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Abstract
Respiratory Syncytial Virus (RSV) is an actute respiratory infection
that infects millions of children and infants worldwide. Recent research
has shown promise for the development of live attentuated vaccines,
several of which are in clinical trials or preclinical development. We
extend an existing mathematical model with seasonal transmission to
include vaccination. We model vaccination both as a continuous pro-
cess and as a discrete one, using impulsive di�erential equations. We
develop conditions for the stability of the disease-free equilibrium and
show that this equilibrium can be destabilised under certain (extreme)
conditions. Using impulsive di�erential equations and introducing a
new quantity, the impulsive reproduction number, we determine condi-
tions for the period and strength of vaccination that will control (but
not eradicate) RSV. The waning rate of the vaccine is a critical pa-
rameter for long-term reduction in RSV prevalence, even more than
coverage. We recommend that candidate vaccines be tested for su�-
cient duration before being released on the market.

1 Introduction

Respiratory syncytial virus (RSV) is the main cause of acute lower respira-
tory infections in infants and young children [27], with almost all children
having been infected by two years of age [14, 31] and an estimated 0.5–2%
of infants requiring hospitalisation due to infection [23]. One recent study
estimated that, in 2005, 33.8 million new episodes of RSV occurred world-
wide in children younger than five years of age [27]. Symptoms of RSV range
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from those of a cold to more severe a�ictions such as bronchiolitis and pneu-
monia [14]. While mortality due to RSV infection in developed countries is
low, occurring in less than 0.1% of cases [38], few data have been published
about RSV morbidity and mortality in developing countries [40]. However,
estimates of the hospitalisation costs are substantial [18, 36, 42], making
RSV a significant economic and health care system burden.

Newborn infants are typically protected from RSV infection by maternal
antibodies until about six weeks of age [12], and the highest number of
observed RSV cases occur in children aged six weeks to six months [8, 33].
Immunity to RSV following an infection is short-lasting, and reinfection in
childhood is common [24]. Few studies have been undertaken to investigate
transmission of RSV among adults, but it is thought that infection can occur
throughout life [9, 19] and that, in older children and adults, RSV manifests
as a mild cold [14, 20]. RSV has been identified as a cause of mortality in
the elderly, with documented outbreaks in aged-care settings [17, 37]; one
such study found that up to 18% of pneumonia hospitalisation in adults
aged above 65 years may be due to RSV infection [16].

In temperate climates RSV epidemics exhibit distinct and consistent sea-
sonal patterns. Most RSV infections occur during the cooler winter months,
whether wet or dry [40], and outbreaks typically last between two and five
months [15, 28]. In a number of temperate regions, a biennial pattern for
RSV cases has been identified [4, 25, 34]. In tropical climates, RSV is de-
tected throughout the year with less pronounced seasonal peaks, and the
onset of RSV is typically associated with the wet season [32, 40].

Immunoprophylaxis with the monoclonal antibody Palivizumab, while
not preventing the onset of infection, has proven e�ective in reducing the
severity of RSV-related symptoms [35]. However, prophylaxis is expensive
and generally only administered to high-risk children, with recommenda-
tions varying across jurisdictions. There is currently no licensed vaccine to
prevent RSV infection, despite about 50 years of vaccine research. Recent
research has focused on the development of live attenuated vaccines; several
such vaccines are being evaluated in clinical trials, with other vaccines in
preclinical development [13, 18]. With the possibility of an RSV vaccine be-
coming available, mathematical models can be powerful tools for planning
vaccination roll-out strategies.

Several ordinary di�erential equation mathematical models for RSV trans-
mission have been published to date [3, 10, 22, 26, 29, 39, 41], most us-
ing Susceptible–Exposed–Infectious–Recovered (SEIR) dynamics and with
a sine or cosine forcing term to account for seasonal variation in transmis-
sion. Weber et al. [39] presented an SEIRS model that incorporated a gradual
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reduction in susceptibility to reinfection and maternally derived immunity;
they fitted the model to several data sets. Leecaster et al. [22] presented
an SEIDR model with both child and adult classes for the S, E and I com-
partments, where the D class represented children in which infection was
detected. The model was fitted to seven years of data from Salt Lake City,
USA.

