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ABSTRACT
Mathematical models provide a useful framework to investi-
gate real-world problems. They can be used in the context of
disease dynamics to study how a disease will spread and how
we can stop or prevent an outbreak. In December of 2013,
an outbreak of Ebola began in the West African country of
Guinea and later spread to Sierra Leone and Liberia. Health
Organisations like the US Centers for Disease Control and
the World Health Organization were tasked with providing
aid to end the outbreak. We create an SEIR compartmental
model of Ebola with a fifth compartment for the infectious
deceased to model the dynamics of an Ebola outbreak in a
village of a thousand people. We analyse the disease-free
equilibrium of the model and formulate an equation for the
eradication threshold R0. Sensitivity analyses points us in
the direction of the transmission probability and the contact
rate with infectious individuals as targets for intervention. We
model the effect that vaccination and quarantine, together and
separately, have on the outcome of the Ebola epidemic. We
find that quarantine is a very effective intervention, but when
combined with vaccination it can theoretically lead to eradi-
cation of the disease.
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INTRODUCTION
In December of 2013, an outbreak of Ebola Virus Disease be-
gan in the West African country of Guinea and later spread to
neighbouring countries Liberia and Sierra Leone. By Novem-
ber 4th, 2014, the outbreak had reached 13,268 cases, 27 of
which had spread to neighbouring countries and overseas in
Senegal, Nigeria, Mali, Spain and the US [5].

Ebola Virus Disease (known simply as Ebola) is caused by
the epizootic Ebola Virus, which is thought to be found in
mammals of the family Pteropodidae (aka fruit bats) [17].
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Transmission of the virus can occur from bats to other mam-
mals, usually chimpanzees, gorillas and baboons [2]. Infec-
tion of humans can occur through contact with bodily flu-
ids of these animals. Transmission from infected to suscep-
tible humans occurs through direct contact with the saliva,
mucus, vomit, faeces, sweat, tears, breast milk, urine and se-
men of an infected individual. Since direct contact of bod-
ily fluids is necessary, the points of entry of the virus in-
clude the nose, mouth, open wounds, eyes, abrasions and cuts
[14]. Symptoms include fever, sore throat, muscle pains and
headaches, followed by vomiting, diarrhoea, rashes and de-
creased function of the kidney and liver, then internal and ex-
ternal bleeding. The risk of death from the disease is around
50%, increasing as the disease progresses to the bleeding
stage [1]. This is also the stage at which infected individuals
become infectious. Unprotected contact with infected corpses
at Guinean burial rituals are suspected to have been the cause
of over 60% of cases in Guinea [8], which is potentially a
self-perpetuating problem.

Information obtained from mathematical models can help de-
termine the necessary response to an outbreak [19]. Most
models, including recent ones used to model the current out-
break, use the basic reproduction number or similar thresh-
old (R0) of a virus to quantitatively describe the trend of an
epidemic. The reproduction number is the measure of the
transmission potential of a virus or, in other words, the aver-
age number of susceptible people that one infected individual
will infect. The interpretation of the R0 value is that if it is
greater than 1, then more people are getting infected over time
and the epidemic is spreading, while if the value is less than
1, the epidemic is dying off, since fewer people are getting
infected [15]. In this sense, there is a threshold when R0 is
equal to 1; at this point, any perturbations will either lead to
the end or continuation of the epidemic. We decided to use a
compartmental model to describe the Ebola outbreak in West
Africa. Using this model, we were able to determine an equa-
tion forR0 and investigate the effect of different interventions
on R0.

