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a b s t r a c t

Cutting off infected branches has always been an effective method for removing
fire-blight infection in an orchard. We introduce a Filippov fire-blight model with
a threshold policy: cutting off infected branches and replanting susceptible trees.
The dynamics of the proposed piecewise smooth model are described by differential
equations with discontinuous right-hand sides. For each susceptible threshold value
ST , we investigate the global dynamical behaviour of the Filippov system, including
the existence of all the possible equilibria, their stability and sliding-mode dynamics,
as we vary the infected threshold level IT . Our results show that model solutions
ultimately approach the equilibrium that lies in the region above IT or below IT

or on I = IT , or the equilibrium ET = (ST , IT ) on the surface of discontinuity.
Furthermore, control strategies should be taken when the solution of this system
approaches the equilibrium that lies in the region above IT . The findings indicate
that proper choice of susceptible and infected threshold levels can either preclude
an outbreak of fire blight or lead the number of infected trees to a desired level.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Fire blight is one of the major threats to fruit-bearing trees, primarily apple, pear and other members of
the Rosaceae family, due to the fact that it can destroy an entire orchard in a single growing season [1–3].
The infection is transmitted by gram-negative bacteria, Erwinia amylovora, which is capable of infecting
blossoms, vegetative shoots, woody tissues, rootstock crowns and fruits of the trees [4,5]. The total economic
loss of fire blight is not always easy to appreciate, as it is an erratic disease, but severe outbreaks can lead to
millions of dollars of production and tree losses [6]. In the USA alone, it has been reported that the annual
economic loss is approximately $100 million [7,8]. Similarly, in Europe, significant economic losses have been
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reported; e.g., in Switzerland, a major outbreak of fire blight occurred between 1997 and 2000, resulting in
the loss of $9 million within this period [9]. Furthermore, the worldwide economic importance due to this
disease is likely to increase [10].

Currently, even though there is no cure for fire blight, preventative strategies have been implemented to
reduce the spread of fire-blight infection, such as pruning and removal of diseased plant parts. Furthermore,
it has been recognized that cutting off infected branches is an effective method of removing fire-blight
infection, because it can disrupt the equilibrium between vegetative and reproductive growth [11,12]. Two
sets of experiments were conducted during 1999 to 2001 in Israel to evaluate the efficacy of pruning infected
pear tissues to combat fire blight. They found that if pruning was carried out when the trees were dormant (in
December), then none of these plants had a severely infected canopy the following spring [13]. Nevertheless,
the loss of fruit production can be economically devastating for growers, even if the disease does not kill the
tree. In reality, complete eradication of the infected trees is generally not possible, nor is it economically
desirable. Therefore an efficient control strategy is needed to avoid overpruning and reduce economic losses.

Mathematical models can be a useful tool for designing strategies to control the spread of plant diseases
and determining their efficacy, especially in the absence of an effective treatment [14]. Many different types of
mathematical models on plant diseases have been proposed [15,16], including ordinary differential equation
models [17,18] and impulsive differential equation models [19,20]. A combination of an epidemiological
model, together with the analysis of evolutionary stable strategies, was used to analyse the effectiveness
of continuous control measures for combating vegetatively propagated plant diseases [17]. Meng et al. [19]
constructed plant-disease models with continuous and impulsive cultural control strategies to investigate
how to control plant-disease transmission by replanting of healthy plants and removal of infected trees.
Tang et al. [20] first developed a plant-disease model with pulse replanting and roguing strategies at fixed
moments, then formulated a state-dependent impulsive model by implementing a cultural control strategy
only when the number of infected plants reaches an economic threshold value.

However, in these plant-disease models, there exist some disadvantages. On the one hand, if control
strategies occur continuously or impulsively at fixed moments, regardless of whether the number of infected
trees reaches the economic threshold or not, this will consume a huge amount of economic damage and
labour costs, because it is not necessary to implement the control strategy when the number of infected
plants is not relatively high. On the other hand, in the state-dependent impulsive plant disease models, once
the number of infected trees reaches the economic threshold, the growers would theoretically implement the
control strategy instantaneously and reduce it below the economic threshold at that precise moment, which
seems unrealistic.

Consequently, a more realistic threshold policy is required to provide useful information in fire-blight
management strategies, so that the economic damage can be reduced to a minimum level. Therefore,
by incorporating non-instantaneous control with the threshold policy, the spread of fire blight can be
described by nonlinear ordinary differential equations with discontinuous right-hand sides, called Filippov
systems [21,22]. Although Filippov systems have been used to investigate many infectious diseases [23–26],
very little is known about the effects of the discontinuous control functions on the dynamics of fire-blight.
Thus our main purpose is to construct a Filippov fire-blight model by considering cutting off infected
branches and replanting susceptible trees. Then, by applying the theory of Filippov systems to the proposed
model, we aim to establish conditions under which the growers can achieve minimize economic losses and
maximize returns.

The rest of this paper is structured as follows. In Section 2, we propose a Filippov fire-blight model
incorporating cutting off infected branches and replanting susceptible trees. The dynamical behaviour of the
proposed Filippov system, including the existence of all the possible equilibria, their stability and sliding-
mode dynamics, is investigated by varying the infected and susceptible threshold values in Sections 3–6.
Finally, we present a discussion and biological conclusion on the results of this work in Section 7.
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Fig. 1. Schematic diagram of the threshold policy.

2. Filippov fire-blight model and preliminaries

We consider a threshold policy in a fire-blight model consisting of cutting off infected branches and
replanting susceptible trees. In order to better control the spread of fire blight and achieve maximal economic
benefits, control measures should be taken depending on whether the numbers of infected and susceptible
trees exceed the economic threshold values or not. This threshold policy is defined as follows: if the number
of infected trees is less than the infected threshold value IT , then the control strategy is not necessary; above
IT , we remove infected branches at a rate of c1 and replant susceptible trees at a rate of r1 simultaneously if
the number of susceptible trees is less than the susceptible threshold level ST , and we only remove infected
branches at a rate of c2 if S > ST . Here we choose the replanting proportional to the number of susceptible
trees. The value of the replanting rate r1 might dependent on the number of available workers, so we use the
number of susceptible trees as a proxy for the availability of disposable funds for the orchard. A schematic
diagram of the threshold policy is illustrated in Fig. 1. Furthermore, it is natural to assume that the removal
rate of infected branches when there are few susceptible trees is larger than the removal rate of infected
branches when there are many susceptible trees; that is, c1 > c2. We not only consider pruning infected
limbs with a higher rate c1 when S < ST but also increase the number of susceptible trees by replanting
at a rate r1. The reason is that we need to maintain enough susceptible trees for fruit production when the
number of infected trees exceeds IT . Additionally, we assume that the replanting rate of susceptible trees r1

is less than the natural death rate of trees µ; that is, µ > r1.
Let Λ be the total rate at which the susceptible trees enter the system, β be the infection rate through

the environment and α be the disease death rate. We consider the dynamics of susceptible trees S(t)
and infected state I(t), where S(t), I(t) denote the number of susceptible and infected trees at time t,
respectively. Therefore a Filippov fire-blight model with cultural control strategy, consisting of cutting off
infected branches and replanting susceptible trees, is described by differential equations with discontinuous
right-hand sides as follows: (

S′

I ′

)
= f(S, I) =

(
Λ − βSI − µS + u1S + u2I

βSI − µI − αI − u2I

)
, (2.1)

with

(u1, u2) =

⎧⎨⎩(0, 0) for I < IT ,
(r1, c1) for S < ST and I > IT ,
(0, c2) for S > ST and I > IT .

(2.2)
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Furthermore the S, I space R2
+ can be divided into the following five regions:

G1 =
{

(S, I) ∈ R2
+ : I < IT

}
,

G2 =
{

(S, I) ∈ R2
+ : S < ST and I > IT

}
,

G3 =
{

(S, I) ∈ R2
+ : S > ST and I > IT

}
,

M1 =
{

(S, I) ∈ R2
+ : I = IT

}
,

M2 =
{

(S, I) ∈ R2
+ : S = ST and I > IT

}
.

Additionally, the normal vectors that are perpendicular to M1 and M2 are defined as n1 = (0, 1)T and
n2 = (1, 0)T , respectively.

Since the right-hand side of system (2.1) with (2.2) is piecewise continuous, we consider its solutions in
Filippov’s sense. The theory of existence and uniqueness of solutions of such systems can be found in [21].
The following definitions of equilibria and sliding regions on Mj (j = 1, 2) of the Filippov system (2.1)
with (2.2) are necessary throughout the paper (we refer the interested reader to [27–29] for further details).
Denote the right-hand side of system (2.1) with (2.2) in region Gi by Fi, i = 1, 2, 3.

Definition 2.1. A point ER is called a real equilibrium of system (2.1) with (2.2) if Fi(ER) = 0 and
ER ∈ Gi, i = 1, 2, 3.

Definition 2.2. A point EV is called a virtual equilibrium of system (2.1) with (2.2) if Fi(EV ) = 0 and
EV ̸∈ Gi, i = 1, 2, 3.

Definition 2.3. A ‘sliding mode’ exists if there are subsets Σ of the manifold Mj such that the flows of f

(outside of Mj) are directed towards each other on them, j = 1, 2.

Denote the sliding-mode equations that describe the motion in the sliding region Σ ⊂ Mj by Hj(S, I),
j = 1, 2.

