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ABSTRACT

Several Ebola vaccines currently under development have demonstrated promising results in clinical trials.
We propose a compartmental model representing the various stages in the development of the Ebola virus
disease based on vaccination status. Investigation of the model’s basic reproduction number allows us
to determine the perversity threshold, which describes the conditions in which the number of secondary
infections could increase due to the vaccine. We analyze the influence of each parameter in the model
through the use of Partial Rank Correlation Coefficients and Latin Hypercube Sampling. We show that the
reproduction number could be significantly reduced if the vaccine is widely administered to individuals who
are incubating the disease or if the contact rates with unvaccinated individuals are kept to less than one per
week. It follows that the prophylactic properties of the candidate Ebola vaccines can decrease the severity
of future outbreaks if applied carefully.

Keywords: Ebola, vaccination, differential equations, Latin hypercube sampling, partial rank correlation
coefficients

1 INTRODUCTION

In March 2014, West Africa experienced the largest Ebola virus epidemic in history, largely affecting
Liberia, Sierra Leone and Guinea (CDC 2016b). With a case-fatality rate raging from 25% to 90%, av-
eraging 50%, the Ebola Virus Disease has caused 11,325 deaths as of April 13th, 2016. Ebola’s high fatality
rates and its ability to spread easily within and between populations pose a significant threat to public health
worldwide.
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The transmission of the Ebola virus to humans is known to occur through direct contact in three ways: from
a reservoir, between humans, and from the infected deceased. Fruit bats, which experience asymptomatic
infections of the virus, serve as a reservoir of the Ebola virus and contribute to its transmission to other wild
animals and humans (Leroy et al. 2005). In West Africa, wild animals such as fruit bats are hunted, sold and
consumed, creating the opportunity for the exchange of bodily fluids resulting in zoonotic transmission of
the virus (Williamson and Bakker 2005). The virus is spread from human to human through direct contact of
bodily fluids such as blood, saliva, vomit, feces, urine, sweat, nasal secretions, semen and genital secretions
(Funk and Kumar 2014). Once infected, individuals start developing symptoms within an average span
of 11 days. Individuals begin to experience an onset of symptoms including: headaches, vomiting, loss
of appetite, diarrhea, stomach pains, lethargy, aching muscles or joints and difficulties swallowing and
breathing, in addition to unexplained bleeding (Alyward et al. 2014). Following this, symptoms further
progress to weakened liver and kidney functions in addition to more serious hemorrhagic symptoms such
as internal and external bleeding (WHO 2016). Upon developing these symptoms, infected individuals are
able to spread the virus to others, making them infectious. Individuals who develop Ebola virus disease die
within a mean of 10 days from the onset of the illness (Chowell and Nishiura 2014).

Although the Ebola virus is spread through direct contact, making it relatively difficult to proliferate, with
the world being deeply interconnected through travel and migration, it is possible for Ebola to be transferred
from one continent to the next within a matter of hours. As seen with the epidemic in West Africa, existing
preventative measures have not been effective safeguards in controlling an outbreak, partially due to cultural
and societal influences such as burial and funeral practices that influence the rapid spread of the virus to a
large extent (WHO 2014). Given the insights gained from the outbreak, in West Africa, various public-health
stakeholders, including governments and researchers, recognized the substantial threat that the Ebola virus
poses to public health. As a result, governments and industries saw the potential benefit that an Ebola virus
vaccine could bring to outbreak occurrences. Currently, several vaccines are being developed by countries
including Sierra Leone, Russia, China, the United States and Canada. These are at varying stages of clinical
trials. One of the most promising vaccines is the VSV- EBOV vaccine developed by NewLink Genetics and
Merck Vaccines USA, in collaboration with the Public Health Agency of Canada. It is currently in Phase III
clinical trials and is being tested in humans in Guinea and Sierra Leone (WHO 2015).

Immunization has proven to be an effective measure in reducing the mortality and morbidity rates of dis-
eases. Moreover, a herd-immunity approach to immunization has historically proven to be an efficient
approach to vaccination programs (Fox et al. 1971). Employing herd immunity entails immunizing a sig-
nificant proportion of the population who, as a result of being immunized, protect those who have not been
vaccinated, such as newborns and the elderly, from contracting the infectious agent. The VSV-EBOV vac-
cine, combined with a herd immunity approach, is therefore a promising potential intervention for containing
and reducing the impact of a potential Ebola virus outbreak. Vaccines have also been shown to benefit coun-
tries and individuals financially and economically, since vaccination programs often cost less than treating
the illness that would occur without immunization (Bloom et al. 2005). Consequently, by immunizing a
significant proportion of the population against the Ebola virus, countries that would have otherwise been
unprepared economically for an epidemic may see less dramatic costs if an outbreak were to occur.