A handful of compartmental models have already addressed
the recent Ebola outbreak. Rivers et al. [23] investigated the
efficiency of increased contact tracing, improved infection-
control practices and a hypothetical pharmaceutical interven-



tion to improve survival of hospitalised patients aimed at re-
ducing the reproduction number of the Ebola virus. They
showed that perfect contact tracing could reduce R0 from
2.22 to 1.89, while additionally reducing hospitalisation rates
by 75% would further reduce R0 to 1.72. Chowell et al. [9]
used an SEIR model to determine R0, the final size of the
epidemic and performed a sensitivity analysis, showing that
education and contact tracing with quarantine would reduce
the epidemic by a factor of 2. Fisman et al. [13] used a
two-parameter model to examine epidemic growth and con-
trol. They evaluated the growth patterns and determined the
degree to which the epidemic was being controlled, finding
only weak control in West Africa as of the end of August
2014 and essentially no control in Liberia. Webb and Browne
[25] developed an age-structured model, tracking disease age
through initial incubation, followed by an infectious phase
with variable transmission infectiousness. They showed that
successive stages of hospitalisation have resulted in a miti-
gation of the epidemic. Browne et al. [7] developed an SEIR
model to examine the effects of contact tracing and determine
R0. They showed that, if contact tracing was perfect, then the
critical proportion of contacts that need to be traced could
be derived. Do and Lee [12] developed an SLIRD model to
determine the mathematical dynamics of the disease. Their
model had a single equilibrium point, which they showed
would be stable if safe burial practices without traditional rit-
uals were followed and R0 < 1.

Here we propose a compartmental model consisting of five
groups of individuals: susceptible (S), non-symptomatic in-
fected (E), infectious living (I), infectious deceased (DI ) and
recovered (R). We include the dead as an actively infectious
compartment in our model. We have previously performed
such modelling in other contexts [20]; while Ebola is more
serious and the dead do not move about, there are neverthe-
less some similarities in the model construction.

THE MODEL
We used standard incidence to represent contact between sus-
ceptible (S) and infected (I ,DI ) individuals since contact be-
tween susceptible and infected individuals is not well-mixed,
occurring disproportionately more at burial rituals [8]. We
modelled a representative West African village of 1000 in-
dividuals, on the basis that contact rates would be close to
uniform in a small and relatively isolated population. The in-
fected deceased (DI ) are included in the denominator for the
rate of infection since they are interacting with susceptible in-
dividuals, making them an active part of the population (N ).
We include permanent immunity in the model but assume that
no susceptible individuals have pre-existing immunity; this
has been shown to occur [11], but we choose not to incorpo-
rate it, since the frequency of mutation is currently unknown.
We make the assumption that non-symptomatic infected indi-
viduals (E) do not become infectious dead if they die at the
background death rate.

The model is described by the following five differential
equations:

S′ = Λ − βcISI

S + E + I +R+DI
− βcdSDI

S + E + I +R+DI

− µS

New susceptible (S) individuals enter the population at a con-
stant birth/immigration rate (Λ). Susceptible individuals may
die and leave the population at the background death rate
(µS), or they may be infected and enter the non-symptomatic
infected compartment (E) at the infection rate that is repre-
sented by the two fractions.

E′ =
βcISI

S + E + I +R+DI
+

βcdSDI

S + E + I +R+DI

− (ω + µ)E

Newly infected individuals enter the compartment at the
same rate susceptible people get infected. Non-symptomatic
infected individuals become infectious and symptomatic,
thereby leaving the compartment and joining the symp-
tomatic infected compartment at rate ωE. Non-symptomatic
infected individuals die at the background death rate (µE).

I ′ = ωE − (α+ γ)I

Infected individuals become symptomatic at rate (ωE).
Symptomatic infectious individuals may leave the compart-
ment via disease death (at rate αI) or through recovery (at
rate γI) joining the recovered (R) compartment, where they
are immune to infection.

R′ = γI − µR

The number of recovered individuals increases due to recov-
ery (at rate γI), and it decreases due to background death (at
rate µR).

D′I = αI − θDI

The number of infected deceased increases due to death from
the disease (at rate αI), and it decreases as dead bodies lose
their infectivity (at rate θDI ). The model is shown in Figure
1.