Moore et al. [26] presented an age-structured SEIRS model for children
under two years of age, as well as the remaining population. The model was
fitted to data from Perth, Western Australia. Capistran et al. [10] outlined
an SIRS model with seasonal forcing and proposed a method to estimate
the model parameters, demonstrated by fitting models to data from The
Gambia and Finland. Paynter et al. [29] investigated the ecological drivers
of RSV seasonality in the Philippines, where the model included a second
partially susceptible class and classes for latent and infectious individuals
with subsequent RSV infection. They applied a square-wave transmission
term that accounted for decreased transmissibility over the summer holidays,
as well as a seasonally driven birth rate.

White et al. [41] used nested di�erential equation models to describe RSV
transmission and fitted these to RSV case data for eight di�erent regions.
Arenas et al. [3] introduced randomness into the di�erential equation model
and fitted the model to RSV hospitalisation data for Valencia, Spain.

Few papers have so far explored vaccination strategies for RSV. A new-
born vaccination strategy was outlined in Acedo et al. [1] for the Spanish
region of Valencia, in order to estimate the cost-e�ectiveness of potential
RSV vaccination strategies. Their modelling approach removed a fraction of
susceptible newborns into a vaccinated class, where they remained until they
reached the next age group, at which point they moved to the second sus-
ceptible class. This strategy assumes booster doses of the vaccine in the first
year of life, such that the immunisation period would be at least equal to the
immunity of those who have recovered from RSV infection. In subsequent
work, an RSV vaccine cost analysis was conducted based on a stochastic
network model, with children vaccinated at two months, four months and
one year of age [2].

Here, we examine the e�ects of a theoretical vaccine on the spread of
RSV. We examine several vaccination scenarios, including di�ering levels of
coverage, seasonal oscillations in the transmission rate and a waning of the
vaccine. We also compare continuous vaccination to impulsive vaccination in
order to determine conditions on the vaccination strength and period that
will control the virus.
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2 The model

We extend the basic model from Weber et al. [39] to include vaccination.
We assume that the leaving rate µ is unchanged across all classes and that
there is no disease-specific death rate. We scale the entry and leaving rates
so that the population is constant.

Let S represent susceptible, I represent infected and R represent re-
covered individuals, with V , IV and RV the corresponding compartments
for vaccinated individuals. The birth rate is µ, with a proportion p vacci-
nated, of whom ‘ successfully mount an immune response; the death rate is
matched to the birth rate. The time-dependent transmissibility parameter
is —(t), with recovery ‹ and loss of immunity “. Corresponding vaccination
parameters are —V (t), ‹V and “V , respectively. Finally, the waning of the
vaccine is given by Ê.

The basic model with vaccination is then

S

Õ = µ(1 ≠ ‘p) ≠ µS ≠ —(t)S(I + IV ) + “R + ÊV

I

Õ = —(t)S(I + IV ) ≠ ‹I ≠ µI + ÊIV

R

Õ = ‹I ≠ µR ≠ “R + ÊRV

V

Õ = ‘pµ ≠ µV ≠ —V (t)V (I + IV ) + “V RV ≠ ÊV

I

Õ
V = —V (t)V (I + IV ) ≠ ‹V IV ≠ µIV ≠ ÊIV

R

Õ
V = ‹V IV ≠ µRV ≠ “V RV ≠ ÊRV ,

with —(t) = b0(1 + b1 cos(2fit + „)) and —V (t) = (1 ≠ –)—(t), for 0 Æ – Æ 1.
(We may relax the lower bound on – later.) The model is illustrated in
Figure 1.

3 Analysis

There is a disease-free equilibrium that satisfies

(S̄, Ī, R̄, V̄ , ĪV , R̄V ) =
3(1 ≠ ‘p)µ + Ê

µ + Ê

, 0, 0,

‘pµ

µ + Ê

, 0, 0
4

.
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Figure 1: The model.

