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Abstract. The paper applies Picard-Lefschetz theory to the distribution characters
of infinite dimensional representations of semisimple Lie groups and analyzes their
asymptotic behavour at the identity.

Introduction

In [Rossmann, 1995] we discussed the Picard–Lefschetz theory for the coadjoint
quotient of a semisimple Lie algebra from a topological point of view. Here we
shall develop the analytic side of the theory and draw from it some consequences
concerning characters of a semisimple Lie group.

We recall the general setting. From the analytic point of view, Picard–Lefschetz
theory is concerned with the behaviour of integrals of holomorphic forms of top
degree over cycles in the fibres of a holomorphic map around a critical value. Write
q : M → Q, θ = q(x), for the map and

I(Γ, θ) =
∫

Γθ

�θ

for the integral: {Γθ} is a family of cycles on the fibres Ωθ = q−1(θ), �θ a family
of holomorphic forms of top degree, and θ = θo the critical value. One is then
interested in the behaviour of I(Γ, θ) as a function of θ near θ = θo, especially in
asymptotic expansions.

The interest in the fibre integrals in the case of the coadjoint quotient stems
from the fact that, in exponential coordinates, the distribution character of any
irreducible admissible representation of a semisimple real Lie group may be given
by such an integral, as will be explained later.

We summarize the main results. Let g be a complex semisimple Lie algebra, gR

a real form of g, G = Ad(g), and GR = Ad(gR) the adjoint groups. Fix a Cartan
subalgebra h of g and let W be the Weyl group of (g, h). Let

q : g∗ →W\h∗

be the coadjoint quotient, Ωθ = q−1(θ) its fibre over θ. We also write Ωλ for Ωθ if
λ→ θ under h∗ →W\h∗; it is a complex variety of even dimension 2n. For regular
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λ ∈ h∗reg the variety Ωλ is the complex orbit G · λ ≈ G/H and carries a canonical
holomorphic 2–form σλ. We consider orbital contour integrals

〈I(Γ, λ), ϕ〉 =
∫

Γλ

ϕσnλ (λ ∈ h∗reg) (1)

where ϕ is an entire holomorphic function on g∗ which is rapidly decreasing in every
strip

‖Re ξ‖ ≤ const., ‖q(ξ)‖ ≤ const. (2)

and Γλ is a 2n–cycle on Ωλ which is contained in some such strip. We refer to such
a 2n–cycle Γλ as a contour on Ωλ.

As explained in [Rossmann, 1995], these contours form a homology group, de-
noted ′H2n(Ωλ). With coefficients in C, the homology groups ′H2n(Ωλ) form a holo-
morphic vector bundle over W\h∗reg, which carries a canonical flat connection, the
Gauss–Manin connection. The family of cycles Γλ is a section of this vector bundle
and we shall require that this section be locally constant. If one identifies the fibres
Ωλ with a standard fibre Ω by a family of homeomorphisms pλ : Ω → Ωλ which triv-
ialize the fibration q locally, then Γλ = pλΓ for a fixed contour Γ on Ω. The standard
fibre Ω can be taken to be the cotangent bundle B∗ of the flag manifold B of g and
for λ = 0 the map pλ becomes the Springer resolution ρ : B∗ → N of the nilpotent
variety N in g. The cycles Γ can be realized on the conormal variety S ⊂ B∗of the
GR–action on B, and this gives an isomorphism H2n(S) → ′H2n(Ωλ),Γ → pλΓ,
where H2n(S) is the homology with arbitrary supports. We prove the following
result.

Theorem A. Let Γ ∈ H2n(S) and ϕ holomorphic and rapidly decreasing in
strips (2).
a) The integral 〈I(Γ, λ), ϕ〉 is entire holomorphic in λ ∈ h∗ and GR–invariant in ϕ.
b) The Taylor series of 〈I(Γ, λ), ϕ〉 at λ = 0 takes the form

〈I(Γ, λ), ϕ〉 =
∑
O,k

∫
O

PO,k(Γ, λ)ϕµO (3)

where O runs over GR\NR and PO,k(Γ, λ) is a differential operator along O, a
homogeneous polynomial of degree k in λ. The terms of the series (3) corresponding
to a given a O are obtained by integration over ν ∈ O of a series expansion∫

Γν

ϕ
p∗λσ

n
λ

p∗0σdν
=

∑
k

PO,k(Γ, λ)ϕ(ν) (4)

where Γν is a compactly supported chain on the Springer variety p−1
0 (ν) ≈ Bν.

c) Let O be a leading nilpotent of the expansion (3), i.e. open in the set of O’s
which occur. For each k, the map Γ → PO,k(Γ, ·) intertwines the monodromy rep-
resentation of W on H2n(S) with the natural representation of W on polynomials
on h∗. Each PO,k(Γ, λ) transforms according to a sum of Springer characters χν,φ
where φ contains the trivial character of Aν,R.
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The notation will be explained later in more detail. For now we only mention
that if ν is a leading nilpotent, then Γν is a cycle of top degree on Bν . The integral
in (4) can be viewed as kind of mean value integral of ϕ over the (compact) cycle
pλ(Γν) around ν. The differential operators PO,k(Γ, λ) give the terms of its Taylor
series expansion as a function of the “distance” λ from the center ν, in analogy
with the usual mean–value integrals.

Considered as generalized function on ig∗R, the functional I(Γ, λ) is the Fourier
transform of the distribution θ(Γ, λ) on gR given by

θ(Γ, λ) =
∫
ξ∈pλΓ

eξσnλ

the integral being convergent as a distribution. The expansion (3), obtained as a
Taylor expansion in λ, gives also the asymptotic expansion of the generalized func-
tion I(Γ, λ) at infinity and hence of θ(Γ, λ) at zero. Using this observation we shall
prove:

Theorem B. Let Γ ∈ H2n(S). The following sets are equal.
a) The image of supp(Γ) under ρ : S → NR.
b) The asymptotic cone limt→0+(tpλΓ) of the contour pλΓ on Ωλ (for any fixed
λ ∈ h∗).
c) The closure of the union of the supports of orbits O which occur in the expansion
(3) of the generalized functions I(Γ, λ) for generic λ.
d) The wave front set at zero of the distribution θ(Γ, λ) for generic λ.

We call this set the asymptotic support of Γ and denote it AS(Γ).

