-distancing measures implement stricter practices once the epidemic becomes
more severe. Hence, we introduce a piecewise function to describe the consequences
of intensifying social-distancing measures when the epidemic intensifies, leading to
the formulation of a Filippov model. Filippov systems have been successfully applied
in epidemic control. They investigated the effect of variable structure control on the
psychological impact, media effect, quarantine and delay on the containment of infec-
tious diseases (Wang et al. 2022). Xiao et al. 2012, Wang and Xiao 2014 and Zhang
et al. 2024modelled the effect of media-induced social distancing on disease transmis-
sion by incorporating piecewise incidence rates into classical models, where control
or precautionary measures are activated once the number of infected individuals sur-
passes a predefined threshold. Xiao et al. 2015, Wang et al. 2020 and Deng et al.
2021 mimicked the behavioural response induced by media by incorporating piece-
wise incidence rates that modify the transmission rate once media impact is activated,
with threshold-based controls triggered by both the number of infections and its rate
of change. Cherif et al. (2016) developed an in silico model of pathogen avoidance,
where entry into the behavioural class depends on a behavioural cue and psycholog-
ical threshold. Its mean-field approximation leads to a Filippov system capturing the
resulting non-smooth dynamics.

Many of these models have addressed how social distancing affects the spread
of epidemic diseases using Filippov models, where all susceptibles are assumed to
adopt an identical level of social-distancing, without distinguishing between different
behavioural responses. In particular, they did not differentiate between susceptible
individuals who practice social distancing and those who do not, nor did they account
for the possibility that susceptibles practicing social distancing may strengthen their
distancing behaviour once the epidemic intensifies. We will investigate both aspects.

2 FilippovModel

We consider a threshold policy in a dynamical model, which consists of three com-
partments: fully susceptible (S), social-distancing susceptibles (SM ) and infected
individuals (I ), where ‘social-distancing susceptibles’ describes those individualswho
are media aware and less susceptible to infection due to social-distancing behaviours.
We assume that susceptible individuals can be exposed to the virus either directly or
after moving into the social-distancing-susceptible compartment. Social-distancing
susceptibles have lower probability of transmission compared to the fully suscepti-
bles, since they will take more precautions. Social-distancing susceptibles relax from
social-distancing practices and move back into the fully susceptible compartment at a
rate of μ, so 1/μ represents the average time that social-distancing susceptibles spend
while social distancing. Let � represent the natural birth rate, γ represent the recov-
ery rate, k represent the reinforcement factor, λ represent the progression rate from
fully susceptible to social-distancing susceptible and d represent the natural death
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Fig. 1 A schematic flow diagram of the transmission of disease with social-distancing practices

rate. We assume the transmission rate between infecteds and fully susceptibles (resp.,
social-distancing susceptibles) is β (resp., θβ) and β > d + γ , where 0 < θ < 1 is
a constant. When the reported number of infected individuals exceeds a critical level
Ic, social-distancing susceptibles will take more stringent social-distancing practices,
which results in a decline in the transmission between I and SM . We thus multiply the
transmission rate θβ by a factor f (k, I ), which accounts for the decline in the trans-
mission due to more stringent social-distancing practices. Here, 0 < f (k, I ) < 1, and
the parameter k reflects the level of social-distancing reinforcement. We assume that
f (k, I ) decreases as the level of social-distancing reinforcement increases and that it
also decreases as the number of infected individuals increases; i.e., f (k, I ) satisfies

∂ f (k, I )

∂k
< 0,

∂ f (k, I )

∂ I
< 0.

In disease-control practices, any function that meets the above conditions can be used
as f (k, I ). Our model is illustrated in Fig. 1.

To illustrate our main idea, we assume all infected individuals return to full sus-
ceptibility upon recovery. This is reasonable for some infectious diseases, such as
schistosomiasis and brucellosis. Colley et al. (2014) and Diaby (2015) demonstrated
that people recovering from schistosomiasis typically do not develop complete or ster-
ile immunity, indicating that reinfection remains common in the absence of sustained
preventive interventions. Zhang et al. (2024) indicated that recovery from brucellosis
does not confer effective or long-lasting immunity; instead, individuals are suscepti-
ble to reinfection. Therefore, our Filippov model is described by differential equations
with discontinuous right-hand sides as follows:
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Table 1 Definitions of parameters for model (1)

Parameters Definition

� Natural birth rate

β Transmission rate between infecteds and fully susceptibles

γ Recovery rate of infected individuals

d Natural death rate

θ Relative transmission probability of social distancing susceptibles
compared with fully susceptibles

k Reinforcement factor
1

μ
Average time that social-distancing susceptibles spend while social
distancing

λ Progression rate from fully susceptibles to social distancing susceptibles

dS

dt
= � − βSI − λS + γ I + μSM − dS,

dSM
dt

= λS − [
1 − ν + ν f (k, I )

]
θβSM I − μSM − dSM ,

d I

dt
= βSI + [

1 − ν + ν f (k, I )
]
θβSM I − γ I − d I ,

(1)

with

ν =
{
0, σ (I ) < 0,
1, σ (I ) > 0,

(2)

where σ(I ) is a control function that depends on the number of infected individuals.
In infectious-disease-control practices, the specific form of the function σ(I ) can be
derived from the implementation strategy of the control measures. Its form may be
linear or nonlinear. To illustrate our idea, we choose the function σ(I ) = I − Ic, which
suggests that when the number of infected individuals is greater than the threshold
value Ic, social-distancing susceptibles will adopt more stringent precautions, which
will lead to a significant drop in their contacts. Model (1) with (2) is a dynamical
system controlled by a threshold policy. For convenience, we list the definitions of
each parameter in Table 1.

Letting N (t) = S(t) + SM (t) + I (t), we get

dN

dt
= � − dN .

For simplicity, we can assume � = d, and it follows that lim
t→∞ N (t) = 1, so we only

need to consider the following simplified system:
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dSM
dt

= λ(1 − I − SM ) − [
1 − ν + ν f (k, I )

]
θβSM I − μSM − dSM ,

d I

dt
= (β − γ − d)I − β

[
1 − (

1 − ν + ν f (k, I )
)
θ

]
SM I − β I 2.

(3)

It is easy to show that


 = {(SM , I ) ∈ R2+|0 < SM (t) + I (t) ≤ 1}

is an attraction region of system (3). The discontinuous switching surface is � ={
(SM , I ) ∈ 
|σ(I ) = 0

}
, and it divides space into the following two subregions:

G1 = {
(SM , I ) ∈ 
|σ(I ) < 0

}
, G2 = {

(SM , I ) ∈ 
|σ(I ) > 0
}
.

Thus, social-distancing susceptibles take moderate social-distancing practices and the
transmission rate takes the form βθ in the subregion G1; while in region G2, they take
more stringent social-distancing practices, and hence the transmission rate switches
to f (k, I )βθ . The system defined on the subregion Gi (i = 1, 2) is called Subsystem
SGi . Letting Z = (SM , I )T , we have

dZ

dt
=

{
FG1(Z), Z ∈ G1,

FG2(Z), Z ∈ G2,
(4)

where FGi (Z) = (
fi1(Z), fi2(Z)

)T
(i = 1, 2) and

f11(SM , I ) = λ(1 − I ) − (λ + μ + d)SM − βθ SM I ,

f12(SM , I ) = (β − γ − d)I − β(1 − θ)SM I − β I 2,

f21(SM , I ) = λ(1 − I ) − (λ + μ + d)SM − f (k, I )θβSM I ,

f22(SM , I ) = (β − γ − d)I − β
[
1 − f (k, I )θ

]
SM I − β I 2.

For simplicity, we also call Subsystem SG1 the free system, and we call Subsystem
SG2 the control system. We next introduce the following technical definitions in order
to further examine the dynamics of model (4).

Definition 1 Let Z∗ be an equilibriam of subsystem SGi (i = 1, 2). Then Z∗ is called a
real (resp., virtual) equilibriumof Filippov system (4) if one of the following conditions
are satisfied:

• FG1(Z∗) = 0, Z∗ ∈ G1 (resp Z∗ ∈ G2);
• FG2(Z∗) = 0, Z∗ ∈ G2 (resp Z∗ ∈ G1).

Both real equilibria (denoted as Zr∗) and virtual equilibria (denoted as Zv∗) are called
regular equilibria.
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According to Definition 1, an equilibrium of Subsystem SG1 (resp., SG2 ) is said to
be real if it lies in the subregionG1 (resp.,G2); i.e., if it exists inside its own subsystem.
An equilibrium is virtual if it lies outside its own subsystem.

Definition 2 Let Z∗ satisfy σ(Z∗) = 0. Then Z∗ is called a pseudo-equilibrium of
Filippov system (4) if it satisfies ξFG1(Z∗) + (1 − ξ)FG2(Z∗) = 0 with

ξ = FG2σ(Z∗)
(FG2 − FG1)σ (Z∗)

,

where FGi σ(Z∗) represents the Lie derivative (Willmore 1960) of σ with respect to
the vector field FGi at the point Z∗ and FGi σ(Z∗) = FGi (Z∗) · gradσ(Z∗). We call
a pseudo-equilibrium Z∗ admissible if 0 < ξ < 1. Alternately, a pseudo-equilibrium
Z∗ is called virtual if ξ < 0 or ξ > 1.

Definition 2 indicates that a pseudo-equilibrium Z∗ is said to be admissible if
it lies in the domain of the sliding-mode region; otherwise, it is said to be virtual.
Pseudo-equilibria are not equilibria of the ODEs, but are a consequence of the Filippov
boundary.

Definition 3 A point Z∗ is called a tangent point of Filippov system (4) if Z∗ ∈ � and
FG1σ(Z∗) = 0 or FG2σ(Z∗) = 0. A smooth vector field FGi (i = 1, 2) has a fold or
quadratic tangency with σ at a point Z∗ provided FGi σ(Z∗) = 0 and F2

Gi
σ(Z∗) �= 0.

Moreover, a fold tangency point Z∗ is said to be visible (resp. invisible) if F2
G1

σ(Z∗) <

0 (resp. F2
G1

σ(Z∗) > 0) or F2
G2

σ(Z∗) > 0 (resp. F2
G2

σ(Z∗) < 0).

It follows from Definition 3 that a tangent point of Filippov system (4) refers to an
endpoint of the sliding-mode region that lies in the interior of the first quadrant.

Definition 4 A point Z∗ is called a boundary equilibrium of Filippov system (4) if
FG1(Z∗) = 0, σ(Z∗) = 0 or FG2(Z∗) = 0, σ(Z∗) = 0. If Z∗ is the boundary
equilibriumof Filippov system (4) and det(DFGi (Z∗)) �= 0, i = 1, 2, then a boundary
equilibrium bifurcation occurs at the point Z∗.