Definition 2.4. A point EP is called a pseudoequilibrium if EP is an equilibrium on the sliding mode Σ ;
that is, Hj(EP ) = 0 and EP ∈ Σ ⊂ Mj , j = 1, 2.

2.1. Dynamics in region G1

In this section, we investigate the dynamics in region G1, which are described by(
S′

I ′

)
= F1(S, I) =

(
Λ − βSI − µS

βSI − µI − αI

)
. (2.3)

Even though system (2.3) has been studied in some papers [19,20], for clarity we present the main
results and give a brief proof here. The basic reproduction number is R01 = Λβ

µ(µ+α) . System (2.3)
always has a disease-free equilibrium, E10 = (Λ

µ , 0). If R01 > 1, there is a unique endemic equilibrium,
E1 = (S∗

1 , I∗
1 ) =

(
µ+α

β , Λβ−µ(µ+α)
β(µ+α)

)
.

Lemma 2.1. The set D1 =
{

(S, I) ∈ R2
+ : S + I ≤ Λ

µ

}
is a positively invariant and attracting region for

model (2.3) with any given initial values in R2
+.
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Proof. Let N = S + I. Since N ′ = Λ − µN − αI ≤ Λ − µN , we have

N(t) ≤ Λ

µ
+

(
N(0) − Λ

µ

)
e−µt.

Therefore, we obtain N(t) ≤ Λ
µ if N(0) ≤ Λ

µ ; that is, the set D1 is positively invariant.
Suppose that N > Λ

µ , then we get N ′ < −αI < 0, which implies that the set D1 is an attracting
region. □

Theorem 2.1. The disease-free equilibrium, E10, is globally asymptotically stable if R01 < 1, while the
unique endemic equilibrium, E1, is globally asymptotically stable if R01 > 1.

Proof. If R01 < 1, taking a Lyapunov function V (t) = I(t) and applying LaSalle’s invariance principle,
one finds that E10 is globally asymptotically stable. If R01 > 1, we choose a Dulac function D = 1

SI and
using the Bendixson–Dulac criteria, we can exclude the existence of limit cycles, and hence E1 is globally
asymptotically stable.

Furthermore, E1 could either be a stable spiral if ∆ < 0; or be a stable node if ∆ ≥ 0, where
∆ =

(
Λβ

µ+α

)2
− 4(Λβ − µ(µ + α)). □

2.2. Dynamics in region G2

In region G2, the dynamics are governed by(
S′

I ′

)
= F2(S, I) =

(
Λ − βSI − µS + r1S + c1I

βSI − µI − αI − c1I

)
. (2.4)

The basic reproduction number is R02 = Λβ
(µ−r1)(µ+α+c1) . System (2.4) always has a disease-free

equilibrium, E20 = ( Λ
µ−r1

, 0). If R02 > 1, there exists a unique endemic equilibrium, E2 = (S∗
2 , I∗

2 ) =(
µ+α+c1

β , Λβ−(µ−r1)(µ+α+c1)
β(µ+α)

)
.

Lemma 2.2. The set D2 =
{

(S, I) ∈ R2
+ : S + I ≤ Λ

µ−r1

}
is a positively invariant and attracting region

for model (2.4) with any given initial values in R2
+.

Theorem 2.2. The disease-free equilibrium, E20, is globally asymptotically stable if R02 < 1, while the
unique endemic equilibrium, E2, is globally asymptotically stable if R02 > 1.

2.3. Dynamics in region G3

The dynamics in region G3 are described by(
S′

I ′

)
= F3(S, I) =

(
Λ − βSI − µS + c2I

βSI − µI − αI − c2I

)
. (2.5)

The basic reproduction number is R03 = Λβ
µ(µ+α+c2) . System (2.5) always has a disease-free equilibrium,

E30 = (Λ
µ , 0). If R03 > 1, there is a unique endemic equilibrium, E3 = (S∗

3 , I∗
3 ) =

(
µ+α+c2

β , Λβ−µ(µ+α+c2)
β(µ+α)

)
.

Lemma 2.3. The set D3 =
{

(S, I) ∈ R2
+ : S + I ≤ Λ

µ

}
is a positively invariant and attracting region for

model (2.5) with any given initial values in R2
+.
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Theorem 2.3. The disease-free equilibrium, E30, is globally asymptotically stable if R03 < 1, while the
unique endemic equilibrium, E3, is globally asymptotically stable if R03 > 1.

3. Case 1: ST < S∗
1 < S∗

3 < S∗
2

In this and the following three sections, we aim to address the richness of the possible equilibria and
sliding modes on M1 and M2 that the system (2.1) with (2.2) can exhibit. Note that we only consider
R01 > 1, R02 > 1, R03 > 1 to guarantee the existence of endemic equilibrium in each region; otherwise the
system will stabilize to its disease-free equilibrium. We have S∗

1 < S∗
3 < S∗

2 and I∗
1 > I∗

3 . Then we consider
the following cases generated by ST < S∗

1 , S∗
1 < ST < S∗

3 , S∗
3 < ST < S∗

2 and ST > S∗
2 , with varied infected

threshold value IT . Furthermore, the existence of all the possible equilibria, their stability and sliding-mode
dynamics will be examined from one case to the other. According to the dynamics in each case, the biological
phenomena will be described. In addition, we will summarize the main results and describe the biological
implication of all these cases at the end of this paper.

3.1. Sliding mode on M1 and its dynamics

We initially examine the existence of the sliding mode on M1. According to Definition 2.3, if ⟨n1, F1⟩ > 0
and ⟨n1, F3⟩ < 0 on Σ1 ⊂ M1, then Σ1 is a sliding region. In Case 1, the manifold Σ1 is a discontinuity
surface between the two different structures F1 and F3. Therefore, we can verify that the sliding domain
Σ1 ⊂ M1 is defined as:

Σ1 = {(S, I) ∈ M1 : S∗
1 < S < S∗

3}. (3.1)

We utilize the Filippov convex method [21,30] as follows:(
S′

I ′

)
= σ1F1 + (1 − σ1)F3, where σ1 = ⟨n1, F3⟩

⟨n1, F3 − F1⟩
.

Therefore we can obtain differential equations describing the sliding-mode dynamics along the manifold Σ1
for system (2.1) with (2.2): (

S′

I ′

)
=

(
Λ − µS − (µ + α)IT

0

)
. (3.2)

System (3.2) has a unique equilibrium Es1 = (S∗
s1, IT ), where S∗

s1 = Λ−(µ+α)IT
µ . Hence Es1 ∈ Σ1 ⊂ M1 is a

pseudoequilibrium for system (3.2) if and only if S∗
1 < S∗

s1 < S∗
3 ; that is, I∗

3 < IT < I∗
1 . Furthermore, it is

stable on Σ1 ⊂ M1.

Theorem 3.1. Es1 is a stable pseudoequilibrium on Σ1 ⊂ M1.

Proof. We have
∂

∂S

(
Λ − µS − (µ + α)IT

)⏐⏐⏐
Es1

= −µ < 0.

Hence solutions are attracting. □

3.2. Existence of a sliding mode on M2 and its dynamics

In order to better prevent fire-blight infection and to increase fruit production, we first assume that the
removal rates of infected branches are larger than the total death rates. Since the average durations are
inverses of these rates, this corresponds to an assumption that the removals occur before the tree dies.
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Assumption 1. Assume that c1 > µ + α and c2 > µ + α.

Next we examine the existence of the sliding mode on M2. Since ⟨n2, F2⟩ > 0 and ⟨n2, F3⟩ < 0, we have
I(βST − c1) < Λ − (µ − r1)ST and I(βST − c2) > Λ − µST . However, since ST < S∗

1 , then βST < µ + α;
i.e., βST − c2 < µ + α − c2 < 0. Therefore there is no sliding mode on M2.

3.3. Global behaviour

In this section, we investigate the asymptotical behaviour of system (2.1) and (2.2) with a fixed susceptible
threshold ST < S∗

1 while the infected threshold IT varies. In Case 1, for a fixed threshold level ST such that
ST < S∗

1 < S∗
3 < S∗

2 , E2 is a virtual equilibrium for any values of the infected threshold IT , denoted by EV
2 ,

so there is no real equilibrium in region G2. Nevertheless, E1 and E3 may be real equilibria depending on
the values of IT .

3.3.1. Case 1.1: IT < I∗
3

In this case, E1 is a virtual equilibrium, whereas E3 is a real equilibrium, denoted by EV
1 and ER

3 ,
respectively. Furthermore, Es1 is not a pseudoequilibrium on Σ1 ⊂ M1. Then we claim that ER

3 is globally
asymptotically stable if IT < I∗

3 .

Theorem 3.2. ER
3 is globally asymptotically stable if ST < S∗

1 < S∗
3 < S∗

2 and IT < I∗
3 .