We now explain the relation to characters. For this we now denote by GR any
connected Lie group with Lie algebra gR. In exponential coordinates, the distribu-
tion character ch(π) of any irreducible admissible representation π of GR is of the
form ch(π) = θ(Γ, λo) for a unique W ·λo ∈W\h∗ and a unique Γ ∈ H2n(S) which is
invariant under the stabilizer W (λo) of λo. (This is stated more precisely in 3.1.) To
such a representation π there is associated a wave front set WF(π) by a procedure
due to Howe [1981]. As a consequence of Theorem B and a result of Howe we prove:

Theorem C. Let π be an irreducible admissible representation of GR. Write its
character in the form ch(π) = θ(Γ, λo). Then WF(π) = AS(Γ).

As mentioned, the series (3) can be interpreted as an asymptotic expansion of
θ(Γ, λ) at zero. The existence of such expansions for characters was deduced by
Barbasch and Vogan [1980] from results of Harish–Chandra. Theorem A gives a
rather clear picture of the nature of the terms of this expansion. Theorems B and
C prove a conjecture of theirs [1980, p.28].

In the situation of Theorem C, a result of [Barbasch–Vogan, 1980, 4.1] implies
that AS(Γ) is contained in the variety V (grIπ) associated to the graded ideal
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grIπ ⊂ C[g∗], where Iπ is the annihilator of π in the universal enveloping alge-
bra U(g). It follows from results of [Joseph, 1980] and [Borho–Brylinsky, 1982] that
V (grIπ) is the closure of a single complex orbit O. This implies that the leading
term of the expansion (3), i.e. the sum of non–zero terms with minimal k, come
from GR–orbits O in O ∩ ig∗R, but leaves open the possibility that there might be
other leading orbits O in AS(Γ), i.e. orbits not contained in the closure of any other
GR– orbit in AS(Γ), which contribute to the expansion (3). We prove that this is
not the case and give a more precise description of the leading term.

Theorem D. Let ch(π) = θ(Γ, λo) be the character of an irreducible admissible
representation π of GR. Then all leading nilpotents of AS(Γ) are contained in a
single complex orbit and the leading term of the asymptotic expansion of θ(Γ, λo)
at zero takes the form

θ(Γ, λo) ∼
∑
O

cO(Γ, λo)θO (5)

where O runs over the leading nilpotents in AS(Γ). Furthermore, θO is the Fourier
transform of the canonical invariant measure µO on O, and cO(Γ, λ) is the polyno-
mial on h∗ defined by

cO(Γ, λ) =
1

e!d!

∫
Γν

τeλ.

This polynomial is the harmonic polynomial associated to the image of Γν = Γ∩Bν
in H2e(B) under Borel’s isomorphism. The value cO(Γ, λo) of this polynomial at
λ = λo is nonzero.

The proof of Theorem D depends on a result concerning the restrictions of the
distributions θ(Γ, λ) on gR to a maximal compact subalgebra k, which seems of
independent interest. It can be stated as follows (unexplained terms are defined in
4.1).

Theorem E. For any Γ ∈ H2n(S) and any λ ∈ h∗ the distribution θ(Γ, λ) on
gR admits a restriction to k, denoted θk(Γ, λ). If θk(Γ, λ) = 0 for a gR–regular λ,
then θ(Γ, λ) = 0.

In view of the existence of a Picard–Lefschetz theory for characters there nat-
urally arises a question: does there exist a Picard–Lefschetz theory for the rep-
resentations themselves? To some extent, the theory of coherent continuation of
representations provides an affirmative answer; but it would be interesting to have
a theory which operates more directly with the geometry of the coadjoint quotient.
Such a theory should involve the fundamental group of g∗r itself, the Artin Braid
group of the root system, not just its quotient, the Weyl group.

The results of this paper depend on those of [Rossmann, 1995], but I have tried
to make the exposition (if not the proofs) as self–contained as possible, since the an-
alytic setting here has a rather different flavour from the topological setting there.
I do not repeat, however, various definitions and constructions to be found there,
but give detailed references instead; a reference such as [1994, 1.9] refers to the item
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1.9 of that paper.

I thank T. Przebinda for calling to my attention the problem of wave front sets
and for many discussions of this subject.

1. The integrals I(Γ, λ)

1.1 Fiber contour integrals. We momentarily place ourselves in the gen-
eral setting of Picard–Lefschetz theory [1995, §1]. Thus we assume given a holo-
morphic map q : M → Q with fibres Ωθ = q−1(θ) which is a locally trivial fibration
q : Mr → Qr over an open subset Qr of Q. For θ ∈ Qr we consider integrals of the
form ∫

Γθ

�θ (1)

where �θ is a holomorphic form of top degree m = dimC Ωθ on Ωθ and {Γθ} is a
family of m–cycles on the regular fibres Ωθ, locally constant for the Gauss–Manin
connection. The cycles are assumed subanalytic, and the integral over subana-
lytic chains is the natural extension of the integral over oriented manifolds, as in
[Kashiwara–Shapira, 1990, Exercise IX.3, p.407] for example.

We assume further that the map q : M → Q admits a simultaneous resolution
as in [1995, 1.10],

M̃
ρ→ M

q̃ ↓ ↓ q

Q̃
π→ Q

(2)

This implies in particular that the map q̃ is topologically trivial, so that its fibres
Ω̃λ (λ ∈ Q̃) may be identified with a standard fibre Ω by a homeomorphism pλ :
Ω → Ω̃λ. When θ = π(λ) ∈ Qr we may identify Ω̃λ with Ωθ and then write Ωλ for
it. The locally constant family {Γθ} on the Ωθ is then of the form pλΓ for a fixed
cycle Γ on the standard fibre Ω and the integrals (1) take the form

I(Γ, λ) =
∫
pλΓ

�λ. (3)

The integral depends only on the homology class of Γ since a holomorphic form of
top degree is closed. We require that the form �λ on Ωλ depend holomorphically
on λ ∈ Q̃; this has a meaning since M̃ → Q̃ is a holomorphic submersion: locally
on M̃ there is a holomorphic form � so that �|Ωλ = �λ. (This convention is not
standard in Picard–Lefschetz theory, since it involves the resolution M̃ → Q̃.) As-
suming suitable convergence (a point to be discussed), the integral is a holomorphic
function, single–valued as a function of λ ∈ Q̃ and multiple–valued as a function
of θ = π(λ) ∈ Q. We shall be concerned with the Taylor expansion of particular
integrals of this type as functions of λ .
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1.2 Orbital contour integrals. We now turn to the case of the coadjoint
quotient q : g∗ →W\h∗ of a semisimple complex Lie algebra. Then diagram (2) is
the Springer–Grothendieck simultaneous resolution [1995, 2.2]

g̃∗
ρ→ g∗

q̃ ↓ ↓ q
h∗ → W\h∗

(4)