We know from Definition 4 that an equilibrium of Filippov system (4) is called a
boundary equilibrium if it hits the sliding-mode region exactly on one of the endpoints.

For convenience, we adopt the following particular form for the social-distancing

reinforcement factor: f (k, I ) = 1

1 + k I
. Hence model (3) becomes

dSM
dt

= λ(1 − I − SM ) − θβSM I

1 + νk I
− μSM − dSM ,

d I

dt
= (β − γ − d)I − β

(
1 − θ

1 + νk I

)
SM I − β I 2.

(5)

3 Dynamics of the Two Subsystems SGi (i = 1, 2)

We will investigate the dynamics of the two subsystems SGi (i = 1, 2) in this section,
including all the possible equilibria and their stabilities.
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3.1 Dynamics of the Free System

For Subsystem SG1 , there always exists a unique disease-free equilibrium E10 =(
λ

λ+μ+d , 0
)
. The basic reproduction number is calculated as

R0 = β(θλ + d + μ)

(λ + μ + d)(d + γ )

by using the next-generation-matrix method. The endemic equilibrium of subsystem
SG1 satisfies

a11 I
2 + a12 I + a13 = 0,

SM = β − γ − d − β I

β(1 − θ)
,

(6)

where

a11 = β2θ, a12 = β
[
θ(λ − β + d + γ ) + μ + d

]
,

a13 = (d + γ )(λ + μ + d)(1 − R0).

Denote g1(I ) = a11 I 2 + a12 I + a13. If R0 > 1, it is easy to see that a11 > 0 and

a13 < 0, so a unique positive root I12 = −a12 + √

1

2a11
exists for the first equation of

(6), where 
1 = a212 − 4a11a13. Direct calculation yields that

g1
(β − γ − d

β

)
> 0 	⇒ 0 < I12 <

β − γ − d

β
.

It follows that

SM12 = β − γ − d − β I12
β(1 − θ)

> 0,

so a unique positive equilibrium E12 = (
SM12 , I12

)
exists for Subsystem SG1 for

R0 > 1.
ForR0 < 1, we can get a11 > 0 and a13 > 0, so the existence of positive solutions

of (6) depends on a12 and 
1. Denote

Rc1 = βθ(β − γ − d)

2
√
a11a13 + a12 + βθ(β − γ − d)

.

If Rc1 > 1, we have a12 < 0 and 
1 > 0, so there are two positive roots for the first
equation of (6):

I11 = −a12 − √

1

2a11
, I12 = −a12 + √


1

2a11
.
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Direct calculation yields

0 < I11 < I12 <
β − γ − d

β
,

so

SM1i = β − γ − d − β I1i
β(1 − θ)

> 0, i = 1, 2.

Thus there exist two endemic equilibria, E11 = (SM11, I11) and E12 = (SM12, I12),
for Subsystem SG1 .

If Rc1 = 1, we get a12 < 0 and
1 = 0, so a unique positive root I1 = −a12
2a11

exists

for the first equation of (6). Since 0 < I1 <
β − γ − d

β
, it follows that

SM1 = β − γ − d − β I1
β(1 − θ)

> 0.

Thus a unique endemic equilibrium E1 = (SM1 , I1) exists for Subsystem SG1 . If Rc1 <

1, no positive root exists for equation (6),which suggests no endemic equilibriumexists
for Subsystem SG1 .

We next perform a bifurcation analysis of Subsystem SG1 at R0 = 1, choosing β

as the bifurcation parameter. We have the following results.

Theorem 1 The free subsystem undergoes a forward bifurcation atR0 = 1 if a′
1 < 0;

otherwise, it undergoes a backward bifurcation atR0 = 1 if a′
1 > 0, where

a′
1 = (d + γ )

2λ(1 − θ)(θλ + μ + d + θ(d + γ )) − (λ + μ + d)(θλ + μ + d)

(θλ + μ + d)2
.

Proof Solving R0 = 1 with respect to β, we find the critical value to be

β∗ = (λ + μ + d)(d + γ )

θλ + d + μ
.

The right-hand side of the subsystem SG1 takes the form

f11(SM , I ) = λ(1 − I ) − (λ + μ + d)SM − βθ SM I ,

f12(SM , I ) = (β − γ − d)I − β(1 − θ)SM I − β I 2.

The Jacobian matrix of subsystem SG1 is

J1(SM , I ) =
(−(λ + μ + d) − βθ I −λ − βθ SM

−β(1 − θ)I (β − γ − d) − β(1 − θ)SM − 2β I

)
.
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Evaluating this matrix at E0 and letting β = β∗ yields

J1(E0)

∣∣∣∣
β=β∗

=
(

−(λ + μ + d) −λ − θλ(d+γ )
θλ+μ+d

0 0

)

.

The eigenvalues are−λ−μ−d and 0, and the left and right eigenvectors corresponding
to the eigenvalue 0 are given by

ul = (ul1, u
l
2) = (0, 1) and ur = (ur1, u

r
2)

T =
(

−λ(θλ + μ + d) + θλ(d + γ )

(θλ + μ + d)(λ + μ + d)
, 1

)T

.

Calculating the nonzero second-order partial derivatives of f11 and f12 at (E0, β
∗),

we get

∂2 f12
∂SM∂ I

= ∂2 f12
∂ I∂SM

= −β∗(1 − θ),
∂2 f12
∂ I 2

= −β∗, ∂2 f12
∂ I∂β

= θλ + μ + d

λ + μ + d
.

Using the results from Castillo-Chavez and Song (2004), we now calculate the two
bifurcation parameters

a′
1 =

2∑

k,i, j=1

ulku
r
i u

r
j

∂2 f1k
∂xi∂x j

(
E0, β

∗) and b′
1 =

2∑

k,i=1

ulku
r
i
∂2 f1k
∂xi∂β

(
E0, β

∗) ,

where xi ∈ {SM , I }. We have

a′
1 = (d + γ )

2λ(1 − θ)(θλ + μ + d + θ(d + γ )) − (λ + μ + d)(θλ + μ + d)

(θλ + μ + d)2
,

b′
1 = θλ + μ + d

λ + μ + d
> 0.

If a′
1 < 0, then a forward bifurcation occurs for the free subsystem at R0 = 1.

Otherwise, if a′
1 > 0, a backward bifurcation occurs for the free subsystem atR0 = 1,

as shown in Fig. 2. The parameter values presented in our figures are chosen for
illustrative purposes. �


We next examine the stability of the equilibria. Evaluating J1 at the disease-free
equilibrium E0 yields

tr
(
J1(E0)

) = −(λ + μ + d) − a13
λ + μ + d

, det
(
J1(E0)

) = a13.

Since a13 > 0 forR0 < 1,we get tr
(
J1(E0)

)
< 0 and det

(
J1(E0)

)
> 0. It follows that

the disease-free equilibrium E0 is always locally asymptotically stable. We similarly
get a13 < 0 for R0 > 1, suggesting that det

(
J1(E0)

)
< 0, so the disease-free

equilibrium is unstable forR0 > 1.
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Fig. 2 (a) Forward bifurcation diagram of the free subsystem. (b) Backward bifurcation diagram of the
free subsystem. Here we fix all other parameters as follows: γ = 0.3, d = 0.008, θ = 0.5 and (a)
μ = 0.3, λ = 0.2; (b) μ = 0.01, λ = 0.02

Next, we analyze the stability of the endemic equilibrium. Calculating the value of
the Jacobian matrix J1 at E11, E12 and E1 gives

tr(J1(E11)) = −(λ + μ + d) − β(1 + θ)I11 < 0, det(J1(E11)) = −√

1 I11 < 0,

tr(J1(E12)) = −(λ + μ + d) − β(1 + θ)I12 < 0, det(J1(E12)) = √

1 I12 > 0,

tr(J1(E1)) = −(λ + μ + d) − β(1 + θ)I1 < 0, det(J1(E1)) = 0.

It follows that the endemic equilibrium E11 is a saddle point, so it is always unstable.
The endemic equilibrium E12 is a stable focus for δ1 < 0 and a stable node for δ1 ≥ 0,
where

δ1 = [
(λ + μ + d) + β I12(1 + θ)

]2 − 4 det
(
J1(SM12, I12)

)
.

The endemic equilibrium E1 is a non-hyperbolic saddle node. It is crucial to highlight
that when the basic reproduction number R0 < 1, the disease does not necessar-
ily vanish. In such cases, another threshold, denoted Rc1, becomes relevant. When
Rc1 > 1, the disease becomes endemic; conversely, when Rc1 < 1, the disease can be
eradicated from the population. This underscores the significance of Rc1 as a critical
threshold for determining whether a disease can be eliminated when R0 < 1. For
clarity, we summarize the stability of all the equilibria in Table 2.

3.2 Dynamics of the control system

For Subsystem SG2 , the basic reproduction number is also

R0 = β(θλ + d + μ)

(λ + μ + d)(d + γ )
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Table 2 Existence and stability
of all equilibria for Subsystem
SG1

The conditions Equilibria Stablility

R0 > 1 E0 Unstable

E12 Stable

R0 < 1 Rc1 < 1 E0 Stable

Rc1 = 1 E0 Stable

E1 Unstable

Rc1 > 1 E0 Stable

E11 Unstable

E12 Stable

and the disease-free equilibrium E0 = ( λ
λ+μ+d , 0) always exists. Denote

a21 = a11 + βk(μ + d), a22 = a12 + k(a13 + βλθ), a23 = a13.

Then the endemic equilibrium satisfies

g2(I ) = a21 I
2 + a22 I + a23 = 0,

SM = (β − γ − d − β I )(1 + k I )

β(1 + k I − θ)
.

(7)

IfR0 > 1, we have a21 > 0, a23 < 0, so there is a unique positive root

I22 = −a22 + √

2

2a21

for the first equation of (7), where 
2 = a222 − 4a21a23. Direct calculation yields that

g2
(

β−γ−d
β

)
> 0, so we have

0 < I22 <
β − γ − d

β
.

It follows that there is a unique endemic equilibrium E22 = (SM22, I22) for Subsystem
SG2 , where

SM22 = (β − γ − d − β I22)(1 + k I22)

β(1 + k I22 − θ)
> 0.

If R0 < 1, we can get that a21 > 0, a23 > 0 , so the existence of positive root of
(7) depends on the sign of a22 and 
2. Denote

Rc2 = βθ(β − γ − d)

2
√
a21a23 + a22 + βθ(β − γ − d)

.
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If Rc2 > 1, we have a22 < 0,
2 > 0, so there are two positive roots for the first
equation of (7):

I21 = −a22 − √

2

2a21
, I22 = −a22 + √


2

2a21
.

It follows from

0 < I21 < I22 <
β − γ − d

β

that

SM2 j = (β − γ − d − β I2 j )(1 + k I2 j )

β(1 + k I2 j − θ)
> 0, j = 1, 2,

so there are two endemic equilibria E21 = (SM21, I21) and E22 = (SM22, I22) for
Subsystem SG2 .