Here we model the Ebola virus in a population in West Africa with the presence of the VSV-EBOV vaccine.
The vaccine possesses a high efficacy in individuals and therefore proves to be a favorable candidate for
a herd-immunity approach in protecting communities from outbreaks of the Ebola virus. By utilizing this
vaccine, we believe that the Ebola virus should not be able to spread as widely, since a smaller proportion
of the population will be susceptible to contracting the disease.

A compartmental model is used to describe the dynamics of an outbreak with a base population of around
1000 individuals, representing a community in West Africa. A proportion of the population will receive
an imperfect vaccine. Vaccinated individuals can still be infected, but at a lower rate. Vaccine-induced
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immunity may wane over time, while vaccinated deceased individuals may still transmit the virus. In order
to consider the context and particularities of the Ebola virus outbreak in West Africa from 2013–2014,
an SEIRD (susceptible, exposed, infected, recovered and deceased) model is used. Through the use of a
compartmental model, it is possible to analyze the behavior of the Ebola virus in a population with both
vaccinated and unvaccinated individuals.

Previous models of Ebola have focused on interventions such as quarantine, distribution of household kits,
Emergency Treatment Care (ETC) expansion and accelerating case tracking. For instance, Lewnard et al.
suggested that the existing ETC capacity necessary to decrease the severity of the current outbreak was im-
practical (Lewnard et al. 2014). Legrand et al., provided a stochastic compartmental model incorporating
transmission in the community, in the hospital and during burial ceremonies in order to suggest where inter-
ventions are best suited (Legrand et al. 2007). Rivers et al. (Rivers, Lofgren, Marathe, Eubank, and Lewis
2014) investigated the efficiency of increased contact tracing, improved infection-control practices and a
hypothetical pharmaceutical intervention to improve survival of hospitalised patients aimed at reducing the
reproduction number of the Ebola virus. Chowell et al. (Chowell, Hengartner, Castillo-Chavez, Fenimore,
and Hyman 2004) used an SEIR model to determine R0, the final size of the epidemic and performed a
sensitivity analysis, showing that education and contact tracing with quarantine would reduce the epidemic
by a factor of 2. Fisman et al. (Fisman, Khoo, and Tuite 2014) used a two-parameter model to determine the
degree to which the epidemic was being controlled, finding only weak control in West Africa as of the end of
August 2014 and essentially no control in Liberia. Webb and Browne (Webb and Browne 2016) developed
an age-structured model, tracking disease age through initial incubation, followed by an infectious phase
with variable transmission infectiousness. Browne et al. (Browne, Gulbudak, and Webb 2015) showed that,
if contact tracing was perfect, then the critical proportion of contacts that need to be traced could be derived.
Do and Lee (Do and Lee 2016) developed an SLIRD model to show stability of a disease-free equilibrium
if safe burial practices without traditional rituals were followed and R0 < 1. Bartlett et al. (Bartlett et al.
2016) utilized a discrete-time model to represent the clinical progression of the Ebola virus and estimate the
number of infections and deaths in Sierra Leone.

Our model builds upon these and other previous mathematical models of the Ebola virus by demonstrating
the interaction between vaccinated and unvaccinated individuals in a given outbreak. Our conceptualization
of vaccination is based on the VSV-EBOV vaccine, a promising future intervention method with high im-
munogenicity. Our model contributes to the growing knowledge surrounding interventions for Ebola virus
outbreaks through the use of a vaccine as primary prevention.