We shall use the notation introduced in [1995, §2] and refer thereto for the defini-
tions. The standard fibre Ω is the cotangent bundle B∗ of the flag manifold B and
the trivialization of q̃ is given by a map

pλ : B∗ → Ωλ (5)

as in [1995, 1.5, eq.(6)]. For the subalgebra go introduced in [1995, 2.5] we now
take a real form gR of g. The orthogonal go

⊥ to go in g∗ with respect to the real
pairing Re〈ξ,X〉 on g∗ × g is then ig∗R. As a family of supports on g∗ we take the
closed subsets of g∗ which are contained in strips of the form

‖Re(ξ)‖ ≤ const., ‖q(ξ)‖ ≤ const. (6)

This induces a family of supports on each Ωλ, and the corresponding homology
group is denoted ′H.(Ωλ). The second condition in (6) is vacuous on Ωλ, but will
play a rôle later.

The homology of the standard fibre is ′H2n(B∗) ≈ H2n(S) where S is the conor-
mal variety of the GR –action on B [1995, 2.6.1]. The fibre integrals (3) which we
shall be interested in are those mentioned in the introduction:

〈I(Γ, λ), ϕ〉 =
∫
pλΓ

ϕσnλ (λ ∈ h∗reg) (7)

We explain the hypotheses and the notation.
a) λ ∈ h∗reg and σλ is the canonical holomorphic 2–form on Ωλ.
b) ϕ is an entire holomorphic function on g∗, rapidly decreasing in strips (6)
c) Γ ∈ H2n(S), a 2n–cycle with arbitrary support on the conormal variety S.
The definition of the form σλ in (a) will be recalled below. Condition (b) means
that ϕ belongs to the space ′H(g∗) defined as follows.

1.2.1 Definition. ′H(g∗) is the space of entire holomorphic functions ϕ on
g∗ which in any given strip (6) and for any N = 0, 1, 2, · · · satisfy an estimate of
the form

|ϕ(ξ)| ≤ C

1 + ‖ξ‖N
where C is a constant, which may depend on N and on the constant in (6).

We require that the maps (5) preserve the condition (6), uniformly for λ in a
neighbourhood of 0 : for ξ ∈ g∗ and λ ∈ h∗,

‖Re ξ‖ ≤ a and ‖λ‖ ≤ b, implies ‖Re pλ(ξ)‖ ≤ c. (8)
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This insures that the pλ induce maps in the homology for the family of supports
consisting of closed subsets of g∗ contained in strips (6). One particular choice for
pλ is the map

pλ : B∗ → Ωλ, (x, ν) → u(x) · λ + ν (9)

defined in [1995, 2.3, eq. (5)]. Note that ‖Re(u(x) · λ+ ν)‖ ≤ const.‖λ‖+ ‖Re(ν)‖,
so that (8) is satisfied.

If Γ is a cycle as stated, the integral (7) is independent of the trivialization which
defines pλ; but in the form (7), the integral also makes sense if Γ is any 2n–chain
on S (not necessarily a cycle), although it will then depend on the map (4). For
technical reasons, we consider that case as well.

1.3Differential forms. We recall that any G–orbit Ω in g∗ carries a canon-
ical 2–form σΩ given by

σΩ(X · ξ, Y · ξ) = 〈ξ, [X,Y ]〉

for ξ ∈ Ω and X,Y ∈ g. When λ ∈ h∗reg is regular, then Ωλ = G · λ and σλ is
this form on Ωλ. For a complex nilpotent orbit G · ν we denote this form by σν
and for a real nilpotent orbit O = GR · ν we also write σO for its restriction to
O. For any λ ∈ h∗, regular or not, we denote by τλ the restriction to U · λ of the
canonical 2–form on G ·λ. We shall also consider τλ as a form on B ≈ U/T through
the pull–back by the map u · x1 → u · λ (x1 a base–point for B) and as a form
on B∗ through the pull–back by the projection B∗ → B. As cotangent bundle of a
complex manifold, B∗ carries a canonical holomorphic 2–form, which we denote β.
The following lemma, proved in [Rossmann, 1991(II), Lemma 7.2], summarizes the
relations among these forms.

1.3.1 Lemma. Let λ ∈ h∗reg and pλ : B∗ → Ωλ be the map defined by (9).
a) The form τλ is a linear function of λ ∈ h∗ and for λ ∈ h∗reg we have

p∗λσλ = τλ + β.

b) For any O ∈ GR\NR we have p∗0σO = β on SO.

This lemma has the important consequence that the pull–backs of the forms σλ
by g̃∗

ρ→ g∗ have the holomorphicity properties required in Picard–Lefschetz theory.

1.3.2 Corollary. The family of 2–forms λ → ρ∗σλ on the fibres Ω̃λ of
g̃∗

ρ→ h∗, defined for λ ∈ h∗reg, extends to holomorphic family of holomorphic 2–
forms λ→ σ̃λ defined on all of h∗.

Proof. We use the real–analytic isomorphism B∗×h∗ → g̃∗, defined by the maps
(9). Then the form ρ∗σλ on Ω̃λ corresponds to the form p∗λσλ = τλ+β on B∗×{λ}.
It follows that λ→ ρ∗σλ extends to a real–analytic function of λ ∈ h∗ with values in
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the bundle of real–analytic 2–forms on the fibres Ω̃λ of the holomorphic submersion
g̃∗

q̃→ h∗. Since this function has the stated holomorphicity properties on h∗reg it has
them everywhere. �

1.4 Quotient forms and differential operators. We need two auxiliary
notions.

1.4.1 Lemma and definition. Let p : X → Y be a submersion of real
manifolds, m = dimX, n = dimY. Let α, β be forms of top degree m,n on X,Y
respectively and assume that β is non–zero everywhere. Then there exists an m−n
form γ on X so that

α = γ ∧ p∗β.

The restrictions γy of γ to fibres p−1(y) are uniquely determined by this equation
and satisfy ∫

X

α =
∫
y∈Y

{ ∫
p−1(y)

γy

}
β

with convergence as in Fubini’s theorem. The family of forms {γy} on the fibres
p−1(y) will be denoted γ = α/p∗β.

This is a consequence of Fubini’s theorem applied to the measures |α|, |γy|, and
|β| defined by these forms. In particular, absolute convergence of the integral on the
left implies absolute convergence of the inner integral on the right for |β|–almost
all y ∈ Y.