If Rc2 = 1, we have a22 < 0,
2 = 0, so only one positive root I2 = −a22
2a21

exists

for the first equation of (7). Since 0 < I2 <
β−γ−d

β
, we have

SM2 = (β − γ − d − β I2)(1 + k I2)

β(1 + k I2 − θ)
> 0.

Then there is only one endemic equilibrium E2 = (SM2, I2) for Subsystem SG2 . If
Rc2 < 1, no positive solution exists for the first equation of (7) and so no endemic
equilibrium exists for Subsystem SG2 .

We next perform a bifurcation analysis for the control subsystem at R0 = 1. By
choosing β as the bifurcation parameter and performing a similar procedure to that in
Theorem 1, we can show that both a forward and a backward bifurcation are possible
for the control subsystem, as shown in Fig. 3.

Theorem 2 The control subsystem undergoes a forward bifurcation at R0 = 1 for
ã < 0; otherwise, it undergoes a backward bifurcation at R0 = 1 for ã > 0, where

ã = (d + γ )
2λ(1 − θ)(θλ + μ + d + θ(d + γ )) − (2kθλ + λ + μ + d)(θλ + μ + d)

(θλ + μ + d)2
.

The proof is given in the appendix.
To explore the stability of the equilibria for the subsystem SG2 , we first compute

the Jacobian matrix of Subsystem SG2 , matrix J2, at E0 and get

tr(J2(E0)) = −(λ + μ + d) − a23
λ + μ + d

,

det(J2(E0)) = a23.
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Fig. 3 (a) Forward bifurcation diagram of the control subsystem. (b) Backward bifurcation diagram of the
control subsystem. Here we fix all other parameters as follows: γ = 0.3, d = 0.008, θ = 0.5, k = 1.1 and
(a) μ = 0.3, λ = 0.2; (b) μ = 0.01, λ = 0.02

It follows that tr(J2(E0)) < 0 while det(J2(E0)) > 0 forR0 < 1, and det(J2(E0)) <

0 for R0 > 1, so the disease-free equilibrium E0 is locally asymptotically stable for
R0 < 1, and it is unstable for R0 > 1.

Next, we analyze the stability of the endemic equilibria. We have

tr(J2(E21)) = −(λ + μ + d) − β I21

(
1 + θ

1 + k I21
+ θkSM21

(1 + k I21)2

)
< 0,

det(J2(E21)) = −
√


2 I21
1 + k I21

< 0,

tr(J2(E22)) = −(λ + μ + d) − β I22

(
1 + θ

1 + k I22
+ θkSM22

(1 + k I22)2

)
< 0,

det(J2(E22)) =
√


2 I22
1 + k I22

> 0,

tr(J2(E2)) = −(λ + μ + d) − β I2

(
1 + θ

1 + k I2
+ θkSM2

(1 + k I2)2

)
< 0,

det(J2(E2)) = 0.

It follows that the endemic equilibrium E22 = (SM22, I22) is locally asymptotically
stable ifR0 > 1. Denote

δ2 =
[
(λ + μ + d) + β I

(
1 + θ

1 + k I
+ kθ SM

(1 + k I )2

)]2
− 4 det(J2(SM , I )),

so it follows that E22 is a stable focus for δ2 < 0 while it is a stable node for δ2 ≥ 0.
The endemic equilibrium E21 is a saddle point, so it is always unstable. The endemic
equilibrium E2 is a non-hyperbolic saddle node. Once again, in the context of control
systems, R0 < 1 may not be a sufficient condition for disease extinction. Instead,
another threshold, Rc2, must be considered. Only when Rc2 < 1 can the disease
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Table 3 Existence and stability
of all the equilibria for
Subsystem SG2 .

The conditions Equilibria Stablility

R0 > 1 E0 Unstable

E22 Stable

R0 < 1 Rc2 < 1 E0 Stable

Rc2 = 1 E0 Stable

E2 Unstable

Rc2 > 1 E0 Stable

E21 Unstable

E22 Stable

Fig. 4 Evolution of the equilibrium values of infecteds and social-distancing susceptibles with respect to
the social-distancing reinforcement factor k. Here we fix all other parameters as follows: (a) β = 0.7, μ =
0.3, λ = 0.2, γ = 0.3, d = 0.008, θ = 0.5; (b) β = 0.415, μ = 0.01, λ = 0.02, γ = 0.3, d = 0.008, θ =
0.5

be effectively eradicated from the population. We summarize the stability of all the
equilibria in Table 3.

Due to the significance of the social-distancing reinforcement factor, k, on the
control of disease, it is essential to examine the impact of k on disease infection. To
this purpose, we numerically simulate the effect of varing k on the equilibrium level of
infected individuals and social-distancing susceptibles for Subsystem SG2 , as shown
in Fig. 4.

In Fig. 4, the purple solid (dashed) lines represent the proportion of infected indi-
viduals with high (low) endemicity in steady states; i.e., I22(I21). The pink solid
(dashed) lines represent the proportion of social-distancing susceptibles with high
(low) endemicity in steady states; i.e., SM22(SM21). Solving Rc2 = 1 with respect to
k yields

k1,2 =
4a13β(μ+d)−2a12(a13+βλθ) ∓

√[
4a13β(μ+d)−2a12(a13+βλθ)

]2−4(a13+βλθ)
(
a212 − 4a11a13

)

2
(
a13 + βλθ

)2 .
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Denote

L1 : k = k1, L2 : k = k2.

It follows from Fig. 4(a) that the infecteds in the steady state (I22) decrease while the
social-distancing susceptibles (SM22) increase as the social-distancing reinforcement
factor increases for R0 > 1. Fig. 4(b) shows that if R0 < 1, there are two endemic
equilibria if and only if k < k1, while no endemic equilibrium exists if k > k1. In
fact, no equilibrium exists for (7) for k1 < k < k2; when k ≥ k2, the roots for the first
equation of (7) are negative, although the roots for the second equation are positive.
The infecteds with high endemicity in steady state (i.e., I22) are decreasing, while
the ones with low endemicity in steady states (i.e., I21) are increasing as k increases.
Conversely, the social-distancing susceptibles with high endemicity in steady states
(i.e., SM22) are increasing, while the ones with low endemicity in steady states (i.e.,
SM21) are decreasing as k increases.

4 Sliding domain and its dynamics

In this section, we study the sliding-mode dynamics of system (4) on the switching
line �. We initially examine the sliding domain, which might exist if the vector of the
two subsystems are directed towards each other; i.e.,

H(Z) = 〈σZ (Z), FG1(Z)〉〈σZ (Z), FG2(Z)〉 < 0.

We obtain the sliding domain

�s =
{
(SM , I ) ∈ R2+

∣
∣
∣
∣
(β − γ − d − β Ic)(1 + k Ic)

β(1 + k Ic − θ)
≤ SM ≤ β − γ − d − β Ic

β(1 − θ)
, I = Ic

}

when Ic <
β−γ−d

β
. Then the crossing region takes the following form:

�c =
{
(SM , I ) ∈ R2+

∣
∣∣∣SM <

(β − γ − d − β Ic)(1 + k Ic)

β(1 + k Ic − θ)
or

SM >
β − γ − d − β Ic

β(1 − θ)
, I = Ic

}
.

Using the Filippov convex method, we obtain the sliding dynamics equation of system
(4) on the sliding domain �s as follows:

dSM
dt

= λ(1 − Ic) + (β − γ − d)Ic − β I 2c − (λ + μ + d + β Ic)SM ,

d I

dt
= 0,

(8)
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Fig. 5 The roots of H1(Ic) = 0 and H2(Ic) = 0. (a) β = 0.7, μ = 0.3, γ = 0.3, d = 0.008, θ = 0.5, λ =
0.2, k = 10; (b)–(f) β = 0.145, μ = 0.01, γ = 0.3, d = 0.008, θ = 0.5 and λ = 0.1, k = 5 (b);
λ = 0.22134, k = 5 (c); λ = 0.02, k = 5 (d); λ = 0.02, k = 1.1663 (e); λ = 0.02, k = 1.1 (f)

with SM ∈ �s . For convenience, we denote the sliding vector field as Fs and the
crossing vector field as Fc. There is a unique equilibrium

Es = (SMs , Ic) =
(

λ(1 − Ic) + (β − γ − d)Ic − β I 2c
λ + μ + d + β Ic

, Ic

)

for system (8), so a unique pseudo-equilibrium Es exists for Filippov system (4). The
pseudo-equilibrium Es is admissible if and only if

(β − γ − d − β Ic)(1 + k Ic)

β(1 + k Ic − θ)
< SMs <

β − γ − d − β Ic
β(1 − θ)

;

i.e., Es ∈ �s , which is equivalent to

H1(Ic) ≡ a11 I
2
c + a12 Ic + a13 ≤ 0,

H2(Ic) ≡ a21 I
2
c + a22 Ic + a23 ≥ 0.

(9)

We next discuss the solution of the inequalities (9).
When R0 > 1, we have a11 > 0 and a13 < 0, so it follows that the solutions for

H1(Ic) = 0 are Ic = I11 and Ic = I12 with I11 < 0 < I12. We similarly have a21 > 0
and a23 < 0, so there are two solutions, Ic = I21 and Ic = I22, for H2(Ic) = 0 with
I21 < 0 < I22. Since I11 < I21 < I22 < I12, the solution for (9) is I22 ≤ Ic ≤ I12, as
shown in Fig. 5(a). Thus the pseudo-equilibrium Es is admissible for I22 ≤ Ic ≤ I12
in this scenario.

WhenR0 < 1, the solution of (9) depends on the positive solutions to the equations
H1(Ic) = 0 and H2(Ic) = 0, which depends on whether the threshold value Rcj ( j =
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Table 4 Existence of the admissible pseudo-equilibirum Es for Filippov system (4)

Parameter values Ranges of threshold Admissible/Virtual
R0 > 1 I22 ≤ Ic ≤ I12 Admissible

R0 < 1 Rc1 < 1 Virtual

Rc1 = 1 Ic = I1 Admissible

Rc2 ≤ 1 < Rc1 I11 ≤ Ic ≤ I12 Admissible

Rc2 > 1 I11 ≤ Ic ≤ I21 or I22 ≤ Ic ≤ I12 Admissible

1, 2) is greater or less than 1. We know Rc1 > Rc2, and there are further three
possibilities to consider according to the relationship of Rc1, Rc2 and 1.

If Rc1 < 1, no positive solution exists for H1(Ic) = 0 or H2(Ic) = 0, as shown in
Fig. 5(b), so no solution exists for the inequalities (9). Hence, the pseudo-equilibrium
Es is virtual for Filippov system (4) in this senario.