2 METHODS

2.1 The Model

The mathematical model is is illustrated in Figure 1 and is represented via the following set of differential
equations:
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Figure 1: Model Flowchart. The movement of individuals through the compartments via infection, vacci-
nation, recovery and death. Individuals are initially susceptible (X) or vaccinated (V ). They may die from
unrelated causes and exit the system or they may be infected either by an infectious individual or corpse
and become non-symptomatic infected (Eu,Ev). Non-symptomatic infected individuals become infectious
(Iu, Iv) or they can die from an unrelated cause and exit the system. Individuals can be vaccinated after
exposure to the virus, although the vaccine may also wear off. Infectious individuals can recover (Ru,Rv)
from the disease or they may die from the disease and become an infectious dead body (Du,Dv). Recovered
individuals can no longer be infected; they die at the background death rate. Infectious dead bodies stop
being infectious after safe burial or after the live virus is no longer in the corpse. Note that both infectious
and dead individuals of either type can infect susceptibles, whether vaccinated or not. These mechanisms
are not drawn in, to avoid overcluttering the figure.

Each equation listed above represents the rate of change over time of a compartment that individuals move
through during an Ebola virus epidemic. Individuals enter the cohort at rate L either through birth or im-
migration. The vaccine immunogenicity is represented by multiplying the take of the vaccine, e , by the
proportion of the population that receives an immunization, r . Vaccinated and unvaccinated individuals
then move to their corresponding susceptible compartments. The susceptible compartment (X) represents
individuals who are unvaccinated and susceptible to contracting the Ebola virus, and the vaccinated suscep-
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tible compartment (V ) represents those who are have been vaccinated but are still susceptible to becoming
infected (whether due to waning of the vaccine or failure of the vaccine to “take"). Those who are suscepti-
ble may die from causes other than an Ebola virus infection and exit the model at a background death rate
of µ . Individuals who have been infected with the Ebola virus but have not yet shown symptoms move
from the susceptible compartment (X) to the exposed unvaccinated compartment (Eu). Similarly, those who
have been infected with the Ebola virus who have not yet developed symptoms and have also received a
vaccine progress to the exposed vaccinated compartment (Ev). The rate of movement from compartment X
to Eu is given by the sum of the forces of infection based on transmission rates from the three sources of
transmission: the infected deceased (bcd), infected unvaccinated individuals (bcu) and infected vaccinated
individuals (bcv). These exposed (incubating) classes for both unvaccinated and vaccinated individuals have
the effect of introducing a delay before an individual is infectious.

Since the VSV-EBOV vaccine can be used as a prophylaxis measure for those who are infected but not yet
infectious, individuals can move from Eu to Ev if immunized at a rate h . At the same time, vaccines tend to
wane and lose their immunizing effect over time. As a result, individuals who have been vaccinated move
from compartment V to X at rate j . Individuals subjected to vaccine waning move from Ev to Eu at the same
rate j . In order to be protected from developing Ebola virus disease, the vaccine has to efficiently trigger
an immune response, denoted by vaccine immunogenicity y . Vaccinated individuals who do not develop
an immune response move to the infected vaccinated Iv compartment at rate wv. Likewise, unvaccinated
exposed individuals who develop symptoms of the Ebola virus disease advance to the unvaccinated infected
Iu compartment at rate w . As shown in a compartmental model of the Ebola virus by Salem and Smith?
(Salem and Smith? 2016), those who are deceased and infected with the Ebola virus serve as a significant
route of transmission. Hence, it is important to adjust the SEIR model accordingly by adding in a deceased
(D) compartment representing the infectious deceased. Individuals either recover or die while infected
with the Ebola virus. Those who die become part of the unvaccinated or vaccinated infectious deceased
compartments Du and Dv, at rates au and av, respectively. Other infectious individuals recover at rates r by
gu and gv, representing unvaccinated and vaccinated individuals, and transfer to the recovered unvaccinated
compartment Ru and recovered vaccinated compartment Rv, respectively.

The parameters are listed in Table 1. Note that parameters that are coefficients of linear terms have the
property that their inverse represents the average time spent in the compartment in question. Thus, for
example, the recovery rate for vaccinated individuals gv with range 0.75–1 per week means that vaccinated
individuals are infectious for 1–1.333 weeks, whereas the vaccine waning effect of 0–1 per week means that
immunity due to the vaccine will last between one week and infinite time. The vaccine-specific parameters
av and wv were given the same ranges as their unvaccinated counterparts, whereas the recovery rate gv was
assumed to be slightly faster. The vaccine waning effect was limited to 0–1 weeks�1 on the assumption
that the vaccine would last at least one week, but could theoretically last forever. The rate of post-exposure
vaccination h was limited to 0–7 weeks�1 on the assumption that the vaccine would be not be given less than
one day after infection. The transmissibility was assumed to be in the upper half of the proportion range,
reflecting Ebola’s severity. The contact rates with infectious individuals (whether unvaccinated, vaccinated
or dead) were built off our previous numerical exploration of parameter ranges (Salem and Smith? 2016).
Although preliminary reports of vaccine efficacy have been stated to be 100% (Global Biodefence 2015),
we nevertheless allowed the efficacy to range between 0 and 100%. All other parameter ranges were taken
from primary sources.