3.1 Constant transmission

If we assume transmission is constant, so that — and —V are independent of
time, then the Jacobian is J = [J1|J2], where

J1 =

S

WWWWWWWU

≠µ ≠ —(I + IV ) ≠—S̄ “

—(I + IV ) —S̄ ≠ µ ≠ ‹ 0
0 ‹ ≠µ ≠ “

0 ≠—V V̄ 0
0 —V V̄ 0
0 0 0

T

XXXXXXXV

J2 =

S

WWWWWWWU

Ê ≠—S̄ 0
0 —S̄ + Ê 0
0 0 Ê

≠µ ≠ —V (I + IV ) ≠ Ê ≠—V V̄ “V

—V (I + IV ) —V V̄ ≠ ‹V ≠ µ ≠ Ê 0
0 ‹V ≠µ ≠ “V ≠ Ê

T

XXXXXXXV

.

At the DFE, we have

J

----
DF E

=

S

WWWWWWWU

≠µ ≠—S̄ “ Ê ≠—S̄ 0
0 —S̄ ≠ µ ≠ ‹ 0 0 —S̄ + Ê 0
0 ‹ ≠µ ≠ “ 0 0 Ê

0 ≠—V V̄ 0 ≠µ ≠ Ê ≠—V V̄ “V

0 —V V̄ 0 0 —V V̄ ≠ ‹V ≠ µ ≠ Ê 0
0 0 0 0 ‹V ≠µ ≠ “V ≠ Ê

T

XXXXXXXV

.
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The characteristic polynomial satisfies

det(J ≠ ⁄I) = (≠µ ≠ ⁄)(≠µ ≠ “ ≠ ⁄)(≠µ ≠ Ê ≠ ⁄)(≠µ ≠ “V ≠ Ê ≠ ⁄) det M,

where

M =
C
—S̄ ≠ µ ≠ ‹ ≠ ⁄ —S̄ + Ê

—V V̄ —V V̄ ≠ ‹V ≠ µ ≠ Ê ≠ ⁄

D

.

The first four eigenvalues are always negative. The nontrivial part of
characteristic equation satisfies

⁄

2 + b1⁄ + c1 = 0,

where

b1 = ≠—S̄ + µ + ‹ ≠ —V V̄ + ‹V + µ + Ê

c1 = (—S̄ ≠ µ ≠ ‹)(—V V̄ ≠ ‹V ≠ µ ≠ Ê) ≠ —V V̄ (—S̄ + Ê)
= —S̄(≠‹V ≠ µ ≠ Ê) ≠ (µ + ‹)(—V V̄ ≠ ‹V ≠ µ ≠ Ê) ≠ —V V̄ Ê.

From c1 = 0, we find

R0 = —S̄(‹V + µ + Ê) + —V V̄ (µ + ‹ + Ê)
(µ + ‹)(µ + ‹V + Ê)

(This is equivalent to the value found using the next-generation method.)
If c1 = 0 and b1 > 0, then we have a bifurcation with the property that

the DFE is stable if R0 < 1 and unstable if R0 > 1
However, it is possible that when c1 = 0, b1 < 0. In this case, R0 is not

a threshold and the disease can persist if R0 < 1.
When c1 = 0, we have

b1

----
c1=0

= 1
‹V + µ + Ê

Ë
—V V̄ (‹ ≠ ‹V ) + (‹V + µ + Ê)2

È
.

Note that if ‹ = ‹V , then b1 > 0. However, we expect that vaccinated
individuals will recover faster than unvaccinated individuals. Thus ‹V > ‹.
This raises the possibility that b1 could be negative.

If ‹V æ Œ, then this is equivalent to vaccinated individuals recovering
instantaneously. In this case,

lim
‹V æŒ

b1 = lim
‹V æŒ

—V V̄ (‹ ≠ ‹V )
Ê + µ + ‹V

+ Ê + µ + ‹V

= Œ ≠ —V V̄ > 0
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f(νV)

νV* νV→ ∞νV=ν

Figure 2: Possible sketch of the form of f(‹V ) with a negative minimum
between two positive extremes.