Proof. Suppose there exists a closed trajectory Γ (shown in Fig. 2) that surrounds the real equilibrium
ER

3 and the sliding mode Σ1. Denote Γ = Γ1 +Γ2 +Γ3, where Γi = Γ ∩Gi, i = 1, 2, 3. Let U be the bounded
region delimited by Γ and Ui = U ∩ Gi for i = 1, 2, 3. Let the Dulac function be D = 1

SI . Then∫∫
U

(∂(Df1)
∂S

+ ∂(Df2)
∂I

)
dSdI =

3∑
i=1

∫∫
Ui

(∂(DFi1)
∂S

+ ∂(DFi2)
∂I

)
dSdI = − 3Λ

S2I
− c1 + c2

S2 < 0,

where f1 is the first component of f and f2 is the second component of f , Fi1 is the first component of Fi

and Fi2 is the second component of Fi, i = 1, 2, 3. Let Ũi be the region bounded by Γ̃i, P̃i and Q̃i, where Ũi

and Γ̃i depend on ε and converge to Ui and Γi as ε approaches 0. We can obtain that∫∫
Ui

(∂(DFi1)
∂S

+ ∂(DFi2)
∂I

)
dSdI = lim

ε→0

∫∫
Ũi

(∂(DFi1)
∂S

+ ∂(DFi2)
∂I

)
dSdI.

Since dS = F11dt and dI = F12dt along Γ̃1 and dI = 0 along P̃1, then, applying Green’s theorem to region
Ũ1, we have∫∫

Ũ1

(∂(DF11)
∂S

+ ∂(DF12)
∂I

)
dSdI =

∮
∂Ũ1

DF11dI − DF12dS

=
∫
Γ̃1

DF11dI − DF12dS +
∫

P̃1

DF11dI − DF12dS

= −
∫

P̃1

DF12dS.

(3.3)

Similarly, we can get∫∫
Ũ2

(∂(DF21)
∂S

+ ∂(DF22)
∂I

)
dSdI = −

∫
P̃2

DF22dS +
∫

Q̃2

DF21dI (3.4)
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Fig. 2. Schematic diagram illustrating the nonexistence of a closed trajectory in system (2.1) with (2.2) in Case 1.1 when ER
3 is

a real equilibrium.

and ∫∫
Ũ3

(∂(DF31)
∂S

+ ∂(DF32)
∂I

)
dSdI = −

∫
P̃3

DF32dS +
∫

Q̃3

DF31dI. (3.5)

Following (3.3)–(3.5), we have

0 >

3∑
i=1

∫∫
Ui

(∂(DFi1)
∂S

+ ∂(DFi2)
∂I

)
dSdI = lim

ε→0

3∑
i=1

∫∫
Ũi

(∂DFi1

∂S
+ ∂DFi2

∂I

)
dSdI

= lim
ε→0

(
−

∫
P̃1

DF12dS −
∫

P̃2

DF22dS +
∫

Q̃2

DF21dI −
∫

P̃3

DF32dS +
∫

Q̃3

DF31dI
)

.

(3.6)

Denote the intersection points of the closed trajectory Γ and the line I = IT by T1 and T2, and the
intersection point of Γ and the line S = ST in the region of I > IT by T3. In addition, denote the
intersection point of the line I = IT and the line S = ST by ET . Note that T11 < ST < T21 and T32 > IT .
Then the inequality (3.6) becomes

0 > −
∫ T11

T21

(
β − µ + α

S

)
dS −

∫ ST

T11

(
β − µ + α + c1

S

)
dS +

∫ T32

IT

( Λ

SI
− β − µ − r1

I
+ c1

S

)
dI

−
∫ T21

ST

(
β − µ + α + c2

S

)
dS +

∫ IT

T32

( Λ

SI
− β − µ

I
+ c2

S

)
dI

= c1 ln
( ST

T11

)
+ c2 ln

(T21

ST

)
+ r1 ln

(T32

IT

)
+

∫ T32

IT

(c1 − c2

S

)
dI > 0.

This is a contradiction. Consequently, this rules out the existence of such a closed trajectory Γ surrounding
the sliding mode and the real equilibrium ER

3 . □

Throughout this paper, the S-nullclines and I-nullclines of the system (2.1) with (2.2) are represented
by the blue dashed curves and black dash–dot lines, respectively. Note that S = S∗

1 , S∗
2 and S∗

3 are
the I-nullclines of F1, F2 and F3, denoted by L12, L22 and L32, respectively. Moreover, the curve
{(S, I) ∈ G1 : Λ − βSI − µS = 0} is the S-nullcline of system F1, denoted by L11, whereas the curves
{(S, I) ∈ G2 : Λ−βSI −µS +r1S +c1I = 0} and {(S, I) ∈ G3 : Λ−βSI −µS +c2I = 0} are the S-nullclines
of system F2 and F3, denoted by L21 and L31, respectively.

Fig. 3 indicates that all solutions of system (2.1) with (2.2) with any initial values in R2
+ will converge

to ER
3 as t → ∞, as stated in Theorem 3.2. Note that, in this case, the eventual number of infected trees is

larger than the infected threshold level IT .
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Fig. 3. ER
3 is globally asymptotically stable in Case 1.1. Parameter values are chosen as follows: Λ = 5, β = 0.25, µ = 0.3, α = 0.1,

r1 = 0.15, c1 = 0.8, c2 = 0.5, ST = 1 and IT = 5.

Fig. 4. Es1 is globally asymptotically stable in Case 1.2. Parameter values are fixed as follows: Λ = 5, β = 0.25, µ = 0.3, α = 0.1,
r1 = 0.15, c1 = 0.8, c2 = 0.7, ST = 1 and IT = 9.9.

3.3.2. Case 1.2: I∗
3 < IT < I∗

1
In this case, both E1 and E3 are virtual equilibria, denoted by EV

1 and EV
3 , respectively. Nevertheless,

Es1 is a stable pseudoequilibrium on Σ1 ⊂ M1. Employing a similar method as in the proof of Theorem 3.2
to exclude the existence of limit cycles, we can derive the following result.

Theorem 3.3. Es1 is globally asymptotically stable if ST < S∗
1 < S∗

3 < S∗
2 and I∗

3 < IT < I∗
1 .

All trajectories of system (2.1) with (2.2) with any initial conditions in R2
+ will eventually converge to

Es1 as t increases. Thus in this case, the eventual number of infected trees is equal to the infected threshold
level IT ; that is, there is no risk of an outbreak, as shown in Fig. 4.

3.3.3. Case 1.3: IT > I∗
1

In this case, E1 is a real equilibrium, whereas E3 is a virtual equilibrium, denoted by ER
1 and EV

3 ,
respectively. Moreover, Es1 is not a pseudoequilibrium on Σ1 ⊂ M1. Then we can get the following result.

Theorem 3.4. ER
1 is globally asymptotically stable if ST < S∗

1 < S∗
3 < S∗

2 and IT > I∗
1 .
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The proof of this theorem is identical to the proof of Theorem 3.2. All orbits of system (2.1) with (2.2) with
any initial values in R2

+ will finally converge to ER
1 as t → ∞. Therefore, in this case, the eventual number

of infected trees is below the infected threshold value IT . The phase portrait for this case is represented in
Fig. 5.

4. Case 2: S∗
1 < ST < S∗

3 < S∗
2

4.1. Sliding mode on M1 and its dynamics

For Case 2, there are two sliding domains on M1:

Σ2 = {(S, I) ∈ M1 : S∗
1 < S < ST } and Σ3 = {(S, I) ∈ M1 : ST < S < S∗

3}. (4.1)

The dynamics on Σ2 ⊂ M1 are described by(
S′

I ′

)
=

(
Λ − µS + r1

c1
S(βS − µ − α) − (µ + α)IT

0

)
. (4.2)

First, we investigate the existence of a positive equilibrium on Σ2 ⊂ M1 of system (4.2). Define

∆ = (r1(µ + α) + µc1)2 − 4βr1c1(Λ − (µ + α)IT ), I∗
T = Λ

µ + α
− (r1(µ + α) + µc1)2

4βr1c1(µ + α) .

Proposition 4.1. According to the values of the infected threshold IT , we have

(i) if IT < I∗
T ; that is, ∆ < 0, then there is no equilibrium for system (4.2);

(ii) if I∗
T < IT < Λ

µ+α ; that is, 0 < ∆ < (r1(µ + α) + µc1)2, then system (4.2) has two positive equilibria
E±

s2 = (S±
s2, IT ), where S±

s2 = r1(µ+α)+µc1±
√
∆

2βr1
;

(iii) if IT > Λ
µ+α ; that is, ∆ > (r1(µ + α) + µc1)2, then system (4.2) has a unique positive equilibrium

Es2 = (S∗
s2, IT ), where S∗

s2 = r1(µ+α)+µc1+
√
∆

2βr1
.

Next we seek conditions under which the equilibrium becomes a pseudoequilibrium on the sliding mode
Σ2 ⊂ M1. Denote

S∗
T = r1(µ + α) + µc1

2βr1
, H1 = βr1S2

T − ST (r1(µ + α) + µc1) + Λc1

c1(µ + α) , (4.3)

where H1 takes its minimum value I∗
T at ST = S∗

T , S∗
1 < S∗

T and H1 > I∗
T .

Proposition 4.2. Suppose that S∗
T < S∗

3 .

(i) When S∗
1 < ST < S∗

T , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ2 ⊂ M1 and

• if H1 < IT < I∗
1 , then E−

s2 ∈ Σ2 ⊂ M1.

(ii) When S∗
T < ST < S∗

3 , we have the following.

• Suppose H1 < I∗
1 , we have

– if I∗
T < IT < H1, then E+

s2 ∈ Σ2 ⊂ M1, E−
s2 ∈ Σ2 ⊂ M1;

– if H1 < IT < I∗
1 , then E+

s2 ̸∈ Σ2 ⊂ M1, E−
s2 ∈ Σ2 ⊂ M1.
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Fig. 5. ER
1 is globally asymptotically stable in Case 1.3. Parameter values are fixed as follows: Λ = 5, β = 0.25, µ = 0.3, α = 0.1,

r1 = 0.15, c1 = 0.8, c2 = 0.7, ST = 1 and IT = 15.