Figure 1. Model Flowchart. The movement of individuals through the com-
partments via infection, recovery and death. At birth, individuals are sus-
ceptible (S). They may die from unrelated causes and exit the system, or
they may be infected either by an infectious individual or corpse and become
non-symptomatic infected (E). Non-symptomatic infected individuals be-
come infectious (I), or they can die from an unrelated cause and exit the
system. Infectious individuals can recover (R) from the disease or they may
die from the disease and become an infectious dead body (DI ). Recovered
individuals can no longer be infected; they die at the background death rate.
Infectious dead bodies stop being infectious after safe burial or after the live
virus is no longer in the corpse.



These five equations represent the rate of change over time of
five different categories of individuals within a village un-
dergoing an Ebola epidemic. The infected deceased com-
partment (DI ) represents the dead bodies of previously in-
fected individuals who are still capable of infecting suscepti-
ble individuals. This infection of susceptible individuals by
infected dead bodies is represented in Figure 1 by the dot-
ted line connecting the Susceptible (S) and the Infected De-
ceased (DI ) compartments. People who are infected are not
infectious until they are symptomatic [1]; as a result, once
individuals from the susceptible group are infected, they join
the non-symptomatic infected group before joining the infec-
tious group.

ANALYSIS
We are interested in the stability of the disease-free equilib-
rium (DFE), which is given by the expression(

S0, E0, I0, R0, D0
I

)
=

(
Λ

µ
, 0, 0, 0, 0

)
.

The disease-free equilibrium is the point in the epidemic
where there are no infected (I, E), recovered (R) or infected
deceased (DI ) individuals in the system; in other words, the
epidemic is not occurring. To analyse the dynamics of the
system near the equilibrium, we calculated the Jacobian ma-
trix and evaluated it at the DFE:

JDFE =


−µ 0 −βcI 0 −βcD
0 −ω − µ βcI − γ 0 βcD
0 ω −α− γ 0 0
0 0 γ −µ 0
0 0 α 0 −θ

 .
Two of the eigenvalues of this matrix are λ = −µ,−µ, which
are both negative (since all parameters are positive). The re-
maining three eigenvalues of the Jacobian matrix are given by
the characteristic equation

λ3 + (α+ γ + θ + ω + µ)λ2

+ (ωα+ ωγ + ωθ + µα+ µγ + µθ + αθ + γθ + βcIω)λ

+ θ(ωα+ ωγ + µα+ µγ) − βcIωθ − βcDωα = 0.

If we represent the equation by

a3λ
3 + a2λ

2 + a1λ+ a0 = 0,

then, according to the Routh–Hurwitz Criterion, the follow-
ing two criteria are necessary for the equilibrium to be locally
asymptotically stable:

1. an > 0 (n = 0, 1, 2, 3)

2. a1a2 > a3a0.

First, we look at the second criterion:

(α+γ+θ+ω+µ)(ωα+ωγ+ωθ+µα+µγ+µθ+αθ+γθ

+ βcIω) > θ(ωα+ ωγ + µα+ µγ) − βcIωθ − βcDωα.

The term θ(ωα+ωγ+µα+µγ) appears on both sides of the
inequality, which means it can be subtracted from both sides.
Since every parameter is positive, we are left with a positive

term on the left-hand side and a negative term on right-hand
side, so the second criterion holds.

Next we look at the an > 0 criteria. The a3, a2, a1 terms are
all positive. So the only condition to be met is:

(ωαθ + ωγθ + µαθ + µγθ) − βcIωθ − βcDωα > 0.

If this condition is not met, then the DFE is unstable and the
epidemic will spread. If the condition is met, then the DFE
is stable and the epidemic will end. This gives us a thresh-
old condition [15] from which we can derive an eradication
threshold:

R0 =
(βcIωθ + βcDωα)

θ(ωα+ ωγ + µα+ µγ)
.