Hence if we define f(‹V ) = —V V̄ (‹≠‹V )+(Ê+µ+‹V )2

Ê+µ+‹V
, then it is clear that

f(0) > 0 and f(Œ) > 0. So we would like to know whether f has a turning
point ‹

ú
V such that f(‹ú

V ) < 0.
We have

f

Õ(‹V ) = (Ê + µ + ‹V )[≠—V V̄ + 2(Ê + µ + ‹V )] ≠ [—V V̄ (‹ ≠ nuV ) + (Ê + µ + ‹V )2]
(Ê + µ + ‹V )2

= (Ê + µ + ‹V )2 ≠ —V V̄ [Ê + µ + ‹]
(Ê + µ + ‹V )2

It follows that ‹

ú
V =

Ò
—V V̄ (Ê + µ + ‹) ≠ Ê ≠ µ.

There are three requirements we need for this to be meaningful:

1. ‹

ú
V > ‹

2. f(‹ú
V ) < 0 and

3. ‹

ú
V is a local minimum.

See Figure 2.
The first and second criteria determine whether such a ‹

ú
V exists. To

prove the third, we can di�erentiate again:

f

ÕÕ(‹V ) = (Ê + µ + ‹V )2 + —V (Ê + µ + ‹)
(Ê + µ + ‹V ) > 0.

It follows that ‹

ú
V is a local minimum whenever it exists.
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4 Impulsive model

Previously, we assumed that vaccination occurred at birth and that a fixed
proportion of newborns were vaccinated. This is e�ectively continuous vac-
cination. However, vaccination may occur later and may be administered
at regular times (for example, in schools or daycare centres). We assume
that the e�ect of the vaccine is to reduce the susceptible population by a
fixed proportion. Such a model is described by a system of non-autonomous
impulsive di�erential equations [5, 6, 7, 21].

The impulsive model is given by

S

Õ = µ ≠ µS ≠ —(t)S(I + IV ) + “R + ÊV t ”= tk

I

Õ = —(t)S(I + IV ) ≠ ‹I ≠ µI + ÊIV t ”= tk

R

Õ = ‹I ≠ µR ≠ “R + ÊRV t ”= tk

V

Õ = ≠µV ≠ —V (t)V (I + IV ) + “V RV ≠ ÊV t ”= tk

I

Õ
V = —V V (I + IV ) ≠ ‹V IV ≠ µIV ≠ ÊIV t ”= tk

R

Õ
V = ‹V IV ≠ µRV ≠ “V RV ≠ ÊRV t ”= tk

�S = ≠rS t = tk

�V = rS t = tk

Here tk are the vaccination times. They may be fixed or non-fixed, although
for our purposes we will consider them fixed.

4.1 Impulsive Analysis

We will set — to be constant for mathematical convenience. In order to
analyse the impulsive system, we need to solve the di�erential equations
for finite time. Since this is not possible in general, we will develop several
overestimates in order to determine bounds for the long-term numbers of
susceptible, infected and vaccinated individuals, under a few assumptions.

Susceptible individuals
First we consider the overestimate I + IV Æ 1 (i.e., maximal infection).

Then we have

S

Õ Ø µ ≠ µS ≠ —S.

Integrating and applying the “initial” condition S(t+
k ) in the (k + 1)st cycle,
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we have

S(t) Ø e

≠(µ+—)(t≠tk)
S(t+

k ) + µ

µ + —

1
1 ≠ e

≠(µ+—)(t≠tk)
2

, for tk < t Æ tk+1

S(t≠
k+1) Ø e

≠(µ+—)·
S(t+

k ) + µ

µ + —

1
1 ≠ e

≠(µ+—)·
2

.

Applying the impulsive condition, we have

S(t+
k+1) = (1 ≠ r)S(t≠

k )

S(t+
k+1) Ø (1 ≠ r)e≠(µ+—)·

S(t+
k ) + µ

µ + —

(1 ≠ r)
1
1 ≠ e

≠(µ+—)·
2

.