1.4.2 Example. We give an example of the division of forms which will be
relevant later. Fix O ∈ GR\NR and ν ∈ O. Let 2d = dimR O and 2e = dimR Bν ,
so that e + d = n. Let pλ be the map (9). For any ν ∈ O, we define the quotient
p∗λσ

n
λ/p

∗
0σ
d
ν as a 2e-form on the regular set of Bν using the map p0 = ρ : SO → O

and the restriction of p∗λσλ to SO ⊂ B∗. This quotient form is a polynomial function
of λ ∈ h∗ of degree ≤ n of the form

p∗λσ
n
λ

ρ∗σdν
=

n!
e!d!

τeλ + terms of higher degree in λ. (10)

Indeed from 1.3.1 one gets

p∗λσ
n
λ =

∑
k+l=n

n!
k!l!

τkλβ
l.

The division of forms is defined in terms of a C∞ splitting of ρ : SO → O, locally
around a point where it is a submersion, say SO ≈ O × Bν with local coordinates
(xi, yj). The form β = ρ∗σν on SO involves dxi’s only. The quotient form τkλβ

l/βd

comes from a form γ satisfying

τkλβ
d+e−k = γβd

Hence γ is a combination of monomials in the dxi and dyj of degree at least 2(e−k)
in the dxi and therefore vanishes on Bν = {xi = 0} if 2(e− k) > 0.
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1.4.3 Definition. Let f : X → Y be a C∞ map between C∞ manifolds. By
a differential operator on Y along f we mean an operator P from C∞ functions on
Y to C∞ functions on X which is locally of the form

Pϕ(x) =
∑
k

ck(x)(∂kyϕ)(f(x)) (finite sum)

when x and y are expressed in local coordinates. The ck(x) are understood to be
C∞ functions and the ∂kyϕ denote the higher–order partial derivatives with respect
to the coordinates y (the usual multi–index notation). It is understood that P
operates in this way also on functions ϕ defined only on some open subset of Y. A
differential operator along a submanifold X of Y is a differential operator P along
the inclusion X → Y. When X = {x} is a point we call P a differential operator at
x ∈ Y. (It is a distribution supported at x.) We shall use the notation D(Y,X) and
D(Y, x) for the differential operators along X and at x, respectively.

1.5 Definition. a)Let ν ∈ NR, 2e–chain on Bν, and λ ∈ h∗reg. Define a
differential operator Pν,k(Γν , λ) ∈ D(g∗, ν) at ν on g∗ by the formula

Pν,k(Γν , λ)ϕ(ν) :=
∫

Γν

1
k!

[dkp∗tλ(ϕσntλ)/dtk]t=0

ρ∗(σdν )
. (11)

provided the integral converges. (The quotient form is defined as in 1.4.1 for the
map SO ρ→ O,O = GR · ν and the derivatives at t = 0 are defined in view of 1.3.2.)
b)Let O ∈ GR\NR and ΓO a GR–stable 2n–chain on SO. Define a differential
operator PO,k(ΓO, λ) ∈ D(g∗, O) along O on g∗ by the formula

PO,k(ΓO, λ)ϕ(ν) = Pν,k(Γν , λ)ϕ(ν)

where (cf. [1995, 3.3]).

1.5.1 Remarks. a) For ϕ ∈ C∞
c (g), the numerator of the quotient form in

(11) is a compactly supported C∞ form on B∗. The quotient form in (11) is defined
by restriction of this form to the set of points of the set SO which are smooth on
SO and at which SO → O is a submersion. These points form an open, dense, GR–
stable subset of SO, hence the quotient form is defined on an open, dense subset
of Bν for all ν ∈ O. It need not be regular on all of Bν, but for the case when
Γν = ΓO ∩ Bν as above the convergence of the integral in (11) for almost all ν ∈ O
follows from Fubini’s theorem, as remarked in connection with 1.4.1. Since such a
ΓO is a linear combination of components of S the convergence for all ν ∈ O then
follows from the G–equivariance of the map ρ. A more explicit formula for these
operators is given in (14) below.
b) The 2e–chain Γν depends on the choice of an orientation on O. We shall take
the orientation on O which makes the form σdO positive.
c) It is clear that Pν,k(Γν , λ) is a differential operator of degree ≤ k at ν on g∗,
hence (11) depends only on the Taylor polynomial of degree k of ϕ at ν. It can then
also be considered as a differential operator at ν on the real form ig∗R of g∗ : if ϕ is
a C∞ function on ig∗R defined near ν ∈ NR, then (11) is interpreted by replacing
ϕ on the right of (11) by its Taylor polynomial of degree k at ν.
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1.5.2 Lemma. As function of λ, the operator Pν,k(Γν , λ) is a homogeneous
polynomial of degree k, i.e. Pν,k(Γν , ·) ∈ C[h∗](k) ⊗D(g∗, ν). If ϕ is a holomorphic
function on g∗ defined near ν, then∫

Γν

p∗λ(ϕσnλ)
ρ∗(σdν )

=
∞∑
k=0

Pν,k(Γν , λ)ϕ(ν) (12)

is the Taylor series expansion at λ = 0 of the holomorphic function of λ on the left.

Proof. The fact that the left–side of (12) is holomorphic in λ follows from 1.3.2.
That the right side is its power series expansion follows from the definition (11) by
differentiation under the integral sign. �

1.5.3 Example. For the map pλ defined by (9) one has more explicitly∫
Γν

p∗λ(ϕσnλ)
ρ∗(σdν )

=
∫
x∈Γν

ϕ(ν + u(x) · λ)
(τλ + β)n

ρ∗(σdν)
. (13)

This gives

PO,k(ΓO, λ)ϕ(ν) =
k∑
j=0

1
j!(k − j)!

∫
x∈Γν

Dk−ju(x)·λϕ(ν)
τ jλβ

n−j

ρ∗(σdν)
. (14)

Here Dη is the directional derivative along the constant vector field η ∈ g∗, e =
dimC Bν , and 2d = dimC G·ν. The formula (14) means in particular that PO,k(ΓO, λ) =
0 for k < e, as is clear from (13) and the discussion in 1.5.3 concerning the vanishing
of the quotient forms.

1.6 Taylor series expansions of orbital contour integrals. We recall
some notation from [1995, §3]. For each A ⊂ GR\NR (identified with a GR–stable
subset of NR we denote by SA its preimage under ρ : S → NR . Any Γ ∈ H2n(S)
can be uniquely written in the form

Γ =
∑

O∈GR\NR

ΓO (15)

with suppΓO contained in the closure of SO. (Thus ΓO is the chain on S obtained by
restricting Γ to SO, as explained in [1995, §3].) A leading nilpotent in A ⊂ GR\NR

is an orbit O ∈ GR\NR which is not contained in the closure of any other orbit in A.