• Suppose H1 > I∗
1 , we have

– if I∗
T < IT < I∗

1 , then E+
s2 ∈ Σ2 ⊂ M1, E−

s2 ∈ Σ2 ⊂ M1;
– if I∗

1 < IT < H1, then E+
s2 ∈ Σ2 ⊂ M1, E−

s2 ̸∈ Σ2 ⊂ M1.

Proposition 4.3. Suppose that S∗
T > S∗

3 , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ2 ⊂ M1 and

• if H1 < IT < I∗
1 , then E−

s2 ∈ Σ2 ⊂ M1.

Theorem 4.1. E−
s2 is a stable pseudoequilibrium on Σ2 ⊂ M1 if it is feasible, whereas E+

s2 is an unstable
pseudoequilibrium on Σ2 ⊂ M1 if it is feasible.

Proof. We have

∂

∂S

(
Λ − µS + r1

c1
S(βS − µ − α) − (µ + α)IT

)⏐⏐⏐
E±

s2
= ±

√
∆

c1
.

Hence the positive root is repelling and the negative root is attracting. □

Proposition 4.4. Since S∗
s2 ≥ 2S∗

T > S∗
2 > ST , then Es2 is never a pseudoequilibrium on Σ2 ⊂ M1.

The dynamics on Σ3 ⊂ M1 are governed by (3.2), and Es1 = (S∗
s1, IT ) ∈ Σ3 ⊂ M1 is a pseudoequilibrium

if and only if ST < S∗
s1 < S∗

3 ; i.e., I∗
3 < IT < H2, where

H2 = Λ − µST

µ + α
, with I∗

3 < H2 < I∗
1 and H1 > H2 > I∗

3 .

Furthermore, Es1 is stable if it is feasible, as shown in Theorem 3.1.

4.2. Sliding mode on M2 and its dynamics

From ⟨n2, F2⟩ > 0 and ⟨n2, F3⟩ < 0, we have I(βST − c1) < Λ − (µ − r1)ST and I(βST − c2) > Λ − µST .
In Case 2, since S∗

1 < ST < S∗
3 < S∗

2 , we can get

µ + α − c2 < βST − c2 < µ + α and µ + α − c1 < βST − c1 < µ + α.
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According to Assumption 1, on the one hand, if µ + α − c2 < βST − c2 ≤ 0, similar to Case 1, there is no
sliding mode on M2; if 0 < βST − c2 < µ + α, from ⟨n2, F3⟩ < 0, we have I > Λ−µST

βST −c2
. On the other hand, if

µ+α− c1 < βST − c1 ≤ 0, then I(βST − c1) < Λ− (µ−r1)ST holds for any I > IT ; if 0 < βST − c1 < µ+α,
from ⟨n2, F2⟩ > 0, we have I < Λ−(µ−r1)ST

βST −c1
. Denote

B1 = Λ − µST

βST − c2
, B2 = Λ − (µ − r1)ST

βST − c1
.

Based on the above discussions, we derive the following results.

Theorem 4.2. Let Assumption 1 hold.

(i) If βST − c2 ≤ 0, then there is no sliding mode on M2.
(ii) If βST − c2 > 0 and βST − c1 ≤ 0, then the sliding domain on M2 is

Σ4 = {(S, I) ∈ M2 : I > max{IT , B1}}. (4.4)

(iii) If βST − c1 > 0, then the sliding domain on M2 is

Σ5 = {(S, I) ∈ M2 : max{IT , B1} < I < B2}. (4.5)

Therefore, in Case 2, there are three situations on M2: no sliding mode, sliding domain Σ4 or sliding
domain Σ5. First, if there is no sliding mode on M2, the analysis is similar to Case 1. Next we consider
the dynamics on Σ4 ⊂ M2 or Σ5 ⊂ M2. Again, by the Filippov convex method [21,30], the sliding-mode
equations along the manifold Σ4 ⊂ M2 or Σ5 ⊂ M2 are the same, which can be described by(

S′

I ′

)
=

(
0

I
(
βST − µ − α − c2 + (c1 − c2)Λ−βST I−µST +c2I

r1ST +(c1−c2)I

))
. (4.6)

System (4.6) has an equilibrium Es3 = (ST , I∗
s3), where

I∗
s3 = r1ST (βST − µ − α − c2) + (Λ − µST )(c1 − c2)

(µ + α)(c1 − c2) .

Since I∗
s3 < B1, so Es3 is never a pseudoequilibrium on Σ4 ⊂ M2 or Σ5 ⊂ M2. This implies that, even if

there exists a sliding domain (Σ4 or Σ5) on M2, there is no pseudoequilibrium.

4.3. Global behaviour

For Case 2, E2 is a virtual equilibrium, denoted by EV
2 , so it is not present in region G2. However, E1

and E3 may be present, depending on the values of the infected threshold IT .

4.3.1. Case 2.1: IT < I∗
3

In this case, E1 is a virtual equilibrium, whereas E3 is a real equilibrium, denoted by EV
1 and ER

3 ,
respectively. Furthermore, Es1 is not a pseudoequilibrium on Σ3 ⊂ M1. After a simple calculation, we first
give the following equivalent relation.

Proposition 4.5. If I∗
T < I∗

3 , we have S∗
T > S∗

3 .

Note that the equivalent relations between I∗
3 and I∗

T cannot be determined. Then, in this case, we
consider the two situations: I∗

3 > I∗
T and I∗

3 < I∗
T . According to Propositions 4.2 and 4.3, we can obtain the

following results.
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Proposition 4.6. Suppose that I∗
T < I∗

3 .

(i) If IT < I∗
T , then there is no equilibrium on Σ2 ⊂ M1.

(ii) If I∗
T < IT < I∗

3 , then E−
s2 ̸∈ Σ2 ⊂ M1, E+

s2 ̸∈ Σ2 ⊂ M1.

Proposition 4.7. Suppose that I∗
T > I∗

3 . Then there is no equilibrium on Σ2 ⊂ M1.

Therefore, ER
3 is the unique equilibrium of system (2.1) with (2.2). Again, using the approach similar to

the one used in the proof of Theorem 3.2, we can get the following theorem.

Theorem 4.3. ER
3 is globally asymptotically stable if S∗

1 < ST < S∗
3 < S∗

2 and IT < I∗
3 .

In this case, we choose parameters as follows: Λ = 5, β = 0.25, µ = 0.3, α = 0.2, r1 = 0.2 and IT = 5.
According to the values of c1, c2 and ST , we can determine the existence of the sliding mode on M2.

I. First, we choose c1 = 0.8, c2 = 0.7 and ST = 2.6 such that βST − c2 < 0. From Theorem 4.2(i), there
is no sliding mode on M2. The phase portrait is given in Fig. 6(A).

II. Next we choose c1 = 0.8, c2 = 0.55 and ST = 3.2 such that βST − c2 > 0 and βST − c1 < 0. From
Theorem 4.2(ii), so there is a sliding domain Σ4 on M2. Fig. 6(B) displays the phase portrait for this
situation.

III. Finally, we choose c1 = 0.6, c2 = 0.55 and ST = 3.6 such that βST − c1 > 0. From Theorem 4.2(iii),
there is a sliding domain Σ5 on M2. The phase portrait is represented in Fig. 6(C).

From Fig. 6, we see that whether there is a sliding mode on M2 or not, all solutions of system (2.1) with
(2.2) will approach ER

3 as t increases, as stated in Theorem 4.3.

4.3.2. Case 2.2: I∗
3 < IT < I∗

1
In this case, both E1 and E3 are virtual equilibria, denoted by EV

1 and EV
3 , respectively. According to

Propositions 4.2 and 4.3, we discuss the two situations: I∗
3 > I∗

T and I∗
3 < I∗

T .

Proposition 4.8. Suppose that I∗
T < I∗

3 , which implies S∗
T > S∗

3 and H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ2 ⊂ M1
and

(i) if I∗
3 < IT < H2, then Es1 ∈ Σ3 ⊂ M1, E−

s2 ̸∈ Σ2 ⊂ M1;
(ii) if H2 < IT < H1, then Es1 ̸∈ Σ3 ⊂ M1, E−

s2 ̸∈ Σ2 ⊂ M1;
(iii) if H1 < IT < I∗

1 , then Es1 ̸∈ Σ3 ⊂ M1, E−
s2 ∈ Σ2 ⊂ M1.

Proposition 4.9. Suppose that I∗
T > I∗

3 .

(i) When I∗
3 < IT < I∗

T , then there is no equilibrium on Σ2 ⊂ M1.

• Suppose that I∗
T > H2. Then

– if I∗
3 < IT < H2, then Es1 ∈ Σ3 ⊂ M1;

– if H2 < IT < I∗
T , then Es1 ̸∈ Σ3 ⊂ M1.

• Suppose that I∗
T < H2. Then we have Es1 ∈ Σ3 ⊂ M1.

(ii) When I∗
T < IT < I∗

1 , we have the following.

• Suppose that S∗
T < S∗

3 .

– If S∗
1 < ST < S∗

T , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ2 ⊂ M1.
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Fig. 6. ER
3 is globally asymptotically stable in Case 2.1. For (A), there is no sliding domain on M2. For (B), there is a sliding

domain Σ4 on M2. For (C), there is a sliding domain Σ5 on M2.