This is a recurrence relation in the form xn+1 = axn + b, which has equi-
librium x̄ = b

1≠a , and the equilibrium is stable if |a| < 1. In our case, we
have a = (1 ≠ r)e≠(µ+—)·

< 1, so the equilibrium is stable. It follows that
solutions converge to a stable impulsive periodic orbit with endpoints

S

≠
Œ =

µ

1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· "

S

+
Œ =

µ(1 ≠ r)
1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· "

.

These values correspond to the local maximum and minimum values for the
unvaccinated susceptibles after a long time. These values are well-defined,
since both the numerator and the denominator are always positive.

Note in particular that

lim
·æ0

S

≠
Œ = 0.

That is, if the period between vaccinations shrinks to zero, then the num-
ber of susceptibles would shrink to zero. (Note that this is a theoretical
result only, since the impulsive assumptions of long cycle times relative to
instantaneous approximation would break down [11].)

Vaccinated individuals
Second, we turn our attention to vaccination. Using the inequalities I +

IV Æ 1 and RV Ø 0, we have

V

Õ Ø ≠µV ≠ —V ≠ ÊV.
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Integrating and applying the “initial” condition V (t+
k ) in the (k +1)st cycle,

we have

V (t) Ø V (t+
k )e≠(µ+—+Ê)(t≠tk)

, for tk < t Æ tk+1

V (t≠
k+1) Ø V (t+

k )e≠(µ+—+Ê)·
.

Applying the impulsive condition, we have

V (t+
k+1) = V (t≠

k+1) + rS(t1
k+1)

V (t+
k+1) Ø V (t≠

k+1) +
rµ

1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· "

Ø V (t≠
k )e≠(µ+—+Ê)· +

rµ

1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· "

.

Since e

≠(µ+—+Ê)·
< 1, this recurrence relation has a stable equilibrium and

hence solutions converge to the impulsive periodic orbit with endpoints

V

≠
Œ =

rµ

1
1 ≠ e

≠(µ+—)·
2

e

≠(µ+—+Ê)·

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· " !

1 ≠ e

(µ+—+Ê)· "

V

+
Œ =

rµ

1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· " !

1 ≠ e

(µ+—+Ê)· "
.

Infected vaccinated individuals
Next we calculate the number of infected vaccinated individuals. Using

the overestimate I Æ 1, we can write

I

Õ Æ —V V (1 + IV ) ≠ ‹V IV ≠ µIV ≠ ÊIV

Æ —V V

+
Œ(1 + IV ) ≠ ‹V IV ≠ µIV ≠ ÊIV

in the long run. Integrating and applying the initial condition I(0) = 0, we
have

IV = —V

+
Œ

‹V + µ + Ê ≠ —V V

+
Œ

1
1 ≠ e

(—V V +
Œ≠‹V ≠µ≠Ê)t

2
.

This converges if ‹V + µ + Ê ≠ —V V

+
Œ > 0. If this holds, then

‹V + µ + Ê >

—V rµ

1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· " !

1 ≠ e

(µ+—+Ê)· "
.
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Rearranging, we have

(µ + —)
1
1 ≠ (1 ≠ r)e≠(µ+—)·

2
(‹V + µ + Ê) > —V rµ

1
1 ≠ e

≠(µ+—)·
2

[≠(µ + —)(1 ≠ r)(‹V + µ + Ê) + —V rµ] e

≠(µ+—)·
> —V rµ ≠ (µ + —)(‹V + µ + Ê).

This inequality has no solution unless

r < r̄ = (µ + —)(‹V + µ + Ê)
—V rµ + (µ + —)(‹V + µ + Ê) < 1

If r > r̄, then IV converges to

lim
tæŒ

IV = —V V

+
Œ

‹V + µ + Ê ≠ —V V

+
Œ

© I

Œ
V

We are interested in the size of this value. We have

I

Œ
V =

—V rµ

1
1 ≠ e

≠(µ+—)·
2

µ + —

!
1 ≠ (1 ≠ r)e≠(µ+—)· " !