If Rc1 = 1, there is no positive solution for H1(Ic) = 0 while a unique positive
solution Ic = I2 for H2(Ic) = 0, as shown in Fig. 5(c), so the solution for the
inequalities (9) is Ic = I1. Hence, the pseudo-equilibrium Es is admissible for Ic = I1
in this senario.

If Rc2 < 1 < Rc1, there are two positive solutions, I11 and I12, for the equation
H1(Ic) = 0, but no positive solution exists for H2(Ic) = 0, so the solution for the
inequalities (9) is I11 < Ic ≤ I12, as shown in Fig. 5(d). Thus the pseudo-equilibrium
Es is admissible in this range.

If Rc2 = 1 < Rc1, two positive solutions, I11 and I12, exist for H1(Ic) = 0, and one
positive solution, I2, exists for H2(Ic) = 0. Since I11 < I2 < I12, the solution for the
inequalities (9) is I11 ≤ Ic ≤ I12, as shown in Fig. 5(e). Thus, the pseudo-equilibrium
Es is admissible for I11 ≤ Ic ≤ I12 in this scenario.

If Rc2 > 1, similar analysis yields that the solutions for the inequalities (9) are
I11 < Ic < I21 and I22 < Ic < I12, as shown in Fig. 5(f). Hence the pseudo-
equilibrium Es is admissible for the Filippov system (4) for I11 < Ic < I21 or
I22 < Ic < I12.

For clarity, we summarize the conditions to ensure the pseudo-equilibrium Es is
admissible in Table 4.

Considering the importance of the social-distancing reinforcement factor on the
transmission of epidemic disease, we numerically investigate how the sliding mode
and equilibria change as the parameter k varies, as shown in Fig. 6. The yellow stars
represent the endemic equilibria of Subsystem SG1, the triangles denote the endemic
equilibria of Subsystem SG2 with higher endemicity (shown in Fig. 6(a)), and the
squares represent the pseudo-equilibria (shown in Fig. 6(a),(b)). The solid shapes rep-
resent real/admissible equilibria, while the hollow shapes represent virtual equilibria.

Figure 6 shows that the sliding-mode region enlarges as the parameter k increases
for both R0 > 1 and R0 < 1. When R0 > 1, Fig. 6(a) indicates that two endemic
equilibria coexist for Subsystem (4), one for Subsystem SG1 (the yellow stars, E12)
and the other for Subsystem SG2 (the yellow triangles, E22). Further, E12 is real and
independent of k while a real/virtual bifurcation occurs at E22 when the parameter k

123



  156 Page 20 of 42 A. Wang et al.

Fig. 6 Evolution of the slidingmodes (grey thick solid lines), the regular endemic equilibria (yellow stars and
triangles) and pseudo-equilibria (yellow squares) for Filippov system (4) with respect to the reinforcement
factor of social-distancing k. Here we fix all other parameters as follows: (a) β = 0.7, μ = 0.3, λ =
0.2, γ = 0.3, d = 0.008, θ = 0.5; (b) β = 0.415, μ = 0.01, λ = 0.02, γ = 0.3, d = 0.008, θ = 0.5

passes through a critical value around c = 3, where the admissible pseudo-equilibrium
Es appears. When R0 < 1, Fig. 6(b) demonstrates that the pseudo-equilibrium Es is
admissible when k is greater than the critical value around k = 1.5.

5 Boundary equilibrium bifurcation

In this section, we study the bifurcation phenomenon of equilibria in Filippov system
(4). We initially investigate whether the endemic equilibria of Filippov system (4) are
real or virtual. It follows from Section 3 that there are six possible endemic equilibria
for Filippov system (4): E11, E12, E21, E22, E1 and E2. As the threshold value Ic
changes, they may be real or virtual. In particular, E11, E21, E1 are real, denoted
as Er

11, E
r
21, E

r
1, if Ic > I11, Ic > I12 and Ic > I1, respectively; they are virtual,

denoted as Ev
11, E

v
21, E

v
1 , if Ic < I11, Ic < I12 and Ic < I1, respectively. The endemic

equilibria E21, E22, E2 are real, denoted as Er
21, E

r
22, E

r
2, if Ic < I21, Ic < I22 and

Ic < I2, respectively; they are virtual, denoted as Ev
21, E

v
22, E

v
2 , if Ic > I21, Ic > I12

and Ic > I2, respectively.
Next, we examine the tangent points and boundary equilibrium of Filippov system

(4). According to Definition 3, the tangent points of Filippov system (4) satisfy

(β − γ − d)I − β

(
1 − θ

1 + νk I

)
SM I − β I 2 = 0,

I = Ic.

(10)

Solving (10), there are two tangent points T1, T2 for Filippov system (4),

T1 =
(

(β − γ − d − β Ic)(1 + k Ic)

β(1 + k Ic − θ)
, Ic

)
and T2 =

(
β − γ − d − β Ic

β(1 − θ)
, Ic

)
.
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According to Definition 4, the boundary equilibria of Filippov system (4) satisfy

λ(1 − I − SM ) − βθ SM I

1 + νk I
− (μ + d)SM = 0,

(β − γ − d)I − β

(
1 − θ

1 + νk I

)
SM I − β I 2 = 0,

I = Ic.

(11)

If ν = 0, there are three boundary equilibria,

Eb
11 =

(
β − γ − d − β I11

β(1 − θ)
, I11

)
, Eb

12 =
(

β − γ − d − β I12
β(1 − θ)

, I12

)

and Eb
1 =

(
β − γ − d − β I1

β(1 − θ)
, I1

)

for I11 = Ic, I12 = Ic or I1 = Ic. If ν = 1, there are also three boundary equilibria,

Eb
21 =

(
(β − γ − d − β I21)(1 + k I21)

β(1 + k I21 − θ)
, I21

)
,

Eb
22 =

(
(β − γ − d − β I22)(1 + k I22)

β(1 + k I22 − θ)
, I22

)
,

Eb
2 =

(
(β − γ − d − β I2)(1 + k I2)

β(1 + k I2 − θ)
, I2

)
,

for I21 = Ic, I22 = Ic or I2 = Ic.
By the above discussion, we know that there are six possible boundary equilibria

for Filippov system (4). According to Definition 4, if we further have

det
(
J1(E

b
s )

) �= 0, det
(
J2(E

b
s )

) �= 0, s ∈ {
11, 12, 21, 22

}
,

then a boundary equilibrium bifurcation occurs.We initially examine the scenario with
R0 > 1. There exists a disease-free equilibrium E0 and two endemic equilibria E12
and E22 for R0 > 1, where E0 is unstable. If Ic < I22, the equilibrium Er

22 is real
while the equilibrium Ev

12 is virtual, and the sliding mode is as shown in Fig. 7(a).
When Ic increases to Ic = I22, the endemic equilibrium E22 and the tangent

point T1 coincide, resulting in the occurrence of a boundary equilibrium Eb
22, so a

boundary-node (focus) bifurcation occurs, as shown in Fig. 7(b). When Ic increases
continuously to Ic > I22, the boundary equilibrium Eb

22 disappears, and the pseudo-
equilibrium Es and virtual equilibrium Ev

22 occur, as shown in Fig. 7(c). Similarly, the
endemic equilibrium E12, the tangent point T2 and the pseudo-equilibrium Es coincide
for Ic = I12, so another boundary-node (focus) bifurcation occurs for Filippov system
(4). Thus, the following conclusion can be obtained.

Theorem 3 A boundary-node (focus) bifurcation for Filippov system (4) at the equi-
librium Eb

22 (resp., E
b
12) occurs if det

(
J1(Eb

22)
) �= 0 (resp., det

(
J2(Eb

12)
) �= 0).
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Fig. 7 Boundary node bifurcation for Filippov system (4). Here we choose Ic as a bifurcation parameter
and all other parameters as follows: β = 0.7, μ = 0.3, λ = 0.2, γ = 0.3, d = 0.008, θ = 0.5 and k = 10,
with (a) Ic = 0.2; (b) Ic = 0.3418; (c) Ic = 0.4

Fig. 8 Boundary saddle-node bifurcation for Filippov system (4). Here we choose Ic as a bifurcation
parameter, and all other parameters as follows: β = 0.415, μ = 0.01, λ = 0.02, γ = 0.3, d = 0.008,
θ = 0.5 and k = 1.1, with (a) Ic = 0.012; (b) Ic = 0.0216; (c) Ic = 0.035

Next, we consider the scenario withR0 < 1. In this scenario, there are six possible
endemic equilibria E11, E12, E21, E22, E1 and E2, where E11 and E21 are saddles,
E12 and E22 are nodes or foci and E1 and E2 are saddle nodes. If we further have
Rc2 > 1, there are four endemic equilibria E11, E12, E21 and E22 of the system (4).
When I11 < Ic < I12, the equilibrium Er

21 is real and a saddle, as shown in Fig. 8(a).
If Ic increases to Ic = I21 (i.e., Ic = 0.0216), the endemic equilibrium Er

21, the
tangent point T1 and the pseudo-equilibrium Es coincide, resulting in the occurrence of
the boundary equilibrium Eb

21, as shown in Fig. 8(b). Since the regular equilibrium Er
21

is a saddle and the pseudo-equilibrium Es is a pseudo node, the boundary equilibrium
Eb
21 is a saddle-node. Hence a boundary saddle-node bifurcation occurs for Filippov

system (4). If Ic increases continuously to Ic > I21 (i.e., Ic = 0.035), the boundary
equilibrium Eb

21 disappears, and avirtual equilibrium Ev
21 occurs, as shown inFig. 8(c).

As the threshold Ic undergoes the following variation

Ic < I21 −→ Ic = I21 −→ Ic > I21,

we obtain the following variation

real saddle −→ pseudo-saddle-node −→ virtual equilibrium.

That is, a saddle-node (the boundary equilibrium Eb
21) appears as the result of the col-

lision of a regular saddle (i.e., endemic equilibrium Er
21) and a pseudo-node (i.e., the

pseudo-equilibrium Es), and it finally disappears with the appearance of a virtual equi-
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Fig. 9 Boundary saddle-node bifurcation for Filippov system (4). Here we choose Ic as a bifurcation
parameter and all other parameters as follows: β = 0.415, μ = 0.01, λ = 0.022134, γ = 0.3, d = 0.008,
θ = 0.5 and k = 5, with (a) Ic = 0.1; (b) Ic = 0.0589; (c) Ic = 0.05.

librium (i.e., Eb
21). This illustrates howa regular saddle becomes a pseudo-saddle-node.

The bifurcation induces a novel equilibrium: the pseudo-saddle-node for Filippov sys-
tem (4). Similarly, we can get another boundary saddle-node bifurcation when the
endemic equilibrium Er

11 and the pseudo-equilibrium Es coincide. We summarize
these results in the following theorem.