It should be noted thatR0-like thresholds calculated from dif-
ferential equation models are not necessarily the reproduc-
tion number; however, they share a stability threshold [18].
Specifically, if R0 < 1, then the DFE is (locally) stable,
whereas if R0 > 1, the DFE is unstable. However, such re-
sults do not establish global stability or rule out the presence
of a backward bifurcation. The latter can sometimes be ob-
served numerically, although our simulations did not discern
one. Nevertheless, such thresholds can be useful for under-
standing eradication.

To investigate the relationship between the contact rates and
the transmission probability, we set R0 to 1 and isolate β:

β =
θ(ωα+ ωγ + µα+ µγ)

(cIωθ + cDωα)
.

We assigned the sample values found in Table 1 to all the
parameters except the contact rates and plotted three variables
of interest, β, cI and cD (Figure 2). The resulting surface
represents the eradication threshold. From the lopsided slope
of the surface, we see that R0 is influenced less by cD than
cI . It follows that human-to-human contact is a greater driver
of the epidemic than that of the infectious dead.

54.5

Contact rate with infected dead bodies (c
D
)

43.532.521.510.505Contact rate with infected individuals (c
I
)

4
3

2
1

1

0.9

0.4

0.8

0.7

0.5

0.3

0.2

0.1

0.6

0

T
ra

ns
m

is
si

on
 p

ro
ba

bi
lit

y 
(-

)

Eradication

Persistence

Figure 2. Mesh plot of transmission probability (β) as a function of the
contact rates (cD , cI ) when R0=1, with other parameters set to their median
values from Table 1. The surface of this function is the threshold of the
epidemic. The disease will persist if parameters are above the surface, while
it will be eradicated if they are below it.

Next, we calculated the partial derivatives of R0 with respect
to all eight parameters. Positive partial derivatives indicate



Parameter Description Range Sample Value Units Reference
α disease death rate 0.5–1 0.5 weeks−1 [24]

γ recovery rate 0.5–1 0.5 weeks−1 [16]

µ background death rate 0–0.001 1/50 years−1 [10]

Λ birth rate 0–1 1000µ people years−1 [10]

θ safe burial rate 0.33–7 1 weeks−1 [22]

cI contact rate with infectious individuals 0–5 variable people weeks−1 -

cD contact rate with infectious dead bodies 0–5 variable people weeks−1 -

β transmission probability 0–1 0.75 - assumed

ω rate at which infected individuals becoming infectious 0.33–3 1 weeks−1 [1]

Table 1. Parameter values. Each parameter is described, and the range and sample values found in literature are listed. The inverse of the rate parameters
represent the average duration of time that the process takes.

that an increase in that parameter will increase R0, whereas
negative partial derivatives indicate that an increase in that
parameter will decrease R0.

∂R0

∂β
=

cIωθ + cDωα

θ(ωα+ ωγ + µα+ µγ)
> 0

(transmission probability)
∂R0

∂cI
=

βω

ωα+ ωγ + µα+ µγ
> 0

(contact rate with infected)
∂R0

∂cD
=

βωα

θ(ωα+ ωγ + µα+ µγ)
> 0

(contact with the dead)
∂R0

∂ω
=

(βcIθ + βcDα)(θµα+ θµγ)

(θωα+ θωγ + θµα+ θµγ)2
> 0

(rate of becoming infectious)
∂R0

∂µ
=

−(θα+ θγ)(βcIθω + βcDαω)

(θωα+ θωγ + θµα+ θµγ)2
< 0

(death rate)
∂R0

∂γ
=

−(θω + θµ)(βcIθω + βcDαω)

(θωα+ θωγ + θµα+ θµγ)2
< 0

(recovery rate)
∂R0

∂θ
=

−(ωα+ ωγ + µα+ µγ)(βcDαω)

(θωα+ θωγ + θµα+ θµγ)2
< 0

(safe burial rate)

∂R0

∂α
=
βcDω

2θγ + βcDωθµγ − (βcIω
2θ2 + βcIωθ

2µ)

(θωα+ θωγ + θµα+ θµγ)2

(disease death rate)