A number of assumptions were made in creating of this model. First, we are assuming that countries affected
by an Ebola virus epidemic have adequate access to, and availability of, vaccines and sufficient amount of
human and non-human resources to implement a vaccination program. A base population of 1000 is used
in the model, and the corresponding birth and background death rates were retrieved from the Centers for
Disease Control and Prevention (CDC 2016c) as well as the Central Intelligence Agency (CIA 2017).
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Table 1: List of parameters.

Parameter Description Range Units Reference
a Disease death rate for unvac-

cinated individuals
0.5–1 weeks�1 (CDC 2016a)

av Disease death rate for vacci-
nated individuals

0.5–1 weeks�1 assumed

g Recovery rate for unvacci-
nated individuals

0.5–1 weeks�1 (Hunter and Strickland 2000)

gv Recovery rate for vaccinated
individuals

0.75–1 weeks�1 assumed

µ Background death rate 0.014–0.02 years�1 (WHO 2017)
L Birth/immigration rate 0.035–0.037 people/week (CIA 2017)
q Safe burial rate 0.33–10 weeks�1 (Prescott et al. 2015)
cu Contact rate with infectious

unvaccinated individuals
0–10 people/week (Salem and Smith? 2016)

cv Contact rate with infectious
vaccinated individuals

0–10 people/week (Salem and Smith? 2016)

cd Contact rate with infectious
dead individuals

0–10 people/week (Salem and Smith? 2016)

b Transmissibility 0.5–1 people�2weeks�1 assumed
w Incubation rate for unvacci-

nated individuals
0.33–3 weeks�1 (WHO 2016)

wv Incubation rate for vacci-
nated individuals

0.33–3 weeks�1 assumed

er Proportion vaccinated who
mounted an immune re-
sponse

0.5–1 (proportion) (Henao-Restrepo et al. 2015)

j Vaccine waning effect 0–1 weeks�1 assumed
y Vaccine efficacy 0–1 (proportion) (Global Biodefence 2015)
h Rate of post-exposure vacci-

nation
0–7 weeks�1 assumed

We model a disease-modifying Ebola vaccine that is given to a fraction of the population, that will “take"
in proportion of these individuals and where immunity to the vaccine will wane over time. Since the VSV-
EBOV vaccine has a high immunogenicity (Henao-Restrepo et al. 2015), those who are vaccinated and
have developed the Ebola virus disease may recover at faster rates because of the presence of some residual
immunity as a result of vaccination. Those who are naturally immune to the Ebola virus are not considered
in this model. Once individuals recover, we assume that they are immune to a subsequent infection of the
virus. Lastly, susceptible and exposed individuals who die at the background death rate are not assumed
to be infectious deceased; conversely, those who are infectious and die at the background death rate are
assumed to be the infected deceased.

2.2 Analysis

The disease-free equilibrium (DFE) represents the absence of an epidemic, where there are no exposed,
recovered or infected deceased individuals. The stability of the DFE allows for further investigation into
characteristics of the model. The DFE is:

(X0,E0
u , I

0
u ,D

0
u,R

0
u,V

0,E0
v , I

0
V ,D

0
V ,R

0
v) =

✓
L(1� er)

µ
+

jLer
µ(j +µ)

,0,0,0,0,
Ler

j +µ
,0,0,0,0

◆
.
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The basic reproductive number of the unvaccinated population (R0) represents the number of secondary
infections of the Ebola virus caused by a single unvaccinated infected individual in a wholly susceptible
population. Similarly, the basic reproductive number of the vaccinated population (Rv) represents the num-
ber of subsequent individuals infected caused by a vaccinated infected individual in a wholly vaccinated
population. We used the next-generation method (van den Driessche and Watmough 2002) to calculate

R0 =
bwX0

(a + g)(w +h +µ)

h
cu +

cda
q

i
and Rv =

bwvV 0

(av + gv)(wv +j +µ)

h
cv +

cdav

q

i
.