1.6.1 Theorem. Let Γ ∈ H2n(S), λ ∈ h∗, and ϕ ∈ ′H(g∗).
a) The integral 〈I(Γ, λ), ϕ〉 is entire holomorphic in λ ∈ h∗ and GR–invariant in
ϕ ∈ ′H(g∗).
b) Write Γ =

∑
O ΓO as in (15). Then

〈I(Γ, λ), ϕ〉 =
∑
O,k

∫
O

PO,k(ΓO, λ)ϕµO (16)
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where O runs over GR\NR and k = 0, 1, · · · .
c) Let A be a closed subset of GR\NR

and O be a leading nilpotent for A(Γ). For
each k, the maps Γ �→ ΓO �→ PO,k(ΓO, ·),

H2n(SA) → H2n(SO) ≈ H2e(Bν)Aν,R → C[h∗]⊗D(g∗, ν)

are W–maps. In particular, each polynomial PO,k(ΓO, ·) transforms according to a
sum of Springer characters χν,φ where φ contains the trivial character of Aν,R.

Here Aν,R is the component group of the stabilizer of ν ∈ O. The representations
of W referred to are the natural ones [1995, §4]: the restricted monodromy repre-
sentations on H2n(SA) and H2n(SO), the Springer representation on H2e(Bν)Aν,R ,
and the natural representation of W on C[h∗] tensored with the trivial representa-
tion on D(g∗, ν).

Proof. a) We choose a trivialization of q̃ : g̃∗ → h∗, say

p̃ : B∗ × h∗ ≈→ g̃∗.

In terms of the associated maps p̃λ : B∗ → Ω̃λ = q̃−1(λ) and pλ = ρ ◦ p̃λ :B∗ → Ωλ
as in [1995, 1.5] the integral becomes

〈I(Γ, λ), ϕ〉 =
∫
p̃λΓ

�(λ) (17)

where we have put �(λ) = ρ∗(ϕσnλ), a holomorphic 2n–form on Ω̃λ, which depends
holomorphically on λ ∈ h∗, by 1.3.2.

We first deal with the convergence of the integral. Any subanalytic 2n–chain
on S is a finite linear combination of oriented 2n–dimensional submanifolds of S.
Hence it suffices to show convergence when Γ is replaced by S itself and the form
p∗λ(ϕσnλ ) by the corresponding measure |p∗λ(ϕσnλ)|. We recall that S is the union of
the conormal bundles of the GR–orbits on B. The form p∗λ(ϕσnλ) is rapidly decreasing
along the fibres. Thus using a partition of unity on B we are reduced to integrals
of the form ∫

x∈Ra,‖x‖≤r

∫
y∈Rb

ψ(λ, x, y)dydx

where ψ(λ, x, y) is a C∞ function of (x, y) on the domain of integration in Ra×Rb
which is rapidly decreasing in y, uniformly for λ in compact subsets of h∗. This
shows that the integral in (17) converges, uniformly for λ in compact subsets of h∗.

The holomorphicity of (17) as a function of λ would also follow were it not for the
dependence on λ of the cycle p̃λΓ. To deal with that, we use a classical argument
from Picard–Lefschetz theory. It suffices to show that for any λ, µ ∈ h∗, the integral
〈I(Γ, λ + zµ), ϕ〉 is a holomorphic function of z ∈ C. Fix λ, µ ∈ h∗, z ∈ C, and let
D = {λ + wµ : |w − z| ≤ ε}. Using the trivialization B∗ × h∗ ≈→ g̃∗ to momentarily
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identify g̃∗ with B∗ × h∗, let ∆ = Γ× ∂D, considered as (2n + 1)–chain on g̃∗ and
let � ∧ dw = �(λ + wµ) ∧ dw considered as form on B∗ ×D. Then

1
2πi

∫
∆

� ∧ dw

w − z
=

1
2πi

∫
∂D

( ∫
Γ×{w}

�

)
dw

w − z

=
1

2πi

∫
∂D

( ∫
Γ×{z}

�

)
dw

w − z

+
1

2πi

∫
∂D

( ∫
Γ×{w}

−
∫

Γ×{z}

)
�

dw

w − z

=
∫
p̃λ+zµ(Γ)

� + (· · · ).

The integral on the left side is a holomorphic function of z and independent of
ε. The first term on the right side of the last equation is I(λ + zµ); the second one
tends to 0 as ε tends to zero. The required holomorphic dependence on z follows.

To prove the GR–invariance of 〈I(Γ, λ), ϕ〉 as functional in ϕ ∈ ′H(g∗) we take
g ∈ GR and set (g∗ · ϕ)(ξ) = ϕ(g · ξ). Since GR preserves the conditions (6),
g∗ϕ ∈ ′H(g∗) and

〈I(Γ, λ), ϕ〉 =
∫
pλΓ

g∗(ϕσnλ) =
∫
g·pλΓ

ϕσnλ .

Since GR is connected, the cycle g · pλΓ on Ωλ is homotopic to pλΓ, the homotopy
preserving the support condition (6). Hence∫

g·pλΓ

ϕσnλ =
∫
pλΓ

ϕσnλ

as required.
b) With Γ as in the statement of the theorem,

〈I(Γ, λ), ϕ〉 =
∑
O

∫
ΓO

p∗λ(ϕσnλ) =
∑
O

∫
ν∈O

{ ∫
Γν

p∗λ(ϕσnλ)
ρ∗(σdν )

}
σdO.