1 ≠ e

≠(µ+—+Ê)· " 3
‹V + µ + Ê ≠ —V rµ(1≠e≠(µ+—)· )

(µ+—)(1≠(1≠r)e≠(µ+—)· )

4
.

To estimate the size of this value for frequent vaccinations, we use L’Hôpital’s
rule to find

lim
·æ0

I

Œ
V = —V µ

(µ + — + Ê)(‹V + µ + Ê)

= (1 ≠ –)—µ

(µ + — + Ê)(‹V + µ + Ê) π 1 ≠ – < 1.

It follows that IV is small if the vaccine significantly reduces transmissibility
and is applied frequently.

Infected individuals
Finally, we examine the number of infected individuals under the as-

sumption that infected vaccinated individuals are negligible (so IV ¥ 0).
We then have

I

Õ ¥ —SI ≠ ‹I ≠ µI

Æ —S

≠
ŒI ≠ ‹I ≠ µI

=
—µ

1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· "

I ≠ ‹I ≠ µI.
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It follows that, after su�cient time, the disease will be contracting if

q =
—µ

1
1 ≠ e

≠(µ+—)·
2

(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· " ≠ ‹ ≠ µ < 0.

We thus define a new quantity, the impulsive reproduction number

T0 =
—µ

1
1 ≠ e

≠(µ+—)·
2

(‹ + µ)(µ + —)
!
1 ≠ (1 ≠ r)e≠(µ+—)· "

,

which has the condition that the disease will be controlled if T0 < 1.
Solving the equation T0 = 1, we can define the maximal period as

·̂ = 1
µ + —

ln (1 ≠ r)(‹ + µ)(µ + —) ≠ —µ

(‹ + µ)(µ + —) ≠ —µ

.

This is defined only if

r < r

ú © 1 ≠ —µ

(‹ + µ)(µ + —) . (1)

Di�erentiating, we have

ˆT0
ˆr

=
—µ

1
1 ≠ e

≠µ+—·
2

(‹ + µ)(µ + —)
Ë
≠

1
1 ≠ (1 ≠ r)e≠(µ+—)·

2
e

≠(µ+—)·
È

< 0.

It follows that T0 is decreasing as r increases, for r < r

ú.
Now let r = r

ú + ‘ in order to determine what happens beyond r

ú. We
have

r = (‹ + µ)(µ + —) ≠ —µ

(‹ + µ)(µ + —) + ‘.

Substituting into q and taking a common denominator, we find that the
numerator of q is

(‹ + µ)2(µ + —)2
Ë
(1 ≠ ‘)e≠(µ+—)· ≠ 1

È
< 0.

It follows that T0 < 1 whenever r > r

ú.
In summary, assuming the number of infected vaccinated individuals is

negligible, if r > r

ú, where r

ú is defined by (1), then the disease will be
controlled, whereas if r < r

ú, then the disease can be controlled, assuming
the period between vaccinations satisfies · < ·̂ .
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5 Numerical simulations

From Weber et al. [39], we have — = 0.03, µ = 0.041 and ‹ = 36. We add
vaccination parameters Ê = 0.1, ‘ = 1, p = 1, ‹V = 177 and —V = 3000.
(We also have “ = 1.8 and impose “V = 1.2“.) This represents a vaccine
with complete coverage and perfect e�cacy that wanes after ten years, but
vaccinated individuals can be infected with a high transmission rate, but
recover very quickly.

Figure 3 shows the results of transmission using data from Weber et
al. [39] and assumed vaccination parameters such that recovery was slightly
faster and transmission slightly less likely. The vaccine was given to 50% of
the eligible population, but waned after 0.01 years (3.65 days). The data
used were µ = 0.041; Ê = 100; — = 50; —V = 0.8—; ‘ = 0.9; p = 0.5; ‹ =
36; ‹V = 1.2‹; “ = 1.8; “V = 1.2“.
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Figure 3: Results from the basic model with vaccination. There is an out-
break and the disease oscillates, eventually approaching an equilibrium. A
small proportion of individuals are (and remain) vaccinated, with a low-level
outbreak among vaccinated individuals.