Susceptible individuals for whom the vaccine generates an authentic immune response (vaccine immuno-
genicity) to the Ebola virus are considered to be initially vaccinated and enter the model at rate er . Vac-
cinated individuals either exit the model through the background death rate (µ) or are subjected to vaccine
waning (j) in which the immunological effects of the vaccine wear off over time. The probability that the
vaccine will protect these individuals from becoming infected is given by the vaccine efficiency (y).

The proportion of “successfully" vaccinated individuals is given by S = V 0

X0+V 0 =
erµ
µ+j . With the proportion

of “successfully" vaccinated individuals (S), the population reproductive number (Rp) can be calculated. Rp
represents the total number of secondary Ebola virus infections caused by a single infectious individual in
the entire population of both vaccinated and unvaccinated individuals. It provides insight into the degree
of proliferation of the virus within the population. Along with the proportion of "successfully" vaccinated
individuals, other factors influence the number of secondary infections, such as the vaccine efficiency (y)
and the basic reproductive numbers of both the vaccinated and unvaccinated populations (Rv,R0). Rp can be
expressed as Rp = S(1�y)RV +(1�S)R0.

A perverse outcome will occur if the introduction of vaccination makes the epidemic more severe (Smith and
Blower 2004). We define the fitness ratio to be the relationship between the vaccinated basic reproductive
number (Rv) and the unvaccinated basic reproductive number (R0): f = Rv/R0.

Perversity will occur if the reproduction number with vaccination exceeds the current reproduction number;
i.e., Rp > R0. In the absence of behavior changes, this will occur if f > 1

1�y . See Figure 2. For low-
efficacy vaccines, this corresponds to an f close to one. That is, if the vaccine does not protect vaccinated
individuals very much, then very little increase in the reproduction number due to vaccinated individuals
could be tolerated. Such an outcome may occur if vaccinated individuals increase their contact with either
the living or the dead, whether due to a perceived sense of security or simply by living longer.

3 NUMERICAL SIMULATIONS

We conducted a sensitivity analysis on all of the parameters’ influences on the basic reproductive number Rp
determined by Latin Hypercube Sampling (LHS) and partial rank correlation coefficients (PRCCs). LHS is
a statistical sampling method that evaluates sensitivity of an outcome variable to all input variables. PRCCs
evaluated the relative effect of each parameter on the outcome, while all other parameters are held at their
median values (Blower and Dowlatabadi 1994). Each parameter was sampled 1000 times for 1000 total
runs and is ranked based on its influence on the model’s Rp. Parameters with coefficients of lower absolute
values have less of an influence on the value of Rp, whereas coefficient with a higher absolute value have
more of an influence on the value of Rp. Parameters used for LHS outputs are summarized in Table 1. We
used a uniform distribution for all parameters.

The influence of seventeen individual parameters on Rp are shown in Figure 3A. The three most influential
parameters are the contact rate with unvaccinated individuals, the post-exposure vaccination rate and the
incubaton rate for unvaccinated individuals. A positive PRCC value indicates an increase in Rp as the
parameter increases, while a negative PRCC value indicates a decrease in Rp as the parameter increases.
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Figure 2: The dependence of the fitness ratio on the vaccine efficacy. For low-efficacy vaccines, only
fitness ratios close to 1 can be tolerated, meaning that the reproduction number due to vaccination cannot be
increased beyond that of the current reproduction number. For high-efficacy vaccines, larger fitness ratios
can be tolerated.

For example, an increase in the number of contacts with infectious unvaccinated individuals will increase
Rp and significantly more than contact with vaccinated individuals, even for an imperfect vaccine.

Two interventions are examined in Figure 3B: increasing the post-exposure vaccination rate h to 6–7 per
week and reducing the number of contacts with unvaccinated individuals cu to a maximum of one per week.
The full range of simulation outputs for these scenarios is shown in the boxplots. The latter intervention has
a greater effect on reducing the mean value of Rp than rapid post-exposure vaccination, although it has a
longer tail. Reducing contacts keeps the interquartile range below the threshold Rp = 1.