The integral over O may be taken as an integral with respect to the measure µO,
in view of the convention concerning the orientation of O (cf. 1.5.1 (a)). Lemma
1.5.2, applied to the inner integral, gives the desired expansion (16).
c) The fact that the first map in (17) is W–equivariant is a consequence of [1995,
4.4.1]. To see that the second map is also W–equivariant we first verify that

〈I(w−1 · Γ, λ), ϕ〉 = 〈I(Γ, w · λ), ϕ〉 (18)

with w ∈ W acting on H2n(S) by the restricted monodromy representation. By
definition [1995, 1.9.3], this representation is implemented by the transformations
aλ(w) = p−1

wλ ◦ pλ of B∗. Hence

〈I(w−1 · Γ, λ), ϕ〉 =
∫
pλ◦aλ(w)−1Γ

ϕσnλ =
∫
pwλΓ

ϕσnλ = 〈I(Γ, w · λ), ϕ〉

since σwλ = σλ. If one takes the Taylor expansion at λ = 0 of both sides on (18)
one finds that the second map in (17) is W–equivariant as well. �
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1.7 Homogeneity properties, asymptotic expansions. The Taylor se-
ries expansion of I(Γ, λ) at λ = 0 in the theorem can also be viewed as an asymptotic
expansion at ξ = ∞ of I(Γ, λ) as generalized function on ig∗R , as we shall now ex-
plain. Denote by mt the multiplication by t ∈ C× on g∗ or on g̃∗ :
for ξ ∈ g∗, mt · ξ := tξ,
for (x, ξ) ∈ g̃∗,mt · (x, ξ) := (x, tξ),
For forms or functions ψ we write m∗

t ψ for the pull–back by mt.

1.7.1 Lemma. Let λ ∈ h∗reg, pλ the map (6), and t ∈ R×
+.

a) For any G–orbit Ω in g∗, m∗
tσtΩ = tσΩ; in particular,

m∗
tσ
n
tλ = tnσnλ , m∗

tσ
d
O = tdσdO.

b) mt ◦ pλ = ptλ ◦mt .
c) For any Γ ∈ H2n(S) and ϕ ∈ ′H(g∗), 〈I(Γ, λ),m∗

tϕ〉 = t−n〈I(Γ, tλ), ϕ〉.
d) For each O, kthe differential operator PO,k(ΓO, λ) along O satisfies

PO,k(ΓO, λ) ◦m∗
t = t−n+d+km∗

t ◦ PO,k(ΓO, λ).

Proof. We omit the simple verification. �

1.7.2Corollary. The terms in the expansion (6) are homogeneous temperate
distributions on ig∗Rof degree − dimR gR +n−k in the sense of [Hörmander, 1983,
3.2.2], i.e.

∫
O

PO,k(ΓO, λ)(m∗
tϕ)µO = t−n+k

∫
O

PO,k(ΓO, λ)ϕµO .

This means that the expansion (16) can be viewed as an asymptotic expansion
at infinity of the generalized function ϕ→ 〈I(Γ, λ), ϕ〉 .

1.8 Notes. The study of fibre contour integrals of the type (1) goes back
to the beginnings of the theory, to Picard and Lefschetz. There is an extensive
literature dealing with the asymptotic behaviour of such integrals, for example
[Malgrange, 1974]. An overview and further references can be found in [Arnold et
al., 1988].

2. Fourier transforms, wave front sets

2.1 Fourier transforms. Let Γ be any 2n–chain on S and λ ∈ h∗reg. For
any f ∈ C∞

c (gR), define
〈θ(Γ, λ), f〉 = 〈I(Γ, λ), f̂〉
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where f̂ is the Fourier transform, defined by

f̂(ξ) =
∫
X∈gR

e〈ξ,X〉f(X) (ξ ∈ g∗).

(We omit the customary factor −i from the exponent.) According to the Paley–
Wiener theorem [Hörmander, 1983, 7.3.1], these functions f̂ are characterized by
an estimate of the form

|f̂(ξ)| ≤ AeB‖Re (ξ)‖

1 + ‖ξ‖N (1)

for any N = 0, 1, 2, · · · with A depending on N. Thus f̂ ∈′ H(g∗) and θ(Γ, λ) is a
distribution on gR. It can be written in the form

θ(Γ, λ) =
∫
ξ∈Γλ

eξσnλ (2)

the integral being convergent as distribution on gR.

2.2 Families of invariant eigendistributions. If p is a polynomial func-
tion on g∗, denote by p(∂) the constant coefficient operator on g satisfying

p(∂)eξ = p(ξ)eξ (3)

for all ξ ∈ g∗. Since p(ξ) = p(λ) for ξ ∈ Ωλ, it is clear from (2) that

p(∂)θ(Γ, λ) = p(λ)θ(Γ, λ). (4)

For λo ∈ h∗ we denote by W (λo) its stabilizer in W and by H2n(S)W (λo) the sub-
space of H2n(S) fixed by W (λo). In this context we shall always assume that the
order of W (λo) is invertible in the coefficient ring for the homology, so that the
W (λo)–projection onto H2n(S)W (λo) is defined. We denote by Ch the space of
families of distributions θ(·) of the form θ(λ) = θ(Γ, λ) with Γ ∈ H2n(S). It follows
from (18) of §1 that θ(w·Γ, λ) = θ(Γ, w−1 ·λ) so that Ch is W–stable and Γ → θ(Γ, ·)
is equivariant for the natural action of W, defined by (w · θ)(λ) = θ(w−1 · λ). For
any λo ∈ h∗ we denote by Ch(λo) the space of distributions θ(λo) with θ(·) ∈ Ch
and by ChW (λo) the subspace of Ch fixed by W (λo).

2.2.1 Theorem.a) For regular λo ∈ h∗ every GR–invariant distribution on
gR satisfying

p(∂)θ(λo) = p(λo)θ(λo) (5)

for all G–invariant polynomials p on g∗ is of the form θ(λo) = θ(Γ, λo) for a unique
Γ ∈ H2n(S).
b) For any λo ∈ h∗ the map Γ → θ(Γ, λo) is an isomorphism of H2n(S)W (λo) onto
ChW (λo) .
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2.2.2 Remark. The families of distributions θ(Γ, ·) in Ch correspond to
coherent families in the sense of representation theory (cf. [Hecht–Schmid, 1983],
for example): Ch has a basis consisting of the standard families defined in §4 and
these correspond to the coherent families of standard characters in exponential co-
ordinates, as explained in §3 and §4.

Proof of the theorem. Part (a) follows from Theorem 1.4 of [Rossmann, 1990].
To prove (b) we have to recall part of the proof: there is a grading on Ch,

grCh ≈
∑
c

grcCh

where the index “c” runs over a system of representatives of the GR–conjugacy
classes of Cartan subalgebras of gR. The graded component grcCh is isomorphic to
the space of exponential sums ∑

w∈W
ac,we

w−1
λ (6)

whose coefficients ac,w satisfy

ac,wz = ac,wsgnc,I(z) for z ∈Wc,R.

Here Wc,R is the subgroup W realized in GR when W is identified with the Weyl
group of the Cartan subalgebra corresponding to c and sgnc,I its sign character on
the imaginary roots. The action of y ∈W on Ch, given by λ→ y−1λ, corresponds
to the analogous action on the exponential sums.