Figure 4 illustrates the destabilisation of the DFE when extreme vac-
cination parameters are used. In this case, transmission of the vaccinated
strain was extremely high but recovery extremely fast, allowing for infection
spikes to occur among a small proportion of vaccinated individuals before
the infection stabilises. Data used were µ = 0.041; Ê = 0.1; — = 0.03; —V =
3000; ‘ = 1; p = 0, 1; ‹ = 36; ‹V = 177; “ = 1.8; “V = 1.2.“.

Although the transmission rate is unrealistically high, this nevertheless
demonstrates that a stable DFE can be destabilised by a vaccine. Note that
what we are dealing with here is not a backward bifurcation, but rather a
destabilisation of the equilibrium.

Next, following Weber et al. [39], we examined the more realistic case
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Figure 4: Extreme parameters show that perfect vaccination can induce in-
fection spikes. A. With no vaccine, the result is that the infection clears
and the entire population remains susceptible (note that the low-level fluc-
tuations result from numerical limitations in MATLAB) B. With a vaccine
given to the entire population, the susceptible population dips slightly as
infection takes hold. C. Infection in the vaccinated population initially takes
the form of infection spikes before stabilising. Note that vaccination thus
destabilises the disease-free equilibrium.

when the transmission rate oscillated. Since the waning rate of the vaccine
was not known, we decided to investigate several options for Ê.

When there is no vaccine, the disease results in a maximum of 7% of
the population infected. Data used was µ = 1/70; Ê = 1/10; b0 = 60; b1 =
0.16; „ = 0.15; —V = 0.5—; ‘ = 1; p = 0; ‹ = 36; ‹V = 1.2‹; “ = 1.8; “V =
1.2“. See Figure 5.

A vaccine given to the entire population with 50% transmission that
did not wane for ten years resulted in about 6% of the population infected.
Data used was identical to Figure 5 except that p = 1. See Figure 6. In this
case, there is only a slight decrease in the maximum disease burden, despite
complete vaccination coverage.

A vaccine given to the entire population with 50% transmission that
did not wane for 70 years resulted in a significant reduction in the infected
population. Data used was identical to Figure 6 except that Ê = 1/70. See
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Figure 5: Without vaccination, the disease infects up to 7% of the population.
A. The total infected population, including vaccinated individuals. B. The
final size in each population.
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Figure 6: Complete coverage with a vaccine that did not wane for 10 years
results in a 1% reduction in the disease compared to not vaccinating. A. The
total infected population, including vaccinated individuals. B. The final size
in each population.

Figure 7. In this case, there is a significant reduction in the total disease
burden, reducing the maximum to less than 2% of the total population.

Note that, even with perfect coverage with a lifelong vaccine (so that
‘ = p = 1 and µ = Ê = 1

70), the DFE still satisfies

S̄ = Ê

µ + Ê

= 1
2

V̄ = µ

µ + Ê

= 1
2 ,

so the population without infection would eventually split into equal num-
bers of vaccinated and unvaccinated susceptible individuals. With infection
included and oscillating transmission, explicitly calculating the final size in
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Figure 7: Complete coverage with a vaccine that did not wane for 70 years
results in a significant reduction in infection. A. The total infected popula-
tion, including vaccinated individuals. B. The final size in each population.

each compartment is not possible. However, we expect that higher cover-
age with a lifelong vaccine would tend to a final size with similar numbers;
Figure 7 shows that this is indeed the case.

Of course, complete vaccination coverage is not realistic. Consequently,
we examined the e�ect of 50% coverage with a vaccine that did not wane for
70 years. Data used was identical to Figure 7 except that p = 0.5. See Figure
8. In this case, there is still a significant reduction in total disease burden.
Note that significantly greater reduction is achieved with 50% coverage and
a lifelong vaccine than was achieved with 100% coverage and a vaccine that
lasted 10 years (see Figure 6).
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Figure 8: 50% coverage with a vaccine that did not wane for 70 years re-
sults in a moderate reduction in infection. A. The total infected population,
including vaccinated individuals. B. The final size in each population.