∗ Suppose that I∗
T > H2. Then we have Es1 ̸∈ Σ3 ⊂ M1.

· If I∗
T < IT < H1, then E−

s2 ̸∈ Σ2 ⊂ M1.
· If H1 < IT < I∗

1 , then E−
s2 ∈ Σ2 ⊂ M1.

∗ Suppose that I∗
T < H2.

· If I∗
T < IT < H2, then Es1 ∈ Σ3 ⊂ M1, E−

s2 ̸∈ Σ2 ⊂ M1.
· If H2 < IT < H1, then Es1 ̸∈ Σ3 ⊂ M1, E−

s2 ̸∈ Σ2 ⊂ M1.
· If H1 < IT < I∗

1 , then Es1 ̸∈ Σ3 ⊂ M1, E−
s2 ∈ Σ2 ⊂ M1.

– If S∗
T < ST < S∗

3 , we have I∗
T > H2. Then Es1 ̸∈ Σ3 ⊂ M1, E−

s2 ∈ Σ2 ⊂ M1.

∗ Suppose H1 > I∗
1 . Then we have E+

s2 ∈ Σ2 ⊂ M1.
∗ Suppose H1 < I∗

1 . Then we have

· if I∗
T < IT < H1, then E+

s2 ∈ Σ2 ⊂ M1;
· if H1 < IT < I∗

1 , then E+
s2 ̸∈ Σ2 ⊂ M1.

• Suppose that S∗
T > S∗

3 , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ2 ⊂ M1.

– Suppose that I∗
T > H2. Then we have Es1 ̸∈ Σ3 ⊂ M1.

∗ If I∗
T < IT < H1, then E−

s2 ̸∈ Σ2 ⊂ M1.
∗ If H1 < IT < I∗

1 , then E−
s2 ∈ Σ2 ⊂ M1.

– Suppose that I∗
T < H2.

∗ If I∗
T < IT < H2, then Es1 ∈ Σ3 ⊂ M1, E−

s2 ̸∈ Σ2 ⊂ M1.
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∗ If H2 < IT < H1, then Es1 ̸∈ Σ3 ⊂ M1, E−
s2 ̸∈ Σ2 ⊂ M1.

∗ If H1 < IT < I∗
1 , then Es1 ̸∈ Σ3 ⊂ M1, E−

s2 ∈ Σ2 ⊂ M1.

All these conditions can be condensed into four situations.

I. Es1 ∈ Σ3 ⊂ M1, E−
s2 ̸∈ Σ2 ⊂ M1, E+

s2 ̸∈ Σ2 ⊂ M1, when (ST , IT ) belongs to Ω1 ∪ Ω2:

Ω1 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < min{S∗
3 , S∗

T }, max{I∗
3 , I∗

T } < IT < H2, if I∗
T < H2},

Ω2 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < S∗
3 , I∗

3 < IT < min{I∗
T , H2}, if I∗

T > I∗
3 }.

Es1 ∈ Σ3 ⊂ M1 is a globally asymptotically stable pseudoequilibrium. All solutions with any initial
conditions in R2

+ will approach Es1 as t increases, as shown in Fig. 7(A).
II. Es1 ̸∈ Σ3 ⊂ M1, E−

s2 ̸∈ Σ2 ⊂ M1, E+
s2 ̸∈ Σ2 ⊂ M1, when (ST , IT ) belongs to Ω3 ∪ Ω4 ∪ Ω5:

Ω3 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < S∗
3 , H2 < IT < H1, if I∗

T < I∗
3 },

Ω4 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < S∗
3 , H2 < IT < I∗

T , if I∗
T > H2},

Ω5 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < min{S∗
3 , S∗

T }, max{I∗
T , H2} < IT < H1, if I∗

T > I∗
3 }.

No equilibrium exists for system (2.1) with (2.2), and all trajectories will converge in finite time to the
equilibrium point ET = (ST , IT ). The phase portrait is displayed in Fig. 7(B).

III. Es1 ̸∈ Σ3 ⊂ M1, E−
s2 ∈ Σ2 ⊂ M1, E+

s2 ̸∈ Σ2 ⊂ M1, when (ST , IT ) belongs to Ω6:

Ω6 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < S∗
3 , H1 < IT < I∗

1 , if H1 < I∗
1 }.

E−
s2 ∈ Σ2 ⊂ M1 is a globally asymptotically stable pseudoequilibrium. All orbits with arbitrary initial

values in R2
+ will converge to E−

s2 as t → ∞, as represented in Fig. 7(C).
IV. Es1 ̸∈ Σ3 ⊂ M1, E−

s2 ∈ Σ2 ⊂ M1, E+
s2 ∈ Σ2 ⊂ M1, when (ST , IT ) belongs to Ω7:

Ω7 = {(ST , IT ) ∈ R2
+ : S∗

T < ST < S∗
3 , I∗

T < IT < min{H1, I∗
1 }, if S∗

T < S∗
3 , I∗

T > I∗
3 }.

E−
s2 ∈ Σ2 ⊂ M1 is stable, whereas E+

s2 ∈ Σ2 ⊂ M1 is unstable. All solutions of system (2.1) with (2.2)
will eventually approach E−

s2 or ET . The phase portrait is given in Fig. 7(D).

4.3.3. Case 2.3: IT > I∗
1

In this case, E1 is a real equilibrium, whereas E3 is a virtual equilibrium, denoted by ER
1 and EV

3 ,
respectively. Furthermore, Es1 is not a pseudoequilibrium on Σ3 ⊂ M1. According to Propositions 4.2 and
4.3, E−

s2 is not a pseudoequilibrium on Σ2 ⊂ M1. Then we can get the following results.

Proposition 4.10. In Case 2.3, IT > I∗
1 , ER

1 is a real equilibrium.

(i) Suppose H1 > I∗
1 . Then we have:

• if I∗
1 < IT < H1, then E+

s2 ∈ Σ2 ⊂ M1;
• if IT > H1, then E+

s2 ̸∈ Σ2 ⊂ M1.

(ii) Suppose H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ2 ⊂ M1.

Therefore we summarize these into two situations.

I. E+
s2 ̸∈ Σ2 ⊂ M1, when (ST , IT ) belongs to Ω̃1:

Ω̃1 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < S∗
3 , IT > max{I∗

1 , H1}}.

ER
1 is globally asymptotically stable. All solutions with any initial conditions in R2

+ will eventually
approach ER

1 as t increases. The phase portrait is given in Fig. 8(A).
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Fig. 7. Basic behaviour of solutions of system (2.1) with (2.2) in Case 2.2. Parameters are fixed as follows: Λ = 5, β = 0.25,
µ = 0.3, α = 0.1, r1 = 0.2, c1 = 0.6, c2 = 0.5. For (A), we choose ST = 2.6 and IT = 10.2 such that situation I is satisfied. For
(B), we choose ST = 3.1 and IT = 10.7 such that situation II is satisfied. For (C), we choose ST = 3.1 and IT = 11.2 such that
situation III is satisfied. For (D), we choose ST = 3.2 and IT = 11.12 such that situation IV is satisfied.

Fig. 8. Basic behaviour of solutions of system (2.1) with (2.2) in Case 2.3. Parameters are fixed as follows: Λ = 7, β = 0.02,
µ = 0.11, α = 0.4, r1 = 0.1, c1 = 0.7, c2 = 0.6, ST = 53. For (A), we choose IT = 9.3 such that situation I is satisfied. For (B), we
choose IT = 13 such that situation II is satisfied.

II. E+
s2 ∈ Σ2 ⊂ M1, when (ST , IT ) belongs to Ω̃2:

Ω̃2 = {(ST , IT ) ∈ R2
+ : S∗

1 < ST < S∗
3 , I∗

1 < IT < H1, if H1 > I∗
1 }.

E+
s2 is an unstable pseudoequilibrium on Σ2 ⊂ M1. Thus all trajectories will converge to ER

1 or
ET = (ST , IT ), as shown in Fig. 8(B).
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5. Case 3: S∗
1 < S∗

3 < ST < S∗
2

5.1. Sliding mode on M1 and its dynamics

For Case 3, the sliding domain on M1 is

Σ6 = {(S, I) ∈ M1 : S∗
1 < S < ST }. (5.1)

The dynamics on Σ6 ⊂ M1 are described by (4.2). Then we discuss conditions under which there exists
a pseudoequilibrium on the sliding mode Σ6 ⊂ M1.

Proposition 5.1. Suppose that S∗
T < S∗

3 .

(i) Suppose H1 < I∗
1 . Then we have:

• if I∗
T < IT < H1, then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1;

• if H1 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ̸∈ Σ6 ⊂ M1.

(ii) Suppose H1 > I∗
1 . Then we have:

• if I∗
T < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1;
• if I∗

1 < IT < H1, then E−
s2 ̸∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1.

Proposition 5.2. Suppose that S∗
3 < S∗

T < S∗
2 .

(i) When S∗
3 < ST < S∗

T , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ6 ⊂ M1 and

• if H1 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1.

(ii) When S∗
T < ST < S∗

2 , we have the following.

• Suppose H1 < I∗
1 . Then we have

– if I∗
T < IT < H1, then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1;

– if H1 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ̸∈ Σ6 ⊂ M1.