Theorem 4 A boundary saddle-node bifurcation occurs for Filippov system (4) at the
equilibrium Eb

21 (resp., E
b
11) if det

(
J1(Eb

21)
) �= 0 (resp., det

(
J2(Eb

11)
) �= 0).

When R0 < 1 and Rc1 = 1, there is an endemic equilibrium E1 as well as a
disease-free equilibrium E0. If we further have Ic > I1, the equilibrium Er

1 is real,
and it is a saddle-node for Filippov system (4), as shown in Fig. 9(a).

If Ic decreases to Ic = I1 (i.e., Ic = 0.0589), the equilibrium Er
1 and tangent

point T2 collide, leading to a boundary equilibrium Eb
1 , so a boundary saddle-node

bifurcation occurs for Filippov system (4), as shown in Fig. 9(b). If Ic decreases to
Ic < I1 (i.e., Ic = 0.05), the boundary saddle-node disappears with the appearance of
a virtual equilibrium Ev

1 , as shown in Fig. 9(c). Note that the boundary saddle-node
in Fig. 9 is induced by the collision of a regular saddle-node and a tangent point;
while the boundary saddle-node in Fig. 8 is induced by the collision of a regular
saddle, a pseudo-node and a tangent point. Similarly, another boundary saddle-node
bifurcation occurs when the regular saddle-node E2 collides with the tangent point
T1. We summarize these results in the following theorem.

Theorem 5 A boundary saddle-node bifurcation occurs for Filippov system (4) at the
equilibrium Eb

1 (resp., Eb
2 ) if Ic = I1 (resp., Ic = I2).

6 Global behaviour of the system

The global behaviour of Filippov system (4) is explored in this section. By examining
the nonexistence of all possible limit cycles, we gain insight into the global stability
of all equilibria.
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6.1 Nonexistence of limit cycles

In this section, we address the nonexistence of limit cycles to obtain the global stability
of all the equilibria of the system (4). We initially rule out the existence of standard
cycles, which lie totally in the subregion G1 or G2.

Lemma 1 There is no limit cycle for Filippov system (4) totally in region Gi , i = 1, 2.

Proof Let the Dulac function be B = 1

SM I
. For Subsystem SG1 , we have

∂(B f11)

∂SM
+ ∂(B f12)

∂ I
= −λ(1 − I ) − βSM I

S2M I
< 0,

so there is no limit cycle totally in region G1. Similarly, for Subsystem SG2 , we have

∂(B f21)

∂SM
+ ∂(B f22)

∂ I
= −λ(1 − I ) − βSM I

S2M I
− βθk

(1 + k I )2
< 0.

Hence there is no limit cycle totally in region G2. �

Lemma 2 There is no closed orbit for Filippov system (4) that contains part of the
sliding domain �s .

Proof Weonly preclude the existence of closed orbit containing part of�s forR0 > 1;
a similar process can be implemented for the caseR0 < 1. IfR0 > 1, the disease-free
equilibrium E0 and endemic equilibria E11, E21 exist for Filippov system (4). There
are three further possibilities to consider: I22 ≤ Ic ≤ I12, Ic > I12 and Ic < I22.
If I22 ≤ Ic ≤ I12, the pseudo-equilibrium Es exists and is asymptotically stable for
I22 < Ic < I12, so there is no limit cycle containing part of the sliding domain �s .

If Ic > I12, it follows from the sliding dynamics (8) that
dSM
dt

> 0, which indicates

that any trajectory reaching the sliding domain �s moves from left to right on �s .
Denote the orbit initiating from the tangent point T2 as l1. We only need to prove that
l1 will not hit the manifold �s again. In fact, since E21 is stable, by a similar process
in Wang and Xiao (2014), the orbit l1 cannot hit the manifold �, but rather spirals
to the stable equilibrium E21. Hence there is no closed orbit for Filippov system (4)
that contains part of the sliding segment. If Ic < I22, a similar analysis yields no limit
cycle containing part of the sliding domain �s . �

Lemma 3 There is no limit cycle surrounding the sliding domain �s .

Proof We apply a similar method as in Xiao et al. (2012) to preclude the existence of
a limit cycle surrounding �s . Suppose that X is a limit cycle surrounding the sliding
segment T1T2 with period T , as shown in Fig. 10. �


Denote its part below the line I = Ic by X1 and its part above the line I = Ic by
X2. The intersection points of the limit cycle X and the line I = Ic are represented
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Fig. 10 Phase plane SM -I for
Filippov epidemic model (2),
showing the switching line
(I = Ic), sliding domain (T1T2)
and the diagram of X1 and X2
split from the limit cycle by the
switching line

by H1 and H2. Plot two auxiliary lines I = Ic − ε and I = Ic + ε, where ε > 0 is
any sufficiently small number. Denote the intersection points of X and the auxiliary
line I = Ic − ε by A1 and A2, and the intersection points of X and another auxiliary
line I = Ic + ε by A4 and A3. Let D1 be the region delimited by X1 and the segment
A2A1, and let D2 be the region delimited by X2 and the segment A4A3. We denote
the boundary of D1 and D2 by C1 and C2, respectively, with the directions indicated
in Fig. 10. Let the Dulac function be B = 1

SM I defined as before. By the discussion
given above and Green’s theorem, we get

∫∫

D1

[
∂(B f11)

∂SM
+ ∂(B f12)

∂ I

]
dSMdI =

∮

C1

B
[
f11dI − f12dSM

]
= −

∫

−−−→
A2A1

B f12dSM ,

∫∫

D2

[
∂(B f21)

∂SM
+ ∂(B f22)

∂ I

]
dSMdI =

∮

C2

B
[
f21dI − f22dS

]
= −

∫

−−−→
A4A3

B f22dSM .

Let D0 ⊂ D1 and

ξ =
∫∫

D0

[
∂(B f11)

∂SM
+ ∂(B f12)

∂ I

]
dSMdI .

Then

∂(B f11)

∂SM
+ ∂(B f12)

∂ I
< 0 	⇒ ξ < 0.

Furthermore,

0 > ξ >

∫∫

D1

[
∂(B f11)

∂SM
+ ∂(B f12)

∂ I

]
dSMdI +

∫∫

D2

[
∂(B f21)

∂SM
+ ∂(B f22)

∂ I

]
dSMdI ,
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so we obtain

0 > ξ > −
∫

−−−→
A2A1

B f12dSM −
∫

−−−→
A4A3

B f22dSM . (12)

Assume that the abscissae of the points H1, H2, A1, A2, A3, A4 are s, s, s +
h1(ε), s − h2(ε), s − h3(ε) and s + h4(ε), respectively, where hi (ε)(i = 1, 2, 3, 4) is
continuous and satisfies limε→∞ hi (ε) = 0 and hi (ε) = 0. Thus, we get

lim
ε→∞

[
−

∫

−−−→
A2A1

B f12dSM

]
= lim

ε→∞

∫ s−h2(ε)

s+h1(ε)

[
β − γ − d − β(Ic − ε)

SM
− β(1 − θ)

]
dSM

= lim
ε→∞

[
(
β − γ − d − β(Ic − ε)

)
ln

∣
∣
∣
∣
s − h2(ε)

s + h1(ε)

∣
∣
∣
∣

− β(1 − θ)
(
s − h2(ε) − s − h1(ε)

)]

= (β − γ − d − β Ic) ln

∣
∣∣
∣
s

s

∣
∣∣
∣ − β(1 − θ)(s − s).

Similarly, we have

lim
ε→∞

[
−

∫

−−−→
A4A3

B f22dSM

]
= lim

ε→∞

∫ s−h3(ε)

s+h4(ε)

[
β − γ − d − β(Ic − ε)

SM

− β

(
1 − θ

1 + k(Ic + ε)

)]
dSM

= lim
ε→∞

[(
β − γ − d − β(Ic − ε)

)
ln

∣
∣∣∣
s + h4(ε)

s − h3(ε)

∣
∣∣∣

− β

(
1 − θ

1 + k(Ic + ε)

)(
s + h4(ε) − s + h3(ε)

)]

=(β − γ − d − β Ic) ln

∣
∣∣∣
s

s

∣
∣∣∣ − β

(
1 − θ

1 + k Ic

)
(s − s).

Therefore

lim
ε→∞

[
−

∫

−−−→
A2A1

B f12dSM −
∫

−−−→
A4A3

B f22dSM

]
= βθ(s − s)

(
1 − 1

1 + k Ic

)
> 0,

which contradicts (12). Hence, no limit cycle surrounds the sliding domain �s .

Lemma 4 There is no crossing cycle without surrounding the sliding domain, which
is composed of pieces of the orbit of FG1 , pieces of the orbit of FG2 and the orbit of
Fc.

Proof The horizontal and vertical isoclinic curves for the free system are

{
(SM , I ) ∈ R2+

∣∣∣∣SM = λ(1 − I )

λ + μ + d + βθ I
, I < Ic

}
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Fig. 11 Phase plane SM -I for
Filippov system (4), showing the
switching line (I = Ic) and the
sliding domain (T1T2). The
horizontal and vertical isoclinic
curves for the free system (resp.
control system) are g11 and g12
(resp. g21 and g22)

and
{
(SM , I ) ∈ R2+

∣
∣∣∣I = β − γ − d − β(1 − θ)I

β
, I < Ic

}
,

respectively, denoted by g11 and g12. The horizontal and vertical isoclinic curves for
the control system are

{
(SM , I ) ∈ R2+

∣∣∣
∣F = λ(1 − I )(1 + k I )

(λ + μ + d)(1 + k I ) + βθ I
, I > Ic

}

and
{
(SM , I ) ∈ R2+

∣∣
∣∣I = β − γ − d

β
− (1 + k I − θ)F

1 + k I
, I > Ic

}
,

respectively, denoted by g21 and g22. The vector field to the right of the null-isoclines
g11 and g21 points down and the vector field to the left of the null-isoclines points up,
as shown in Fig. 11. �


Hence there is also no crossing limit cycle.

6.2 Global stability

We focus on the global stability of Filippov system (4) based on the above discussion.
By Sections 3–4, there are three regular equilibria, E0, E12 and E22, forR0 > 1, and
there is a pseudo-equilibrium state Es if and only if I22 < Ic < I12 for system (4), as
shown in Fig. 5(a). In this scenario, the global behaviour of Filippov system (4) is as
follows.

Theorem 6 The endemic equilibria Er
22 is globally asymptotically stable for Filippov

system (4) if Ic < I22; the pseudo-equilibrium Es is globally asymptotically stable
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Fig. 12 Phase plane of Filippov epidemic model (4). β = 0.7, μ = 0.3, λ = 0.2, γ = 0.3, d = 0.008,
θ = 0.5 and k = 10, with (a) Ic = 0.2; (b) Ic = 0.4; (c) Ic = 0.51. The pink (resp. orange) asterisks
represent the real (resp. virtual) equilibria and the red asterisks represent the disease-free equilibria and
pseudo-equilibrium

if I22 < Ic < I12; the endemic equilibrium Er
12 is globally asymptotically stable if

Ic > I12.