For the latter, we have

∂R0

∂α
> 0 if

cD
θ
>
cI
γ

and
∂R0

∂α
< 0 if

cD
θ
<
cI
γ

The first seven partial derivatives here match the sign of the
Partial Rank Correlation Coefficients (PRCCs) calculated for
their respective parameters (Figure 3). The PRCC calculated
for the disease death rate (α) is negative. We determined that
the partial derivative would only be negative if cDθ < cI

γ ; that
is, if the ratio of contact with the dead to safe burial is lower
than the ratio of contact with the infected to the recovery rate.
This implies that, if dead bodies are sufficiently infectious,
then a higher death rate will increase the overall risk. The
equality cD

θ = cI
γ represents a critical case, the threshold be-

yond which the epidemic will spiral out of control.

In our case, since the ranges for the contact rates used in our
Latin Hypercube Sampling were the same and the range for
θ is higher than γ (Table 1), we will usually have cD

θ < cI
γ .

It follows that an increased death rate from Ebola will lower
the overall risk.

NUMERICAL SIMULATIONS
We performed sensitivity analyses on all the parameters using
partial rank correlation coefficient (PRCC) analysis. PRCCs
measure the relative degree of sensitivity of the outcome vari-
able to each parameter, regardless of whether the parameter
has a positive or negative influence on the outcome variable.
We use PRCCs to rank the influence of the parameters in our
model on R0. This is done computationally by sampling pa-
rameters from a uniformly distributed range using Latin Hy-
percube Sampling (LHS), a statistical sampling method that
evaluates sensitivity of an outcome variable to all input vari-
ables. The parameters were sampled 1000 times for 1000
runs.
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Figure 3. A. Partial Rank Correlation Coefficient sensitivity analysis of pa-
rameters. Sensitivity analysis of R0 with respect to all the parameters. B.
Box plot of all 1000 R0 values. Latin Hypercube Sampling (LHS) was used
to sample parameters. The LHS ranges are given in Table 5.1. The horizontal
red line indicates the median of all 1000 of theR0 values. 54% of the values
lie underneath R0 = 1.

Inclusion of interventions in the model was achieved by mod-
ifying the ranges for the parameters targeted by the inter-
vention. For example, to increase the number of safe burial
teams, we increased the rates of safe burial (θ) and reran our
PRCC analyses. To examine quarantine and isolation, we de-
creased the range of the contact rate with infected individuals
(cI ). We used a script to check each value of R0 to deter-
mine if it was less than 1. All numerical simulations were
completed using MATLAB.

SENSITIVITY ANALYSIS
Figure 3A shows the PRCCs of the eight parameters found in
our equation for R0. We find that, at the disease-free equilib-
rium, R0 is most influenced by the transmission probability,
the amount of contact with the dead and the contact rates be-
tween infected individuals and susceptible individuals. All
three parameters will increase R0 when they are increased,
since the PRCCs point to the right. While increasing the safe
burial rate will have a reductive effect on the epidemic (since
its PRCC points to the left), this effect is swamped by the oth-
ers. Figure 3B illustrates all 1000 R0 values calculated from
the sampled parameter values in a boxplot. The horizontal
red line indicates the median R0 value and the whiskers are
found at the first and third quartiles. We find that 54% of the
R0 values lie underneath the threshold R0 = 1.

Figure 4 shows the changes observed inR0 as each of the four
most influential parameters change, compared to the eradi-
cation threshold (horizontal line) in the absence of interven-
tions. A decrease in R0 is associated with an increase of the
safe burial rate and a decrease in the transmission probability
or the contact rates. The most defined trend is found in the
transmission probability.
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Figure 4. LHS output for R0 as a factor of the four most influential parame-
ters: (A) the safe burial rate θ, (B) the contact rate with infectious individuals
cI , (C) the contact rate with infectious dead bodies cD and (D) the transmis-
sion probability β. Values for all nine parameters were sampled 1000 times.
The horizontal line indicated the threshold R0 = 1.