• Suppose H1 > I∗
1 . Then we have

– if I∗
T < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1;
– if I∗

1 < IT < H1, then E−
s2 ̸∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1.

Proposition 5.3. Suppose that S∗
T > S∗

2 , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ6 ⊂ M1 and

• if H1 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1.

From Proposition 4.4, Es2 is never a pseudoequilibrium on Σ6 ⊂ M1.

5.2. Sliding mode on M2 and its dynamics

In Case 3, since S∗
1 < S∗

3 < ST < S∗
2 , then βST − c2 > µ + α > 0 and µ + α + c2 − c1 < βST − c1 < µ + α.

Therefore if βST − c1 ≤ 0, the sliding domain on M2 is

Σ̃7 = {(S, I) ∈ M2 : I > max{IT , B1}}. (5.2)

If βST − c1 > 0, the sliding domain on M2 is

Σ7 = {(S, I) ∈ M2 : max{IT , B1} < I < B2}. (5.3)
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The dynamics of the sliding domain Σ̃7 or Σ7 on M2 are described by (4.6). System (4.6) has a unique
equilibrium Es3 = (ST , I∗

s3). After a simple calculation, we can derive the following inequalities.

Proposition 5.4. In Case 3, since S∗
1 < S∗

3 < ST < S∗
2 , if βST −c1 ≤ 0, we have I∗

s3 > B1; if βST −c1 > 0,
we have B1 < I∗

3 , B2 > I∗
2 and B1 < I∗

s3 < B2.

Theorem 5.1. Es3 is a stable pseudoequilibrium if it is feasible.

Proof. We have

∂

∂I

(
I
(
βST − µ − α − c2 + (c1 − c2)Λ − βST I − µST + c2I

r1ST + (c1 − c2)I
))⏐⏐⏐

Es3

= −
(c1 − c2)I∗

s3
(
r1ST (βST − c2) + (Λ − µST )(c1 − c2)

)
(r1ST + (c1 − c2)I∗

s3)2 < 0.

Hence solutions are attracting. □

This implies that, Es3 is a stable pseudoequilibrium on Σ7 ⊂ M2 or Σ̃7 ⊂ M2 if I∗
s3 > IT . Since the global

dynamics of the Filippov system cannot be affected by the sliding domain Σ̃7 or Σ7, we mainly consider the
sliding mode Σ7 in this section.

5.3. Global behaviour

In Case 3, E2 and E3 are virtual equilibria, denoted by EV
2 and EV

3 , respectively. However, E1 may be
present, depending on the values of the infected threshold IT .

5.3.1. Case 3.1: IT < I∗
1

In this case, E1 is a virtual equilibrium, denoted by EV
1 . After a simple calculation, we have I∗

s3 < H1.
According to Propositions 5.1–5.3, we can obtain the following results.

Proposition 5.5. When IT < I∗
T , then there is no equilibrium on Σ6 ⊂ M1.

(i) Suppose that I∗
T < I∗

s3. Then we have Es3 ∈ Σ7 ⊂ M2.
(ii) Suppose that I∗

T > I∗
s3.

• If IT < I∗
s3, then Es3 ∈ Σ7 ⊂ M2.

• If I∗
s3 < IT < I∗

T , then Es3 ̸∈ Σ7 ⊂ M2.

Proposition 5.6. Assume I∗
T < IT < I∗

1 .

(i) Suppose that S∗
T < S∗

3 .

• Suppose that I∗
T < I∗

s3.

– Suppose that H1 < I∗
1 . Then we have

∗ if I∗
T < IT < I∗

s3, then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;
∗ if I∗

s3 < IT < H1, then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;
∗ if H1 < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.
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– Suppose that H1 > I∗
1 . Then

∗ if I∗
T < IT < I∗

s3, then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;
∗ if I∗

s3 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

• Suppose that I∗
T > I∗

s3.

– Suppose that H1 < I∗
1 . Then

∗ if I∗
T < IT < H1, then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;

∗ if H1 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

– Suppose that H1 > I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

(ii) Suppose that S∗
3 < S∗

T < S∗
2 .

• Assume S∗
3 < ST < S∗

T , which implies H1 < I∗
1 , we have E+

s2 ̸∈ Σ6 ⊂ M1.

– Suppose that I∗
T < I∗

s3. Then

∗ if I∗
T < IT < I∗

s3, then E−
s2 ̸∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;

∗ if I∗
s3 < IT < H1, then E−

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;
∗ if H1 < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

– Suppose that I∗
T > I∗

s3. Then

∗ if I∗
T < IT < H1, then E−

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;
∗ if H1 < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

• Assume S∗
T < ST < S∗

2 .

– Suppose that I∗
T < I∗

s3.

∗ Suppose that H1 < I∗
1 . Then

· if I∗
T < IT < I∗

s3, then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;
· if I∗

s3 < IT < H1, then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;
· if H1 < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

∗ Suppose that H1 > I∗
1 . Then

· if I∗
T < IT < I∗

s3, then E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;
· if I∗

s3 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

– Suppose that I∗
T > I∗

s3.

∗ Suppose that H1 < I∗
1 . Then

· if I∗
T < IT < H1, then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;

· if H1 < IT < I∗
1 , then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

∗ Suppose that H1 > I∗
1 . Then E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

(iii) Suppose that S∗
T > S∗

2 , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ6 ⊂ M1.

• Suppose that I∗
T < I∗

s3. Then

– if I∗
T < IT < I∗

s3, then E−
s2 ̸∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;

– if I∗
s3 < IT < H1, then E−

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;
– if H1 < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.
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• Suppose that I∗
T > I∗

s3. Then

– if I∗
T < IT < H1, then E−

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;
– if H1 < IT < I∗

1 , then E−
s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

All above discussions can be condensed into five situations.

I. E−
s2 ̸∈ Σ6 ⊂ M1, E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ1 ∪ Φ2:

Φ1 = {(ST , IT ) ∈ R2
+ : S∗

3 < ST < S∗
2 , IT < min{I∗

T , I∗
s3}},

Φ2 = {(ST , IT ) ∈ R2
+ : S∗

3 < ST < min{S∗
2 , S∗

T }, I∗
T < IT < I∗

s3, if I∗
T < I∗

s3}.

Es3 is a globally asymptotically stable pseudoequilibrium on Σ7 ⊂ M2. All solutions with any initial
conditions in R2

+ will approach Es3 as t increases, as shown in Fig. 9(A).
II. E−

s2 ̸∈ Σ6 ⊂ M1, E+
s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ3 ∪ Φ4:

Φ3 = {(ST , IT ) ∈ R2
+ : S∗

3 < ST < S∗
2 , I∗

s3 < IT < I∗
T , if I∗

T > I∗
s3},

Φ4 = {(ST , IT ) ∈ R2
+ : S∗

3 < ST < min{S∗
2 , S∗

T }, max{I∗
T , I∗

s3} < IT < H1, if S∗
T > S∗

3}.

No equilibrium exists for system (2.1) with (2.2). All trajectories will converge in finite time to
ET = (ST , IT ), as displayed in Fig. 9(B).

III. E−
s2 ∈ Σ6 ⊂ M1, E+

s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ5:

Φ5 = {(ST , IT ) ∈ R2
+ : max{S∗

3 , S∗
T } < ST < S∗

2 , max{I∗
T , I∗

s3} < IT < min{H1, I∗
1 }}.

E−
s2 is a stable pseudoequilibrium, whereas E+

s2 is unstable on Σ6 ⊂ M1. All solutions of system (2.1)
with (2.2) will eventually approach E−

s2 or ET , as represented in Fig. 9(C).
IV. E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ6:

Φ6 = {(ST , IT ) ∈ R2
+ : S∗

3 < ST < S∗
2 , H1 < IT < I∗

1 , if H1 < I∗
1 }.

E−
s2 is a globally asymptotically stable pseudoequilibrium on Σ6 ⊂ M1. All orbits with any initial

values in R2
+ will approach E−

s2 as t → ∞. The phase portrait is displayed in Fig. 9(D).
V. E−

s2 ∈ Σ6 ⊂ M1, E+
s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ7:

Φ7 = {(ST , IT ) ∈ R2
+ : max{S∗

3 , S∗
T } < ST < S∗

2 , I∗
T < IT < I∗

s3, if S∗
T < S∗

2 , I∗
T < I∗

s3}.

E−
s2 and Es3 are stable pseudoequilibria, whereas E+

s2 is unstable. All solutions of system (2.1) with
(2.2) will approach E−

s2 or Es3. The phase portrait is given in Fig. 9(E).

5.3.2. Case 3.2: IT > I∗
1

In this case, E1 is a real equilibrium, denoted by ER
1 . Furthermore, E−

s2 is not a pseudoequilibrium
on Σ6 ⊂ M1. From Propositions 5.1–5.3, we can establish conditions under which E+

s2 and Es3 are
pseudoequilibria on Σ6 ⊂ M1 and Σ7 ⊂ M2, respectively.

Proposition 5.7. Assume IT > I∗
1 .

(i) Suppose that S∗
T < S∗

3 .