Proof By Section 3, the disease-free equilibrium Er
0 and the endemic equilibrium Er

22
are real for system (4); while the endemic equilibrium Ev

12 is virtual when Ic < I22.
The real equilibrium Er

0 is a saddle, so it is unstable. It follows from Lemmas 1–4
that no limit cycle exists for Filippov system (4). Hence the real equilibrium Er

22 is
globally asymptotically stable for Ic < I22, as shown in Fig. 12(a). �


In Fig. 12, the thick grey solid lines represent the sliding domains, the thin grey
dashed lines represent the crossing regions, the pink, green and red asterisks represent
the real, virtual and disease-free equilibria and pseudo-equilibria, the pink (resp. green)
dashed curves represent the asymptotes of the control system (resp. free system), and
the blue solid curves are the trajectories of Filippov model (4). If I22 < Ic < I12, there
is an admissible pseudo-equilibrium Es for system (4), and it is locally asymptotically
stable on the sliding domain �s . The disease-free equilibrium Er

0 is unstable, and
the endemic equilibria Ev

12 and Ev
22 are virtual. Thus the pseudo-equilibrium Es is

globally asymptotically stable due to the nonexistence of all limit cycles, as shown in
Fig. 12(b). If Ic > I12, the disease-free equilibrium Er

0 and the endemic equilibrium
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Fig. 13 Phase plane of Filippov epidemic model (4). The parameter values are β = 0.415, μ = 0.01,
γ = 0.3, d = 0.008, θ = 0.5 and k = 5, with (a) λ = 0.1, Ic = 0.15, (b) λ = 0.022134, Ic = 0.1. (c) The
basion of attraction for the two attractors Er

1 and Er
0. The areas G

1
e1 and G2

e1 are the basins of attraction

for Er
1 and Er

0, respectively. The orange curves �1
e1, �

2
e1 represent the stable manifolds of Er

1, and the red
stars represent the saddle node point Er

1. The red asterisks represent the real disease-free equilibrium Er
0

Er
12 are real, while the endemic equilibrium Ev

22 is virtual. We similarly derive that
the endemic equilibrium Er

12 is globally asymptotically stable, as shown in Fig. 12(c).
If R0 < 1, there are six possible endemic equilibria, E11, E12, E1, E21, E22 and

E2, and one disease-free equilibrium, E0, for system (4). The existence of endemic
equilibria depends on the relationship of the threshold value Rcj ( j = 1, 2) and 1.
Since Rc1 > Rc2, we consider five cases in the following.

Case (C1): Rc1 < 1.
There is only one disease-free equilibrium E0 and no endemic equilibrium for the

system (4) in this scenario. There is no admissible pseudo-equilibrium for system (4).
Hence the disease-free equilibrium E0 is globally asymptotically stable for system
(4), as shown in Fig. 13(a).

Thus, the following conclusion can be obtained.

Theorem 7 The disease-free equilibrium E0 is globally asymptotically stable for the
system (4) when Rc1 < 1.

Case (C2): Rc1 = 1.
In this case, there exist a disease-free equilibrium E0 and an endemic equilibrium

E1. No pseudo-equilibrium exists for system (4). Note that E1 is a non-hyperbolic
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Fig. 14 Phase plane of Filippov epidemic model (4). β = 0.415, μ = 0.01, λ = 0.02, γ = 0.3, d = 0.008,
θ = 0.5 and k = 5, with (a) Ic = 0.05; (b) Ic = 0.14. The orange circles represent the saddle points Er

11,
and the red asterisks represent the real endemic equilibrium Er

12, the real disease-free equilibrium Er
0 and

the pseudo-equilibrium Es . The orange curves represent the stable manifolds of the saddle point Er
11.

saddle node. Denote the two stable manifolds of the non-hyperbolic saddle node E1
as �1

e1 and �2
e1, as shown in Fig. 13(b). Then �1

e1 and �2
e1 split the R2+ plane into two

subregions. Denote the set of all the points above (resp. below) the manifolds �1
e1 and

�2
e1 as G

1
e1 (resp. G

2
e1), as shown in Fig. 13(c). We get the following result.

Theorem 8 The disease-free equilibrium E0 is globally asymptotically stable for sys-
tem (4) when Ic < I1. When Ic > I1, coexistence of the two attractors Er

1 and Er
0

occurs for Filippov model (4). In particular, any orbit of system (4) initiating from
Z0 ∈ G1

e1 ∪ �1
e1 ∪ �2

e1 will approach Er
1 , while any orbit initiating from Z0 ∈ G2

e1
will tend to Er

0 .

Proof For any value of Ic, the disease-free equilibrium Er
0 is real. The endemic equi-

librium Ev
1 is virtual for Ic < I1, and it is real, denoted by Er

1, for Ic > I1. If Ic < I1,
the disease-free equilibrium Er

0 is globally asymptotically stable for system (4), as
shown in Fig. 13(a). If Ic > I1 , the endemic equilibrium Er

1 is real, and Er
1 is a

non-hyperbolic saddle node. Let the initial point be Z0 = (S0M , I 0). Then any tra-
jectory starting from Z0 ∈ G1

e1 ∪ �1
e1 ∪ �2

e1 tends to the non-hyperbolic saddle node
point Er

1, while those trajectories initiating from Z0 ∈ G2
e1 approach the disease-free

equilibrium Er
0, as shown in Fig. 13(b)–(c). Hence both the disease-free equilibrium

E0 and the saddle node point Er
1 are the attractors of the system (4) when Ic > I1. �


Case (C3): Rc2 < 1 < Rc1.
In this case, the disease-free equilibrium E0 and two endemic equilibria E11, E12

exist for system (4) with SM11 > SM12 and I11 < I12. According to Section 4, we
know the pseudo-equilibrium Es is admissible if and only if I11 < Ic < I12. The
endemic equilibrium E11 is a saddle. Denote the two stable manifolds of E11 as �1

s11
and �2

s11. Then �1
s11 and �2

s11 split the R2+ plane into two subregions, G1
s11 and G2

s11,
where the subregionG1

s11 (resp.,G
2
s11) denotes the set of all points above (resp., below)

�1
s11 and �2

s11, as shown in Fig. 14(a).
We present the result in the following theorem and leave the proof to the appendix.
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Theorem 9 (i) If Ic < I11, the disease-free equilibrium Er
0 is globally asymptotically

stable for Filippov system (4).

(ii) If I11 < Ic < I12, bistability of the equilibria Es and Er
0 occurs for Filippov

system (4). In particular, any orbit starting from Z0 ∈ G1
s11 will approach the pseudo-

equilibrium Es , while any orbit starting from Z0 ∈ G2
s11 will tend to the disease-free

equilibrium Er
0.

(iii) If Ic > I12, bistability of the equilibria Er
12 and Er

0 occurs for Filippov sys-
tem (4). In particular, any orbit starting from Z0 ∈ G1

s11 will approach the endemic
equilibrium Er

12, while any orbit starting from Z0 ∈ G2
s11 will tend to the disease-free

equilibrium Er
0.

Case (C4): Rc2 = 1.
In this case, the disease-free equilibrium E0 and the endemic equilibria E11, E12

and E2 coexist for Filippov system (4) with SM11 > SM2 > SM12 and I11 < I2 < I12.
The pseudo-equilibrium Es is admissible for I11 < Ic < I12. The equilibrium E2 is a
non-hyperbolic saddle node. Denote the two stable manifolds of the saddle-node point
Er
2 as �1

e2 and �2
e2. If the equilibrium Er

2 is real but the equilibrium Ev
11 is virtual, then

�1
e2 and �2

e2 split the R2+ plane into two subregions G1
e2 and G2

e2, where G1
e2 (resp.,

G2
e2) represents the set of all points above (resp., below) �1

e2 and �2
e2, as shown in

Fig. 15.
If both Er

2 and Er
11 are real, the two stable manifolds �1

s11 and �2
s11 of the saddle

Er
11 and the other two stable manifolds �1

e2 and �2
e2 of the saddle node Er

2 split the
R2+ plane into three subregions: G1

e2,G
2
s11 and Gs . Subregion G1

e2 is composed of all
the points above �1

e2 and �2
e2; Subregion Gs is composed of all the points below �1

e2
and �2

e2 but above �1
s11 and �2

s11; and Subregion G2
s11 is composed of all the points

below �1
s11 and �2

s11, as shown in Fig. 15(c). We conclude the results in this scenario
as following and leave the proof to the appendix.

Theorem 10 (i) When Ic < I11, coexistence of the attractors Er
2 and Er

0 occurs for
Filippov system (4). In particular, any trajectory of system (4) initiating from Z0 ∈
G1

e2 ∪ �1
e2 ∪ �2

e2 will approach the endemic equilibrium Er
2 , while any trajectory

initiating from Z0 ∈ G2
e2 will tend to the disease-free equilibrium Er

0 .

(ii) When I11 < Ic < I2, coexistence of the three attractors Er
2, Es and E0 occurs

for Filippov system (4). In particular, any trajectory initiating from Z0 ∈ G1
e2 ∪ �1

e2 ∪
�2
e2 will approach Er

2, trajectories initiating from Xs ∈ Gs will approach Es , and
trajectories initiating from Z0 ∈ G2

s11 will tend to Er
0.