INTERVENTIONS
To investigate the effectiveness of an intervention targeting
the safe burial rate, we adjusted the range that we sampled
from for our sensitivity analyses. The sampled range was
changed from 0.33–7 weeks−1 to 2–7 weeks−1. (Note that
the duration of risk of a dead body is inversely proportional
to these numbers.) Figure 5A illustrates the revised sensitivity
of all eight parameter values subject to the adjusted range for
the safe burial rate. We find that, with an improved safe burial
task force, the contact rate with dead bodies is no longer as
influential on R0. The boxplot in Figure 5B shows that 60%
of the R0 values lie underneath the threshold R0 = 1, a sub-
stantial improvement over the previous analysis.

Next, we examined the effect of improved quarantine and iso-
lation techniques by reducing the range of cI from 0–5 peo-
ple/week to 0–1 people/week. All other parameters were at
their original sample values. Figure 5C shows that the contact
rate with infected individuals has been reduced, while the safe
burial rate is now a significant factor. It follows that, if con-
tact between susceptible and infected individuals is reduced,
then efforts must be made to ensure safe burial practices are
maintained, so that the epidemic is not sustained by infection
from the dead. The boxplot in Figure 5D shows that 90% of
all R0 values are now found below the threshold R0 = 1.

Finally, Figure 6 illustrates the LHS output of R0 as a func-
tion of the transmission probability, using all 1000 sampled
values. (Each dot represents a simulation.) The parameter
ranges used for this plot are as in Figure 5C and 5D, illustrat-
ing the effect that quarantine and isolation intervention would
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Figure 5. A. Partial Rank Correlation Coefficients sensitivity analysis of
parameters with modified safe burial rate. The safe burial rate θ is modi-
fied, shrinking the range from 0.33–7 to 2–7 weeks−1, which indicates the
longest a dead body remains infectious is three and a half days. B. Box plot
of all 1000 R0 values with modified safe burial rate. 60% of the values lie
underneathR0 = 1. C. Partial Rank Correlation Coefficient sensitivity anal-
ysis of parameters with modified cI . A decreased contact rate with infected
individuals is introduced by modifying the range of cI used in LHS from
0–5 to 0–1, which indicates that on average the highest number of infectious
individuals a susceptible person can come in contact with is 1 per week. D.
Box plot of all 1000 R0 values with modified cI . 90.5% of the values lie
underneath R0 = 1.

have on R0. We see that, as calculated earlier, 90% of the R0

values are below 1. Without interventions, 98% of the values
ofR0 are less than 1 when the transmission probability is less
than 0.3. With quarantine, 98% of all R0 values are less than
1 when the transmission probability is less than 0.5.

DISCUSSION
According to our results, the parameters with the greatest ef-
fect on the Ebola epidemic are the transmission probability
(β), the safe burial rate (θ) and the two contact rates (cI , cD).
However, the contact rate between infected and susceptible
individuals has considerably more influence on the outcome.
This is likely because infected individuals lose their infec-
tivity slower than infected dead bodies do. Infectious dead
bodies remain infectious for up to a week after death [22],
and they can easily be rendered safe through careful burial.
The transmission probability is the most influential parameter
in the R0 equation. Although we have separated the contact
rates from the transmissibility of the virus, our results indicate
that any efforts to reduce this transmission, such as a vaccine
or treatment, would have a significant effect on reducing the
overall epidemic.