Similarly one has a grading on Ch(λo) whose graded component grcCh(λo) is
isomorphic to sums (6) with λ = λo. The evaluation map Ch→ Ch(λo) is compati-
ble with the grading and the induced map on the spaces of formal sums (6) is given
by the evaluation λ→ λo. The assertion is now evident. �

2.3 Asymptotic expansions. Under the Fourier transform, the expansion
1.6.1, eq.(16), becomes

θ(Γ, λ) =
∞∑
k=0

∑
O∈GR\NR

θO,k(ΓO, λ) (7)

where θO,k(Γ, λ) has the temperate distribution tPO,k(ΓO, λ)µO as Fourier trans-
form. It follows from 1.7.2 that θO,k(Γ, λ) is homogeneous of degree −n + k
[Hörmander, 1983, 7.1.16]. Hence (7) gives the asymptotic expansion of the distri-
bution θ(Γ, λ) on gR at 0 in the sense of [Barbasch–Vogan, 1980].

2.4Asymptotic supports. For a 2n–cycle Γ on the conormal variety S one
can define in several apparently rather different ways a subset A on the nilpotent
cone NR, each of which could be construed as some kind of “asymptotic support”
associated to Γ.
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a) A(Γ) = the image of the support of Γ under the map ρ : S → NR :

A(Γ) = ρ(suppΓ).

It is a closed, GR–stable subset of NR (closed, because ρ is proper). Since ρ = p0

one can write for any fixed λ,

A(Γ) = lim
t→0+

ptλ(suppΓ),

which exhibits A(Γ) as a kind of asymptotic support of the family of contours
Γtλ = ptλ(Γ).
b) AC(p.(Γ)) = the asymptotic cone of p.(Γ). To define it we use the particular
maps pλ given by (9), §1, fix any λ, and set

AC(pλ(Γ)) = lim
t→0+

tpλ(suppΓ),

where the right side is defined as the set of all limits of sequences {tkpλ(zk)} with
zk ∈ suppΓ, tk → 0+, for any fixed λ. We shall see presently that this set is the
same as the one in (a) and therefore independent of λ.
c) AS(I(Γ, ·)) = the generic asymptotic support at ∞ of the generalized functions
I(Γ, λ) on ig∗R. This is defined as the union of the supports of the homogeneous
distributions which occur in the expansions (7): it is the closure of the union of the
orbits O for which the distributiontPO,k(ΓO, λ)µO in 1.6.1 is non–zero for some k
and λ. So AS(I(Γ, ·)) is the union of sets AS(I(Γ, λ)) defined in the same way for
fixed λ. In fact, one evidently has AS(I(Γ, ·)) = AS(I(Γ, λ)) for λ outside of the
algebraic subvariety of h∗ where all the terms in the asymptotic expansion corres-
ponding to some O vanish.
d) WF(θ(Γ, ·)) = the generic wave front set at 0 of the distributions θ(Γ, λ) on gR.
This is defined as the union of the wave front sets WF0(θ(Γ, λ)) for all λ.

Since it is needed for the proofs, we recall the definition of WF0(θ) for a distri-
bution θ on a real vector space E : WF0(θ) is the subset of iE∗−{0} characterized
by the following property. Let 0 �= ζo ∈ iE∗. Then

ζo �∈ WF0(θ) iff for all N, lim
t→0+

t−N 〈θ, e−ζ/tg〉 = 0

uniformly in ζ on some neighbourhood of ζo (8)

for some g ∈ C∞
c (E) with g(0) = 1. Because of the missing “−i” in our definition

of the Fourier transform, WF0(θ) is here a subset of iE∗. We refer to [Hörmander,
1983] for further details.

2.4.1 Remark. In analogy with the definition of WF0(θ), one can give a
definition of asymptotic support at ∞, denoted AS∞(θ̂) which makes sense for
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any distribution θ on a real vector space E. (θ̂ is the Fourier transform of θ.) Let
0 �= ζo ∈ iE∗. Then

ζo �∈ AS∞(θ̂) iff for all N, lim
t→0+

t−N 〈θ, e−ζ/tg〉 = 0

as distribution in ζ on some neighbourhood of ζo (9)

for some g ∈ C∞
c (E) with g(0) = 1. When θ̂ admits an asymptotic expansion at

∞ as in 1.6.1(b) then AS∞(θ̂) is the union of the supports of the homogeneous
distributions which occur. In this context it should be remembered that a homo-
geneous distribution is necessarily temperate [Hörmander, 1983, 7.1.18]; the proof
of this fact given there also proves the assertion about the supports. It is clear from
(8) and (9) that

AS∞(θ̂) ⊂ WF0(θ) (10)

as mentioned in [Barbasch–Vogan, 1980, p.25].
Intrinsically, AS∞(θ̂) should be viewed as subset of the sphere at infinity in the

spherical completion R×
+\[iE∗ ×R − (0, 0)] of iE∗; the same is true of the other

sets defined above. The condition ζ �= 0 is therefore natural, but will be ignored,
here and elsewhere, to avoid trivial notational complications.

2.4.2 Theorem. Let Γ ∈ H2n(S). The four sets A(Γ),AC(p.(Γ)),AS(I(Γ, ·)),
and WF(θ(Γ, ·)) are equal.

We break down the proof into several lemmas. Throughout we fix Γ ∈ H2n(S).

2.4.3 Lemma. For any λ ∈ h∗,AC(pλ(Γ)) = A(Γ).

Proof. We recall [1995, 3.2] that supp Γ is the closure of a union of connected
components of the smooth part Ssm, hence is stable under R×

+. We show that for
any closed R×

+–stable subset S of S and any λ ∈ h∗,

lim
t→0+

(tpλ(S)) = lim
t→0+

(ptλ(S)) = p0(S). (11)

One has tpλ(u · (xo, ν)) = u · (tλ + tν). Thus for t > 0

tpλ(S) = ptλ(tS) = ptλ(S)

from which the first equality is evident.
The inclusion limt→0+ (ptλ(S)) ⊃ p0(S) is clear, since for u · (xo, ν) ∈ S one has

p0(u · (xo, ν)) = u · ν = lim
t→0+

u · (tλ + ν) = lim
t→0+

ptλ(u · (xo, ν)

The inclusion limt→0+(ptλ(S)) ⊂ p0(S) is seen as follows. An element of the left
side looks like

ξ = lim
k→∞

(uk · (tk · λ + νk)) (12)
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where {uk ·(xo, νk)} is a sequence in S and tk → 0+. After passing to a subsequence
one may assume that {uk} converges, say to uo. Then νk = u−1

k [(uk · (tkλ + νk))−
(tkuk·λk)] converges as well, say to νo. Hence uk(xo, νk) ∈ S converges to uo·(xo, νo),
which is in S since S is closed, so ξ = uo · (λ + νo) belongs to po(S).