Figure 4 shows the change in Rp values as the three most influential parameters are individually varied while
all other parameters are kept at their median values. Each dot represents a simulation. There is a distinct
trend in two of these figures, showing that altering the parameter in question have have an effect on the
reproduction number, even if all other parameters remain in flux. Specifically, if the contact with infectious
unvaccinated individuals can be kept below 1 per week, then the majority of simulations predict Rp < 1,
regardless of the variations in any other parameters. Increasing the post-exposure vaccination rate to about
6–7 (corresponding to vaccinating within about one day) may also achieve disease control, although this
may be difficult to achieve in practice. We expect to have no control over the unvaccinated incubation rate,
and there is no region where this parameter strongly predicts disease control.

The effect of these reductions is shown in Figure 5. The simulations were re-run twice, once with the
post-exposure vaccination being limited to 6–7 weeks�1, the other with the contact rate with unvaccinated
individuals limited to 0–1 per week. In these figures, the majority of simulations are below the threshold;
this is especially apparent when the contact rate is reduced.

4 DISCUSSION

After the 2014 Ebola virus epidemic in West Africa, public- and global-health stakeholders saw the need for
an Ebola virus vaccine. Since many are now in the final stages of trials, it is important to consider how a
vaccine would influence a potential epidemic and what approach to subscribe to when planning immuniza-
tion programs. We have demonstrated how the VSV- EBOV vaccine using a herd-immunity approach would
potentially affect an Ebola virus epidemic in West Africa. We have also shown that an Ebola vaccine is a
multifaceted intervention involving multiple interacting parameters.
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Figure 3: A. Partial Rank Correlation Coefficient sensitivity analysis of parameters. Sensitivity analysis of
Rp with respect to all the parameters. B. Box plot of all 1000 Rp values with no intervention, vaccinating
exposed individuals within 1–1.167 days after infection and reducing contact with unvaccinated individuals
to one per week. Latin Hypercube Sampling (LHS) was used to sample parameters. The LHS ranges are
given in Table 1. The horizontal red line indicates the median of all 1000 of the R0 values.
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Figure 4: LHS output for Rp as a factor of the three most influential parameters: (A) the incubation rate
for unvaccinated individuals w , (B) the post-exposure vaccination rate, h and (C) the contact rate with
unvaccinated individuals cu. Values for all 17 parameters were sampled 1000 times. The horizontal line
indicates the threshold Rp = 1.

Evaluation of the sensitivity analysis results allows us to clearly see each parameter’s effect on the epidemic
and draw conclusions accordingly. The sensitivity analyses yield the conclusion that the post-exposure vac-
cination rate, the contact rate with infectious individuals and the incubation rate for unvaccinated individuals
have the most influence on the epidemic.

Reducing the incubation rate is highly unlikely to be possible; conversely, reducing the contact rate below
one per week is theoretically possible, but in practice presents many challenges. These include identifying
infected individuals early on, instigating effective quarantine practices, etc. In remote areas, this may be
all but impossible. Post-exposure vaccination presents different challenges, such as identifying whether
exposure has occurred. One possibility would be to vaccinate as widely as possible or in high-risk groups,
with the aim of vaccinating any exposed individuals in this catchment process.
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Figure 5: LHS output for Rp with (A) reduced contact and (B) rapid post-exposure vaccination, showing
a greater proportion of simulations predicting disease control. Note the change of scales on the horizontal
axes.

Other factors of importance include the safe burial rate, the transmissibility of the virus and contact with the
dead. We have also shown that if low-efficacy vaccines are introduced, then it is critical that the fitness ratio
be kept close to one in order that the vaccine not make the disease worse; this can be accomplished through
stringent public health awareness campaigns that raise awareness that a vaccine is not a cure and may only
work a fraction of the time. A danger with new and imperfect vaccines is that some vaccinated individuals
may incorrectly assume total immunity to the virus as a result of immunization. As a result, we allowed
the contact rate for vaccinated individuals to have a larger range than the contact rate with unvaccinated
individuals; there was no noticeable effect from this (results not shown).

Future work will investigate strategies for implementation of and program development for various Ebola
virus vaccines. Key health indicators, such as the three rates of transmission from our model, can be used to
assess a community’s risk of a potential Ebola outbreak.

Identifying communities that are at a particularly high risk or that are vulnerable to an Ebola outbreak will
aid in immunization-program planning and allocation of resources. Furthermore, surveys and interviews
can be conducted in areas affected by the Ebola virus epidemic in 2014 in order to collect data on attitudes
towards an Ebola virus vaccine as an intervention in the prevention of the Ebola virus. This would also be
an opportunity to harmonize both quantitative and qualitative methods for program implementation.
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