(iii)When I2 < Ic < I12, bistability of the equilibria Es and Er
0 occurs for Filippov

system (4). In particular, trajectories initiating from Z0 ∈ G1
s11 will approach Es , while

those trajectories initiating from Z0 ∈ G2
s11 will tend to Er

0.
(iv) When Ic > I12, bistability of equilibria Er

12 and Er
0 occurs for Filippov system

(4). In particular, trajectories initiating from Z0 ∈ G1
s11 will approach E

r
12, while those

trajectories initiating from X02 ∈ G2
s11 will tend to Er

0.
Case (C5): Rc2 > 1.
In this scenario, the disease-free equilibrium E0 and four endemic equilibria

E11, E12, E21 and E22 exist for the system (4)with SM11 > SM21 > SM22 > SM12 and
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Fig. 15 Phase plane of Filippov epidemic model (4). The parameter values are β = 0.415, μ = 0.01,
λ = 0.02, γ = 0.3, d = 0.008, θ = 0.5 and k = 1.1663, with (a) Ic = 0.007; (b) Ic = 0.012. The pink
stars represent the saddle nodes Er

2, the orange circles represent the saddle points E
r
11, and the red asterisks

are the pseudo-equilibria Es and the disease-free equilibria Er
0. The pink (resp., orange) curves represent

the stable manifolds of the saddle nodes Er
2 (resp., the saddle points Er

11). (c) The basins of attraction for

the three attractors Er
2, Es and Er

0. The areas G
1
e2,Gs and G2

s11 are the basins of attraction for E
r
2, Es and

Er
0, respectively. (d) Closeup of subplot (b)

I11 < I21 < I22 < I12. The pseudo-equilibrium Es is admissible for I11 < Ic < I21
or I22 < Ic < I12. Denote the two stable manifolds of the endemic equilibrium E21
as �1

s21 and �2
s21. If the equilibrium Er

21 is real and the equilibrium Ev
11 is virtual, then

�1
s21 and �2

s21 split the R
2+ plane into two subregions: G1

s21 and G
2
s21. Subregion G

1
s21

consists of all the points above the stable manifolds �1
s21 and �2

s21, while Subregion
G2

s21 consists of all the points below �1
s21 and �2

s21.
If both Er

11 and Er
21 are real, the stable manifolds �1

s11 and �2
s11 of the saddle Er

11
and the stable manifolds �1

s21 and �2
s21 of the saddle E

r
21 split the R2+ plane into three

subregions: G1
s21,Ge and G2

s11. Subregion G1
s21 represents all the points above �1

s21
and �2

s21; Subregion Ge represents all the points below �1
s21 and �2

s21 but above �1
s11

and �2
s11; and Subregion G

2
s11 represents all the points below �1

s11 and �2
s11, as shown

in Fig. 16. Thus we have the following result.

Theorem 11 (i) When Ic < I11, bistability of the equilibria Er
22 and Er

0 occurs for
Filippov model (4). In particular, the trajectories of system (4) initiating from
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Fig. 16 (a) Phase plane of Filippov epidemic model (4). The parameter values are β = 0.415, μ = 0.01,
λ = 0.02, γ = 0.3, d = 0.008, θ = 0.5, k = 1.1 and Ic = 0.012. The pink (resp., red) asterisks represent
the real equilibria Er

22 (resp., Er
0 and pseudo-equilibrium Es ), the pink (resp., orange) circles represent

the saddle points Er
21 (resp., Er

11) and the pink (resp., orange) curves represent the stable manifolds of the
saddle Er

21 (resp., Er
11). (b) A closeup of subplot (a). (c) The basin of attraction for the three attractors

Er
22, Es and Er

0. The areasG
1
s21,Ge andG2

s11 are the basins of attraction for E
r
22, Es and Er

0, respectively.

Z0 ∈ G1
s21 will approach the endemic equilibrium Er

22, while those trajectories
initiating from Z0 ∈ G2

s21 will tend to the disease-free equilibrium Er
0 .

(ii) When I11 < Ic < I12, multistability of the equilibria Er
22, Es and Er

0 occurs for
Filippov model (4). In particular, the trajectories of Filippov system (4) initiating
from Z0 ∈ G1

s21 will approach Er
22, the trajectories initiating from Z0 ∈ Ge will

approach Es, and those trajectories initiating from Z0 ∈ G2
s11 will approach Er

0 .
(iii) When I21 < Ic < I22, bistability of the equilibria Er

22 and Er
0 occurs for Filippov

model (4). In particular, any trajectory starting from Z0 ∈ G1
s11 will tend to Er

22,
while those starting from Z0 ∈ G2

s11 will tend to Er
0 .

(iv) When I22 < Ic < I12, bistability of the equilibria Es and Er
0 occurs for Filippov

system (4). In particular, any trajectory starting from Z0 ∈ G1
s11 will ultimately

go to Es, while those starting from Z0 ∈ G2
s11 will ultimately go to Er

0 .
(v) When Ic > I12, bistability of the equilibria Er

12 and Er
0 occurs for Filippov model

(4). In particular, any trajectory starting from Z0 ∈ G1
s11 will approach Er

12, while
those starting from Z0 ∈ G2

s11 will tend to Er
0 .

The proof is found in the appendix.
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For clarity, we summarize the above discussion and list all the possible regular
equilibria, the existence of admissible pseudo-equilibrium, the attractors and the cor-
responding attraction regions of the targeted model (4) in different cases in the whole
parameter space in Table 5.

In Table 5, the content in parentheses indicates whether the equilibrium is globally
asymptotically stable or specifies its basin of attraction. For example, Es(GAS) indi-
cates that the pseudo-equilibrium Es is globally asymptotically stable in this scenario,
and Er

1 (G1
e1

⋃
�1
e1

⋃
�2
e1) indicates that the basin of attraction for the real equilib-

rium Er
1 consists of three parts, G1

e1, �1
e1 and �2

e1, where �1
e1 and �2

e1 represent the
two stable manifolds of Er

1 and G1
e1 is the subregion defined in Case (C2).

7 Discussion

We proposed a Filippov model with a threshold control strategy to explore the impact
of social distancing on the spread and control of epidemic diseases. We divided the
susceptible population into twocompartments: fully susceptible individuals and social-
distancing susceptibles. The threshold policy is defined as follows: once the proportion
of infected individuals exceeds the threshold level Ic, social-distancing susceptibles
intensify the measures of self-protection, reducing the infection rate to f (k, I )θβ;
when the proportion of infected individuals falls below Ic, the infection rate of social-
distancing susceptibles is θβ. The proposed model exhibits rich and complex dynamic
behaviours, including bistability and multistability of two or three equilibria.

Dynamic analysis of the free and control subsystems shows that there may be
two, one or no endemic equilibria for the two subsystems with different parameter
values, according to different threshold values Rc1 and Rc2. We examined the critical
conditions for the existence of admissible pseudo-equilibria aswell as the slidingmode
regions. By investigating the discontinuity-induced bifurcations, we found that either
a boundary node (focus) bifurcation or a boundary saddle-node bifurcation occurs for
the targeted model. A regular saddle-node collides with a tangent point to create a
pseudo-saddle-node, leading to a boundary saddle-node bifurcation. Notably, another
boundary saddle-node bifurcation occurs for the Filippov system when the regular
saddle collides with the pseudo-node, creating a pseudo-saddle-node. This reveals
that the choice of threshold values would significantly affect the dynamic behaviour.

We are mainly concerned about the impact of social-distancing strategies —which
are intensified once the epidemic becomes severe — on the transmission of infectious
diseases, To this end, we deliberately explore the dynamic behaviour of the targeted
model as the threshold value varies, whereupon the social-distancing measures are
adjusted. We find that when the basic reproduction number R0 > 1, the targeted
model may stabilize at one of the regular equilibria or at the pseudo-equilibrium,
depending on the threshold value Ic. This indicates that the disease can be contained
at a specified level for a proper threshold level, which is a satisfactory control result if
eradicating the disease is proven to be impossible.WhenR0 < 1, a series of interesting
dynamic behaviours occur for the Filippov model. One, two or three attractors coexist
for the targeted model with different threshold values. The disease-free equilibrium
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is globally asymptotically stable for a proper threshold value, suggesting that the
disease can be eradicated. Bistability of the regular endemic equilibriumor the pseudo-
equilibrium and the disease-free equilibrium also occurs for the Filippov system. The
most interesting outcome is that multistability of the regular endemic equilibrium, the
pseudo-equilibrium and the disease-free equilibrium can occur for the system. These
findings indicate that the dynamic behaviour of the proposed system depends not only
on threshold values but also on the initial conditions. For a proper threshold value,
if the initial proportion of infected individuals is sufficiently small, the infection can
be ruled out or controlled at a previously given threshold value; otherwise, it may
stabilize at a relatively high level.

It is worth mentioning that the reinforcement factor of social distancing and the
proportion of social-distancing susceptibles who return to fully susceptible can sig-
nificantly affect the proportion of infected individuals and that of social-distancing
susceptibles at equilibrium. This suggests that the intensity and the duration of social
distancing by the susceptibles involved can have a significant impact on the final
number of infections.

From the perspective of model construction, we classified susceptible individu-
als into two groups: those who practice social distancing and those who do not. In
our Filippov model, social-distancing susceptibles enhance social distancing once the
infection increases in severity. In contrast, existing studies focusing on the impact
of social distancing on disease transmission have several limitations. Some adopted
smooth systems that overlook variations in social distancing behaviour over time
(Collinson et al. 2015; Gevertz et al. 2021); others adopted Filippov systems but do
not distinguish between susceptible individuals based on whether they adopt social
distancing (Xiao et al. 2012; Wang and Xiao 2014; Zhang et al. 2024; Wang et al.
2020; Deng et al. 2021). While a few studies do formulate Filippov models and dif-
ferentiate between the two types of susceptibles, they do not incorporate the dynamic
strengthening of social-distancing intensity in response to the increased severity of
the epidemic (Xiao et al. 2015). Our model exhibits bistability or tristability, where
two or even three equilibria can coexist as attractors. In contrast, the other studies
typically identify one attractor (Xiao et al. 2012; Wang and Xiao 2014; Zhang et al.
2024; Wang et al. 2020; Deng et al. 2021) or focus primarily on model validation and
sensitivity analysis (Collinson et al. 2015; Gevertz et al. 2021; Xiao et al. 2015). From
the perspective of disease control, we have found the steady-state regimes — healthy,
low epidemic and high epidemic— under which infected individuals approach zero, a
relatively low level or a relatively high level. This multilevel control outcome contrasts
with other modelling studies, in which the long-term dynamics typically result in only
one of the following scenarios: disease eradication, convergence to a single endemic
equilibrium or periodic oscillations. In summary, our main findings demonstrate that a
proper threshold policy can assist in controlling and combating an emerging infectious
disease.

Our work has some limitations, which should be acknowledged. We assume that
the rate at which full susceptibles become social-distancing susceptibles is constant,
but in reality it may depend on the proportion of infectives or awareness programs.We
assume that all infected individuals return to the fully susceptible state upon recovery;
however, for most infectious diseases, infected individuals transition to a recovered
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compartment after recovery due to some level of acquired immunity. Incorporating
these effects into our model would result in a higher-dimensional system, which we
leave to future work.

Appendix

Here we present the proof of Theorems 2 and 9–11.

Proof of Theorem 2 We solve R0 = 1 with respect to β and set its critical value to
β = β∗, where

β∗ = (λ + μ + d)(d + γ )

θλ + d + μ
.

In this scenario, the right-hand side of the control subsystem is as follows:

f21 = λ(1 − I ) − (λ + μ + d)SM − βθ SM I

1 + k I
,

f22 = (β − γ − d)I − β

(
1 − θ

1 + k I

)
SM I − β I 2.

The Jacobian matrix of the control subsystem is

J2(SM , I ) =
⎛

⎝
−(λ + μ + d) − βθ I

1+k I −λ − βθ SM
(1+k I )2

−β(1 − θ
1+k I )I (β − γ − d) − β

(
1 − θ

(1+k I )2

)
SM − 2β I

⎞

⎠ .