• Suppose that H1 < I∗
1 . Then E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.
• Suppose that H1 > I∗

1 .
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Fig. 9. Basic behaviour of solutions of system (2.1) with (2.2) in Case 3.1. Parameters are fixed as follows: Λ = 5, β = 0.25,
µ = 0.3, α = 0.1, r1 = 0.2, c1 = 0.8, c2 = 0.5. For (A), we choose ST = 4.4 and IT = 5 such that situation I is satisfied. For (B),
we choose ST = 4.1 and IT = 10.5 such that situation II is satisfied. For (C), we choose ST = 4.2 and IT = 11 such that situation
III is satisfied. For (D), we choose ST = 4 and IT = 11.1 such that situation IV is satisfied. For (E), we choose Λ = 5, β = 0.25,
µ = 0.3, α = 0.2, r1 = 0.2, c1 = 0.95, c2 = 0.5, ST = 5.7 and IT = 8.45 such that situation V is satisfied.

– Suppose that I∗
s3 < I∗

1 . Then Es3 ̸∈ Σ7 ⊂ M2 and

∗ if I∗
1 < IT < H1, then E+

s2 ∈ Σ6 ⊂ M1;

∗ if IT > H1, then E+
s2 ̸∈ Σ6 ⊂ M1.

– Suppose that I∗
s3 > I∗

1 . Then

∗ if I∗
1 < IT < I∗

s3, then E+
s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;

∗ if I∗
s3 < IT < H1, then E+

s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;

∗ if IT > H1, then E+
s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.
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(ii) Suppose that S∗
3 < S∗

T < S∗
2 .

• Assume S∗
3 < ST < S∗

T , which implies H1 < I∗
1 . Then E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.
• Assume S∗

T < ST < S∗
2 .

– Suppose that H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.
– Suppose that H1 > I∗

1 .

∗ Suppose that I∗
s3 < I∗

1 . Then Es3 ̸∈ Σ7 ⊂ M2 and

· if I∗
1 < IT < H1, then E+

s2 ∈ Σ6 ⊂ M1;
· if IT > H1, then E+

s2 ̸∈ Σ6 ⊂ M1.

∗ Suppose that I∗
s3 > I∗

1 . Then

· if I∗
1 < IT < I∗

s3, then E+
s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2;

· if I∗
s3 < IT < H1, then E+

s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2;
· if IT > H1, then E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

(iii) Suppose that S∗
T > S∗

2 , which implies H1 < I∗
1 . Then we have E+

s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2.

Thus we summarize above discussions into three situations.

I. E+
s2 ̸∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ̃1:

Φ̃1 = {(ST , IT ) ∈ R2
+ : S∗

3 < ST < S∗
2 , IT > max{H1, I∗

1 }}.

ER
1 is globally asymptotically stable. All solutions with any initial conditions in R2

+ will approach ER
1

as t increases, as shown in Fig. 10(A).
II. E+

s2 ∈ Σ6 ⊂ M1, Es3 ̸∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ̃2:

Φ̃2 = {(ST , IT ) ∈ R2
+ : max{S∗

3 , S∗
T } < ST < S∗

2 , max{I∗
1 , I∗

s3} < IT < H1, if S∗
T < S∗

2 , I∗
1 < H1}.

E+
s2 is an unstable pseudoequilibrium on Σ6 ⊂ M1. All trajectories will converge to ER

1 or ET =
(ST , IT ), as shown in Fig. 10(B).

III. E+
s2 ∈ Σ6 ⊂ M1, Es3 ∈ Σ7 ⊂ M2, when (ST , IT ) belongs to Φ̃3:

Φ̃3 = {(ST , IT ) ∈ R2
+ : max{S∗

3 , S∗
T } < ST < S∗

2 , I∗
1 < IT < I∗

s3, if S∗
T < S∗

2 , I∗
1 < I∗

s3}.

Es3 is a stable pseudoequilibrium on Σ7 ⊂ M2, whereas E+
s2 is unstable on Σ6 ⊂ M1. All solutions of

system (2.1) with (2.2) will eventually approach ER
1 or Es3, as given in Fig. 10(C).

6. Case 4: ST > S∗
2 > S∗

3 > S∗
1

6.1. Existence of a sliding mode on M1 and its dynamics

For Case 4, the sliding mode on M1 is

Σ8 = {(S, I) ∈ M1 : S∗
1 < S < S∗

2}. (6.1)

The dynamics on Σ8 ⊂ M1 are governed by (4.2). Next we seek conditions under which the equilibrium
becomes a pseudoequilibrium on the sliding mode Σ8 ⊂ M1. Since H1 takes its minimum value I∗

T at
ST = S∗

T , then H1|ST =S∗
2

= I∗
2 > I∗

T .
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Fig. 10. Basic behaviour of solutions of system (2.1) with (2.2) in Case 3.2. Parameters are fixed as follows: Λ = 5, β = 0.02,
µ = 0.11, α = 0.4, r1 = 0.1, c1 = 0.7, c2 = 0.5 and ST = 59. For (A), we choose IT = 10 such that situation I is satisfied. For (B),
we choose IT = 7 such that situation II is satisfied. For (C), we choose IT = 5.4 such that situation III is satisfied.

Proposition 6.1. Suppose that S∗
T > S∗

2 , which implies I∗
2 < I∗

1 . Then we have E+
s2 ̸∈ Σ8 ⊂ M1 and

• if I∗
T < IT < I∗

2 , then E−
s2 ̸∈ Σ8 ⊂ M1;

• if I∗
2 < IT < I∗

1 , then E−
s2 ∈ Σ8 ⊂ M1.

Proposition 6.2. Suppose that S∗
T < S∗

2 .

(i) Suppose that I∗
2 > I∗

1 . Then

• if I∗
T < IT < I∗

1 , then E−
s2 ∈ Σ8 ⊂ M1, E+

s2 ∈ Σ8 ⊂ M1;
• if I∗

1 < IT < I∗
2 , then E−

s2 ̸∈ Σ8 ⊂ M1, E+
s2 ∈ Σ8 ⊂ M1.

(ii) Suppose that I∗
2 < I∗

1 . Then

• if I∗
T < IT < I∗

2 , then E−
s2 ∈ Σ8 ⊂ M1, E+

s2 ∈ Σ8 ⊂ M1;
• if I∗

2 < IT < I∗
1 , then E−

s2 ∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1.

Again, from Proposition 4.4, Es2 is never a pseudoequilibrium on Σ8 ⊂ M1.

6.2. Sliding mode on M2 and its dynamics

Since S∗
1 < S∗

3 < S∗
2 < ST , then βST − c2 > µ + α > 0 and βST − c1 > µ + α > 0. Therefore the sliding

domain on M2 exists if there is a nonempty set:

Σ9 = {(S, I) ∈ M2 : max{IT , B1} < I < B2}. (6.2)
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The dynamics of the sliding domain Σ9 on M2 are described by (4.6). System (4.6) has a unique equilibrium
Es3 = (ST , I∗

s3). Since I∗
s3 > B2, so Es3 is never a pseudoequilibrium on Σ9 ⊂ M2.

6.3. Global behaviour

For a fixed threshold level ST such that ST > S∗
2 > S∗

3 > S∗
1 , E3 is a virtual equilibrium, denoted by

EV
3 . However, E1 and E2 may be real equilibria depending on the values of the infected threshold IT . From

Propositions 6.1 and 6.2, we can get the following results.

Proposition 6.3. Suppose S∗
T > S∗

2 , which implies I∗
2 < I∗

1 . Then we have

• if IT < I∗
T , then there is no equilibrium on Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2;

• if I∗
T < IT < I∗

2 , then E−
s2 ̸∈ Σ8 ⊂ M1, E+

s2 ̸∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2;
• if I∗

2 < IT < I∗
1 , then E−

s2 ∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ̸∈ G2;

• if IT > I∗
1 , then E−

s2 ̸∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1, E1 ∈ G1, E2 ̸∈ G2.

Proposition 6.4. Suppose S∗
T < S∗

2 .

(i) Suppose that I∗
2 > I∗

1 . Then

• if IT < I∗
T , then there is no equilibrium on Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2;

• if I∗
T < IT < I∗

1 , then E−
s2 ∈ Σ8 ⊂ M1, E+

s2 ∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2;
• if I∗

1 < IT < I∗
2 , then E−

s2 ̸∈ Σ8 ⊂ M1, E+
s2 ∈ Σ8 ⊂ M1, E1 ∈ G1, E2 ∈ G2;

• if IT > I∗
2 , then E−

s2 ̸∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1, E1 ∈ G1, E2 ̸∈ G2.

(ii) Suppose that I∗
2 < I∗

1 . Then

• if IT < I∗
T , then there is no equilibrium on Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2;

• if I∗
T < IT < I∗

2 , then E−
s2 ∈ Σ8 ⊂ M1, E+

s2 ∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2;
• if I∗

2 < IT < I∗
1 , then E−

s2 ∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ̸∈ G2;

• if IT > I∗
1 , then E−

s2 ̸∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1, E1 ∈ G1, E2 ̸∈ G2.

All above discussions can be summarized into four situations.

I. E−
s2 ̸∈ Σ8 ⊂ M1, E+

s2 ̸∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2, when (ST , IT ) belongs to Ψ1 ∪ Ψ2:

Ψ1 = {(ST , IT ) ∈ R2
+ : ST > S∗

2 , IT < I∗
2 , if S∗

T > S∗
2},

Ψ2 = {(ST , IT ) ∈ R2
+ : ST > S∗

2 , IT < I∗
T , if S∗

T < S∗
2}.