There are several interventions that have already been used to
reduce the spread of Ebola. Quarantine of individuals found
through aggressive contact tracing [6] and isolation of in-
fected individuals while they are treated have been effective
methods to reduce the contact rates with infected individu-
als [4]. To deal with the problem of infected dead bodies on
the street and unsafe burial rituals, the US Centers for Dis-
ease Control (CDC) has employed safe burial teams, which
are tasked with safely burying corpses [21]. This increases
the rate at which dead bodies lose their infectivity; as a re-
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Figure 6. LHS output forR0 as a factor of transmission probability (β) with
modified cI . A. When β < 0.3, 98% of the values lie underneath R0 = 1.
B. Applying quarantine decreased the contact rate with infected individuals
by modifying the range of cI used in LHS from 0–5 to 0–1, which indicates
that on average the highest amount of infectious individuals a susceptible
person can come in contact with is 1 per week. In this case, 98% of R0

values were below 1 when β < 0.5.

sult, there is less contact between susceptible individuals and
infected dead bodies.

The employment of safe burial teams was a significant factor
during the recent Ebola outbreak. Effectively, this increases
the safe burial rate (θ). We investigate the effectiveness of
this intervention by using a modified range for the safe burial
rate (θ) and observing the changes in our LHS output (Fig-
ure 5). We found that the influence of the rate of contact
with infected dead bodies was consequently reduced (Figure
5A). However, the overall effectiveness of increasing the safe
burial rate is limited, only increasing the number of simula-
tion values below the eradication threshold from 54% (Figure
3) to 60% (Figure 5). It follows that efforts to reduce contact
need to be diversified, even if dead bodies are being dealt with
in a timely manner.

There have been recent trials for an Ebola vaccine, some of
which have been promising [3]. A perfect vaccine would re-
duce the susceptible pool; however, even an imperfect vac-
cine would likely lower the transmissibility. In practice, inter-
ventions should be instituted in tandem. Combining quaran-
tine and vaccination (by reducing both the contact rate and the
transmissibility) will lead to disease eradication. As shown
in Figure 6, decreasing the transmissibility below β = 0.5,
when the quarantine is applied, would result in 98% of the
cases having an R0 value below 1, which would ultimately



lead to the eradication of the epidemic. Figure 2 shows that,
with a low transmission probability, eradication can still oc-
cur even with high contact rates.

Our model has several limitations, which should be acknowl-
edged. We assumed constant birth/immigration and back-
ground death rates, which may not hold as populations move
about, as they may in response to the disease. We assumed the
same transmission probability for the living and dead, which
may not be true. We also made the assumption that individ-
uals who die from other reasons could not be infected with
Ebola after death, which may have a much larger effect on
sustaining the epidemic.

It should be noted that our model bears a high degree of sim-
ilarity to the work of Do and Lee [12]. It is the nature of an
emerging outbreak that multiple models may be developed
in parallel during the same research period, which may pro-
duce similar constructions. Despite the similarities, there are
a number of key differences: their model included both trans-
mission and “infectious death” of latently infected individ-
uals, which ours didn’t. Conversely, we included birth and
death rates, as well as the “aging out” of the infectious dead.
Furthermore, our focus was on using sensitivity analysis to
explore the effect of parameter variation, in order to deter-
mine effective intervention targets.

Future work will model the effects of a potential vaccine.
With initial trials yielding positive results [3], it is very likely
that, in the coming years, there will be an approved vaccine
available for use in at-risk countries. Determining the por-
tion of the population required for there to be effective herd
immunity and determining the right age to vaccinate people
will be investigated. We will also model quarantine explic-
itly using a separate compartment and account for the role of
superspreaders using impulsive differential equations.

During the recent outbreak in West Africa, public-health ed-
ucation programs, quarantine, safe burial initiatives and other
interventions were instituted in an attempt to reduce R0 be-
low 1 and eventually end the epidemic. We have shown that
doing so is necessary to ensure the end of an epidemic, since
no single intervention was enough to bring all the R0 val-
ues in our model below the threshold on its own. If there
is success in the recent trials for the Ebola vaccine, then a
public-health program to vaccinate as much of the population
as possible is necessary to prevent future outbreaks. How-
ever, before such a program is possible, the combination of
other interventions will be necessary to end the current out-
break in West Africa and any other outbreaks that occur from
now until a time where we have a widely available vaccine.
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