It follows that the waning rate of the vaccine is crucial. Even if complete
coverage could be achieved, a vaccine with a moderate duration (eg 10 years)
results in very little reduction of infection. Conversely, a vaccine that does
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not wane over a lifetime results in significant reduction in disease burden.
The best-case scenario involves complete coverage with a vaccine that

does not wane for 70 years. Figure 9 illustrates the population dynamics
when such a vaccine is introduced.

0 50 100 1500

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (years)

Po
pu

la
tio

n

Vaccinated
Recovered

ω=1/70
βv=0.5β
p=1

Vaccinated infected
Vaccinated recovered

Infected

Susceptible

Figure 9: Population dynamics for a lifelong vaccine with complete coverage.
Note that the vaccinated infected are too small to appear on the figure.

Figure 10 illustrates the e�ect of pulse vaccination on the dynamics over
a ten-year period. The infection is kept low, with a small outbreak among
the vaccinated. Overall, however, there is an exchange with the majority of
individuals gradually transforming from susceptible to vaccinated.
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Figure 10: Population dynamics for an impulsive vaccine given annually to
50% of the population, with a waning of 10 years. Note that the seasonal
oscillations and the impulses combine to produce a double period.
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6 Discussion

The introduction of a vaccine is always desirable, but new vaccines pose
the risk of unintended consequences. We have highlighted some of the po-
tential issues that may arise with vaccination against RSV. In particular,
we determine conditions under which a destabilisation of the disease-free
equilibrium is possible. This is not in the form of a backward bifurcation,
as is sometimes seen, but rather occurs when the vaccine causes su�ciently
fast recovery and transmission is extremely high. An infection-free popu-
lation that is e�ectively vaccinated against RSV can nevertheless produce
vaccination-innduced spikes of infection. Although such a case is unlikely
to occur with the unrealistic parameters we chose, we have shown proof-of-
concept that it is possible and determined conditions on the recovery rate
due to vaccinaton that allow for the possibility.

Using impulsive di�erential equations, we were able to formulate con-
ditions on the period and the strength of vaccination to allow for disease
control (though not eradication). If the vaccine reduces transmissibility and
is applied frequently, then vaccinated infected individuals can be reduced
to low numbers. We relaxed the assumption of constant transmission. We
demonstrated that the waning of the vaccine has a greater e�ect on the out-
come that coverage. Hence it is imperative that a good vaccine be developed
before being released for general use.

We also defined a new quantity, the impulsive reproduction number T0.
This is a su�cient (but not necessary) condition, based on an overestimate
of the infected population, that ensures eradication if T0 < 1. If T0 < 1, then
the infected population is contracting within each impulsive cycle. Since the
infected population is then reduced at each impulse point, the result is the
eventual eradication of the infection. Note that we assumed constant trans-
mission for this derivation; however, numerical simulations were performed
using seasonal oscillations. The result was a double period: one from the
impulsive periodic orbit and the other from the seasonal oscillations.

Our model has some limitations, which should be acknowledged. We as-
sumed that time to administer the vaccine was significantly shorter than the
time between vaccine administrations in order to justify the impulsive ap-
proximation. Such assumptions are reasonable in many cases [30], although
can produce confounding e�ects in some situations [11]. The extreme pa-
rameters that we used to illustrate the vaccination spikes operated under
the assumption that the transmission rate for infected vaccinatied individu-
als was significantly higher than the transmission rate without vaccination.
Since we extended the model of Weber et al. [39], our model inherited many
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of the assumptions from that model, such as mass-action transmission, a
constant birth rate and that the birth and death rates were matched, result-
ing in a constant population.

A vaccine that targets RSV infection has the potential to significantly
reduce the overall prevalence of the disease, but it has to be su�ciently
long-lasting. Coverage and e�ectiveness of the vaccine is important, but the
critical parameter that our modelling identified is the waning rate of the
vaccine. We thus recommend that candidate vaccines be tested for su�-
cient duration before being released to the public. If a durable vaccine can
be developed, then we stand a chance of controlling this disease, assuming
su�ciently widespread coverage.
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