Evaluating it at (E0, β
∗) yields

J2(E0)

∣∣
∣∣
β=β∗

=
(

−(λ + μ + d) −λ − θλ(d+γ )
θλ+μ+d

0 0

)

.

The eigenvalues of the above matrix are 0 and −(λ + μ + d). The left and right
eigenvectors corresponding to the zero eigenvalue are

vl = (vl1, v
l
2) = (0, 1) and vr = (vr1, v

r
2)

T =
(

−λ(θλ + μ + d) + θλ(d + γ )

(θλ + μ + d)(λ + μ + d)
, 1

)T

.

Computing the nonzero second-order partial derivatives of f21 and f22 at (E0, β
∗),

we obtain

∂2 f22
∂SM∂ I

= ∂2 f22
∂ I∂SM

= −β∗(1 − θ),
∂2 f22
∂ I 2

= −β∗ 2kθλ

λ + μ + d
− β∗,

∂2 f22
∂ I∂β

= θλ + μ + d

λ + μ + d
.
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Let x1 = Sm, x2 = I . According to Castillo-Chavez and Song (2004), the two bifur-
cation parameters ã and b̃ can be calculated as follows:

ã =
2∑

k,i, j=1

vlkv
r
i v

r
j

∂2 f2k
∂xi ∂x j

(
E0, β

∗)

= (d + γ )
2λ(1 − θ)(θλ + μ + d + θ(d + γ )) − (2kθλ + λ + μ + d)(θλ + μ + d)

(θλ + μ + d)2
,

b̃ =
2∑

k,i=1

vlkv
r
i
∂2 f2k
∂xi ∂β

(
E0, β

∗) = θλ + μ + d

λ + μ + d
> 0.

If ã < 0, then a forward bifurcation occurs for the control subsystem at R0 = 1;
otherwise, if ã > 0, then a backward bifurcation occurs for the control subsystem at
R0 = 1. �


In the following, we present the detailed proof of Theorem 9.

Proof of Theorem 9 When Ic < I11, the disease-free equilibrium Er
0 is always real,

and the endemic equilibria Ev
11 and Ev

12 are virtual by the above discussion. Hence
the disease-free equilibrium Er

0 is globally asymptotically stable for the system (4).
When I11 < Ic < I12, the pseudo-equilibrium Es is admissible for the system

(4), and it is locally asymptotically stable on the sliding domain �s . In this scenario,
the disease-free equilibrium Er

0 and the endemic equilibrium Er
11 are real, and the

endemic equilibrium Ev
12 is virtual. The disease-free equilibrium state Er

0 is locally
asymptotically stable; while the endemic equilibrium E11 is a saddle. Any trajectory
starting from Z0 ∈ G1

s11 tends to the pseudo-equilibrium Es , and any trajectory starting
from Z0 ∈ G2

s11 tends to the disease-free equilibrium Er
0, as shown in Fig 14(a). Hence

both the disease-free equilibrium Er
0 and the pseudo-equilibrium Es are the attractors

of system (4) in this scenario.
When Ic > I12, the disease-free equilibrium Er

0 and the endemic equilibria Er
11,

Er
12 are real for system (2). The real equilibria Er

0 and Er
12 are locally asymptotically

stable, while Er
11 is a saddle point. Any trajectory starting from Z0 ∈ G1

s11 tends to the
endemic equilibrium Er

12, and any trajectory from Z0 ∈ G2
s11 tends to the disease-free

equilibrium E0, as shown in Fig. 14(b). Thus both the disease-free equilibrium Er
0 and

the endemic equilibrium Er
12 are the attractors of system (4). �


Next we prove Theorem 10.

Proof of Theorem 10 When Ic < I11, the disease-free equilibrium Er
0 and the endemic

equilibrium Er
2 are real, and the endemic equilibria Ev

11 and Ev
12 are virtual. There is

no admissible pseudo-equilibrium for Filippov system (4). Thus any trajectory starting
from Z0 ∈ G1

e2∪�1
e2∪�2

e2 tends to the saddle node E
r
2, while any trajectory initiating

from Z0 ∈ G2
e2 tends to the disease-free equilibrium Er

0. Hence, the disease-free
equilibrium Er

0 and the saddle node point Er
2 are attractors for system (4).

When I11 < Ic < I12, the pseudo-equilibrium Es is admissible for the system (4),
and it is stable, as shown in Fig. 5(e). There are two further possibilities to consider. If
I11 < Ic < I2, the disease-free equilibrium Er

0 and the endemic equilibria Er
11 and Er

2
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are real, while the endemic equilibrium Ev
12 is virtual. The disease-free equilibrium

Er
0 and the pseudo-equilibrium Es are locally asymptotically stable, the endemic

equilibrium Er
11 is a saddle, and Er

2 is a non-hyperbolic saddle node, as shown in
Fig. 15(b). Thus any trajectory initiating from Z0 ∈ G1

e2∪�1
e2∪�2

e2 tends to the saddle
node point Er

2, any trajectory initiating from Z0 ∈ Gs tends to the pseudo-equilibrium
Es , and any trajectory initiating from Z0 ∈ G2

s11 tends to the disease-free equilibrium
Er
0, as shown in Fig. 15(b),(d). Hence, the endemic equilibrium Er

2, the pseudo-
equilibrium Es and the disease-free equilibrium Er

0 are the attractors of Filippov
system (4) for I11 < Ic < I2, as shown in Fig. 15(c).

If I2 < Ic < I12, the disease-free equilibrium Er
0 and the endemic equilibrium

Er
11 are real, while the endemic equilibria Ev

12 and Ev
2 are virtual. Furthermore, Er

0 is
locally asymptotically stable, and Er

11 is a saddle point. Thus any trajectory initiating
from Z0 ∈ G1

s11 tends to the pseudo-equilibrium Es , and any trajectory initiating
from Z0 ∈ G2

s11 tends to the disease-free equilibrium Er
0. Hence, the disease-free

equilibrium Er
0 and the pseudo-equilibrium Es are the attractors of system (4) for

I2 < Ic < I12.
When Ic > I12, the disease-free equilibrium Er

0 and the endemic equilibria Er
11, E

r
12

are real, the endemic equilibrium Ev
2 is virtual, and there is no pseudo-equilibrium for

the Filippov system (4). The disease-free equilibrium Er
0 and endemic equilibrium Er

12
are locally asymptotically stable, while the endemic equilibrium Er

11 is a saddle point.
Similarly, any trajectory initiating from Z0 ∈ G1

s11 tends to the endemic equilibrium
Er
12, and trajectories initiating from Z0 ∈ G2

s11 eventually tend to the disease-free
equilibrium Er

0. Hence, the disease-free equilibrium Er
0 and the endemic equilibrium

Er
12 are the attractors for Filippov system (4). �

In the following, we prove Theorem 11.

Proof of Theorem 11 When Ic < I11, the disease-free equilibrium Er
0 and the endemic

equilibria Er
21, E

r
22 are real, the endemic equilibria Ev

11, E
v
12 are virtual, and there is

no admissible pseudo-equilibrium for Filippov system (4). The real equilibria Er
0 and

Er
22 are locally asymptotically stable, and the real equilibrium Er

21 is a saddle. Thus
any trajectory initiating from Z0 ∈ G1

s21 tends to the endemic equilibrium Er
22, while

those initiating from Z0 ∈ G2
s21 tend to the disease-free equilibrium Er

0. So bistability
of the two equilibria Er

22 and Er
0 occurs for Filippov model (4). Hence, two attractors

Er
22 and Er

0 coexist for Filippov model (4) in this scenario.
When I11 < Ic < I21, the pseudo-equilibrium Es is admissible for system (4),

and it is stable. In this scenario, the disease-free equilibrium E0 and the endemic
equilibria Er

11, E
r
21 and Er

22 are real, and the endemic equilibrium E12 is virtual. The
real equilibria Er

0 and Er
22 are locally asymptotically stable, while the real equilibrium

Er
11 and Er

21 are saddle points. Thus any trajectory initiating from Z0 ∈ G1
s21 tends

to the endemic equilibrium Er
22, any trajectory initiating from Z0 ∈ Ge tends to the

pseudo-equilibrium Es , and those initiating from Z0 ∈ G2
s11 approach the disease-

free equilibrium Er
0. It follows that multi-stability of three equilibria Er

21, Es and Er
0

occurs for Filippov model (4). Hence, there exist three attractors, Er
21, Es and Er

0, for
the Filippov model (4) in this scenario.

When I21 < Ic < I22, the disease-free equilibrium E0 and the endemic equilibria
Er
11, E

r
22 are real, the endemic equilibria Ev

12 and Ev
21 are virtual for system (4),
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and the pseudo-equilibrium is not admissible. The real equilibria Er
0 and Er

22 are
locally asymptotically stable, and the real equilibrium Er

11 is a saddle. Similarly, the
stable manifolds �1

s11 and �2
s11 split the R2+ plane into two subregions, G1

s11 and
G2

s11. Trajectories starting from Z0 ∈ G1
s11 tend to the endemic equilibrium Er

22 and
trajectories starting from Z0 ∈ G2

s11 eventually tend to the disease-free equilibrium
Er
0. Hence bistability of E

r
22 and Er

0 occurs for the Filippov model (4), suggesting two
attractors for model (4).

When I22 < Ic < I12, the disease-free equilibrium Er
0 and the endemic equilibrium

Er
11 are real, while the endemic equilibria Ev

12, E
v
21 and Ev

22 are virtual. The pseudo-
equilibrium Es is admissible for model (4), and it is stable. The real equilibrium
Er
0 is locally asymptotically stable, while the real equilibrium Er

11 is a saddle. We
similarly obtain that trajectories initiating from Z0 ∈ G1

s11 tend to the the pseudo-
equilibrium Es and trajectories initiating from Z0 ∈ G2

s11 eventually tend to the
disease-free equilibrium Er

0. Hence bistability of E
r
0 and Es occurs for Filippovmodel

(4), indicating two attractors for model (4) in this scenario.
When Ic > I12, the disease-free equilibrium Er

0 and the endemic equilibria Er
11, E

r
12

are real, while the endemic equilibria Ev
21 and Ev

22 are virtual. There is no admissible
pseudo-equilibrium for Filippov model (4). The real equilibria Er

0 and Er
12 are locally

asymptotically stable, while the real equilibrium Er
11 is a saddle. Similarly, trajectories

starting from Z0 ∈ G1
s11 tend to the endemic equilibrium Er

12, and those trajectories
starting from Z0 ∈ G2

s11 eventually tend to the disease-free equilibrium Er
0. Hence two

attractors, the disease-free equilibrium Er
0 and the endemic equilibrium Er

12, coexist
for Filippov model (4) in this scenario, demonstrating bistability. �
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