E2 is globally asymptotically stable, denoted by ER
2 . All solutions with any initial conditions in R2

+
will approach ER

2 as t increases. The phase portrait is shown in Fig. 11(A).
II. E−

s2 ∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ̸∈ G2, when (ST , IT ) belongs to Ψ3:

Ψ3 = {(ST , IT ) ∈ R2
+ : ST > S∗

2 , I∗
2 < IT < I∗

1 , if I∗
2 < I∗

1 }.

E−
s2 is a globally asymptotically pseudoequilibrium on Σ8 ⊂ M1. All trajectories with any initial values

in R2
+ will converge to E−

s2 , as displayed in Fig. 11(B).
III. E−

s2 ∈ Σ8 ⊂ M1, E+
s2 ∈ Σ8 ⊂ M1, E1 ̸∈ G1, E2 ∈ G2, when (ST , IT ) belongs to Ψ4:

Ψ4 = {(ST , IT ) ∈ R2
+ : ST > S∗

2 , I∗
T < IT < min{I∗

1 , I∗
2 }, if S∗

T < S∗
2}.

E−
s2 ∈ Σ8 ⊂ M1 is a stable pseudoequilibrium, whereas E+

s2 ∈ Σ8 ⊂ M1 is unstable. All solutions will
eventually approach E−

s2 or ER
2 . The phase portrait is given in Fig. 11(C).
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Fig. 11. Basic behaviour of solutions of system (2.1) with (2.2) in Case 4. Parameters are fixed as Λ = 6, β = 0.15, µ = 0.4,
α = 0.2, r1 = 0.05, c1 = 0.8, c2 = 0.7. ST = 12. For (A), we choose IT = 1.5 such that situation I is satisfied. For (B), we choose
IT = 5.8 such that situation II is satisfied. For (C), we choose Λ = 5, β = 0.05, µ = 0.15, α = 0.4, r1 = 0.1, c1 = 0.7, c2 = 0.6.
ST = 30 and IT = 5.79 such that situation III is satisfied. For (D), we choose Λ = 5, β = 0.02, µ = 0.11, α = 0.4, r1 = 0.1,
c1 = 0.7, c2 = 0.6. ST = 66 and IT = 6.2 such that situation IV is satisfied. For (E), we choose the same parameter values as (D)
except IT = 10 such that situation V is satisfied.

IV. E−
s2 ̸∈ Σ8 ⊂ M1, E+

s2 ∈ Σ8 ⊂ M1, E1 ∈ G1, E2 ∈ G2, when (ST , IT ) belongs to Ψ5:

Ψ5 = {(ST , IT ) ∈ R2
+ : ST > S∗

2 , I∗
1 < IT < I∗

2 , if S∗
T < S∗

2 , I∗
2 > I∗

1 }.

E+
s2 is an unstable pseudoequilibrium on Σ8 ⊂ M1. E1 and E2 are real equilibria, denoted by ER

1 and
ER

2 . All trajectories will finally approach ER
1 or ER

2 , as illustrated in Fig. 11(D).
V. E−

s2 ̸∈ Σ8 ⊂ M1, E+
s2 ̸∈ Σ8 ⊂ M1, E1 ∈ G1, E2 ̸∈ G2, when (ST , IT ) belongs to Ψ6:

Ψ6 = {(ST , IT ) ∈ R2
+ : ST > S∗

2 , IT > max{I∗
1 , I∗

2 }}.

E1 is globally asymptotically stable, denoted by ER
1 . All solutions with any initial conditions in R2

+
will approach ER

1 as t increases. The phase portrait is shown in Fig. 11(E).
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Table 1
Main results of system (2.1) with (2.2).

ST < S∗
1 S∗

1 < ST < S∗
3 S∗

3 < ST < S∗
2 ST > S∗

2

IT < I∗
3 : (I) IT < I∗

3 : (I) (ST , IT ) ∈ Φ1 ∪ Φ2: (I) (ST , IT ) ∈ Ψ1 ∪ Ψ2: (I)
I∗

1 < IT < I∗
3 : (II) (ST , IT ) ∈ Ω1 ∪ Ω2: (II) (ST , IT ) ∈ Φ3 ∪ Φ4: (II) (ST , IT ) ∈ Ψ3: (II)

(ST , IT ) ∈ Ω3 ∪ Ω4 ∪ Ω5: (II) (ST , IT ) ∈ Φ5: (III) (ST , IT ) ∈ Ψ4: (IV)
(ST , IT ) ∈ Ω6: (II) (ST , IT ) ∈ Φ6: (II) (ST , IT ) ∈ Ψ5: (IV)
(ST , IT ) ∈ Ω7: (III) (ST , IT ) ∈ Φ7: (IV) (ST , IT ) ∈ Ψ6: (II)

IT > I∗
1 : (II) (ST , IT ) ∈ Ω̃1: (II) (ST , IT ) ∈ Φ̃1 : (II)

(ST , IT ) ∈ Ω̃2: (III) (ST , IT ) ∈ Φ̃2 : (III)
(ST , IT ) ∈ Φ̃3 : (IV)

7. Discussion

We proposed a mathematical model of fire blight with discontinuous right-hand sides, resulting in a
Filippov system, using a threshold policy consisting of cutting off infected branches and replanting susceptible
trees. Between these two control measures, cutting off infected branches plays a leading role in reducing
fire-blight infection, while the strategy of replanting susceptible trees contributes to minimizing economic
losses and maximizing fruit production. Hence our main purpose is to use the Filippov system to model
the threshold policy and establish conditions that not only lead the number of infected trees to a tolerable
threshold level but also minimize economic losses. To achieve this aim, our formulation employed the number
of infected and susceptible trees to be the threshold levels to determine whether or not we need to implement
control strategies. No control strategy is necessary when the number of infected trees is less than the infected
threshold value IT ; when above IT , the infected branches are removed at a rate of c1 and susceptible trees
are replanted at a rate of r1 if the number of susceptible trees is below the susceptible threshold level ST ;
we only remove infected branches at a rate of c2 if S > ST . Therefore the Filippov fire-blight model (2.1)
with (2.2) constructed here can be used to describe the spread of fire blight in an orchard associated with
such a threshold policy.

Making use of the analysis of the dynamics of system (2.1) with (2.2), we summarize the main results in
Table 1 associated with following outcomes.

(I) The infected threshold value IT is sufficiently small, so it is impossible to avoid an outbreak. The
number of infected trees will increase above IT to reach the level of a globally asymptotically stable
equilibrium, as shown in Figs. 3, 6, 9(A) and 11(A).

(II) System (2.1) with (2.2) has a unique globally asymptotically stable equilibrium ER
1 , a unique globally

asymptotically stable pseudoequilibrium (E−
s2 or Es1) on the manifold M1 or no equilibrium. For these

choices of the threshold values ST and IT , the number of infected trees will converge to the globally
asymptotically stable equilibrium that lies below IT or on I = IT , or converge to ET = (ST , IT ), as
represented in Figs. 4, 5, 7(A), 7(B), 7(C), 8(A), 9(B), 9(D), 10(A), 11(B) and 11(E).

(III) There is a locally asymptotically stable pseudoequilibrium E−
s2 on the manifold M1 or a locally

asymptotically stable ER
1 and an unstable pseudoequilibrium E+

s2 on the manifold M1. So the number
of infected trees can eventually approach the locally asymptotically stable equilibrium E−

s2 or ER
1 , or

converge to ET , as shown in Figs. 7(D), 8(B), 9(C) and 10(B).
(IV) All solutions of system (2.1) with (2.2) will converge to a locally asymptotically stable equilibrium

(Es3 or ER
2 ) that lies above IT or approach a locally asymptotically stable equilibrium (ER

1 or E−
s2)

that lies below IT or on I = IT , depending on initial conditions, as illustrated in Figs. 9(E), 10(C),
11(C) and 11(D).

The global dynamics of the Filippov fire-blight system (2.1) with (2.2) have been investigated and
summarized. Note that our control objective is to reduce the number of infected plants below or equal to
the infected threshold value IT . These results show that the choice of the susceptible and infected threshold
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values is quite important and guides decisions as to whether to undertake control strategies. The infected
threshold value IT is chosen sufficiently small in Case (I), which indicates that the number of infected trees
will eventually be larger than IT . However, the eventual number of infected trees may be less than the
original infected number, in which case undertaking control strategies may waste resources. In reality, the
value of IT should be chosen appropriately. For Cases (II) and (III), our control objective can be achieved
eventually and there is no need to modify the threshold policy. However, in Case (IV), the threshold policy
may need to be modified, depending on the initial numbers of susceptible and infected trees. All results
obtained here could be beneficial in choosing the threshold values and designing a corresponding threshold
policy.

This work is a first approach to investigate the spread of fire blight when the threshold policy is applied.
There are several limitations of the Filippov model that should be acknowledged. We took fire-blight infection
through the environment into account and did not pay attention to the transmission through pollinating
insects that act as a vector, which is also a very effective way for bacteria to spread. These need careful
consideration, and we leave these for further investigation. Note that, even though cutting off infected
branches is a good method of reducing fire-blight infection, it also leads to high costs with crop loss and
labour. Another preventative strategy is spraying, which is applied by farmers to target the bacteria to
reduce the spread of infection and chance of an outbreak, but it is costly and time-consuming to maintain.
The most effective way to control fire blight is likely through a combination of cutting off infected branches
and spraying, both of which should be done in moderation. We used the number of susceptible trees as a
proxy for the available funds for the replanting rate, but other possibilities could be modelled, such as a
constant replanting rate. We leave these explorations for future work.
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