This proves the relation (11). Applied to S = suppΓ, this shows that AC(pλ(Γ)) =
AC(p0(Γ)) = A(Γ). �

The following lemma is an adaptation of Lemma 8.1.7 in [Hörmander, 1983]. A
similar result is Proposition 2.1 of [Howe, 1981].

2.4.4 Lemma. For any λ ∈ h∗,WF0(θ(Γ, λ)) ⊂ AC(pλ(Γ)).

Proof. In the context of (8) one has

〈θ(Γ, λ), e−ζ/tg〉 = 〈I(Γ, λ), ĝ(· − ζ/t)〉.

So to show that ζo �∈ WF0(θ(Γ, λ)) it suffices to show that there is g ∈ C∞
c (gR)

with g(0) = 1 and a neighbourhood V of ζo in ig∗R so that for ψ = ĝ and all N we
have an estimate,

|〈I(Γ, λ), ψ(· − ζ)〉| ≤ C

1 + ‖ζ‖N if ζ ∈ V. (13)

We show more: for any ψ ∈ ′H(g∗) and for any closed cone V ⊂ ig∗R with
AC(Γ, λ)) ∩ V = {0} the inequality (13) holds for any given N with a suitable
constant C = C(ψ, V,N). We note that there are ε > 0 and R so that

‖ξ − ζ‖ ≥ ε‖ξ‖ if ξ ∈ pλ(suppΓ), ‖ξ‖ ≥ R, ζ ∈ V. (14)

For otherwise one could choose ζk ∈ V and ξk ∈ pλ(suppΓ) so that ξk/‖ξk‖ −
ζ/‖ξk‖ → 0 and ‖ξk‖ → ∞. Passing to a subsequence one could arrange that
ξk/‖ξk‖, and hence ζ/‖ξk‖, converge, which is impossible, since the common limit
would be a non–zero element of AC(pλ(Γ)) ∩ V.

We use the map pλ defined by eq.(9), §1 in order to apply the formula p∗λσλ =
τλ + β of 1.3.1. Let µλ be the measure on S defined by the restriction on the form
(τλ + β)n. Since the map pλ : B∗ → Ωλ is proper, there is No so that

∫
S

(1 + ‖pλ‖−No)µλ <∞. (15)

This can again be seen by using the interpretation of S as a conormal variety, as
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in the proof of Theorem 1.6.1. For any ζ ∈ V and N ≥ 0, we have

|〈I(Γ, λ), ψ(· − ζ)〉| =
∣∣∣∣
∫

Γ

ψ(pλ(·)− ζ)(τλ + β)n
∣∣∣∣

≤ const.
∫
suppΓ

(1 + ‖pλ(·)− ζ‖)−N−Noµλ

= const.
∫
suppΓ,‖pλ‖≤R

· · ·

+
∫
suppΓ,‖pλ‖≥R

+(1 + ‖pλ(·)− ζ‖)−N−Noµλ

≤ const.‖ζ‖−N−No

∫
suppΓ,‖pλ‖≤R

µλ

+const.‖ζ‖−N
∫
suppΓ,‖pλ‖≥R

(1 + ‖pλ(·)− ζ‖)−Noµλ.

The first integral is finite because pλ is proper. In the second integral we use (14)
and (15). We find that the above expression is

≤ const.‖ζ‖−N−No + const.‖ζ‖−N

Hence (13) holds. �

2.4.5 Lemma. AS(I(Γ, ·)) = A(Γ)

Proof. Recall the expansion 1.6.1(b):

I(Γ, λ) =
∑
O,k

∫
O

tPO,k(ΓO, λ)µO (16)

Since AS(I(Γ, ·)) is the closure of union of O for which sometPO,k(ΓO, λ)µO �= 0
and A(Γ) the union of the O with ΓO �= 0 the inclusion AS(I(Γ, ·)) ⊂ A(Γ) is
obvious.

To prove the reverse inclusion, it suffices show that if O is a leading orbit in A(Γ)
(i.e. O is not in the closure of any other orbit in A(Γ)) then tPO,k(ΓO, λ)µO �= 0
for some λ and k. Fix such an O. By definition, ΓO ∈ H2n(SO) is the image of
Γ ∈ H2n(S) under the natural map H2n(S) → H2n(SO) and by [1995, 4.3.1] this
map is surjective, and

H2n(SO) = H2n(SŌ)/H2n(S∂O). (17)

Thus there is Γ′ ∈ H2n(SŌ) with Γ′
O = ΓO. To show that tPO,k(ΓO, λ)µO �= 0

for some λ and k we may therefore replace Γ by Γ′ in the first place, so that now
Γ ∈ H2n(SŌ) and O is the unique leading nilpotent in A(Γ). We now use the W–
action. The representation of W on the subquotient (17) of H2n(SŌ) decomposes
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as a direct sum of irreducible characters χν,φ with ν representing the complex orbit
containing O; the other irreducible characters in H2n(SŌ) are of the form χν′,φ′

with ν′ belonging to ∂O.
Arguing by contradiction, we suppose that tPO,k(ΓO, λ)µO = 0 for all k and λ.

All non–zero terms in the expansion 1.6.1(b) belong to orbits O′ �= O in A(Γ) = Ō
i.e. O′ ⊂ ∂O. They transform according to characters χν′,φ′ �= χν,φ. Hence χν,φ
(any φ) does not occur in the W–module spanned by the terms of the expansions of
I(Γ, ·) as functions of λ. Since I(Γ, wλ) = I(w−1Γ, λ), by eq. (18), §1, this means
that χν,φ (any φ) does not occur in the W–module generated by Γ in H2n(S). Hence
the component ΓO of Γ in the subquotient (17) which transforms according to χν,φ
(various φ) must be zero, i.e. ΓO = 0. This contradicts the assumption that O
belongs to A(Γ). �

Putting together the relations

AC(p·(Γ) = A(Γ) = AS(I(Γ, ·) ⊂ WF(θ(Γ, ·)) ⊂ AC(p.(Γ))

in 2.4.3, 2.4.5, (10), and 2.4.4 we get the statement of the theorem.

2.4.6 Convention. To have a one term for one object we shall call the set
figuring in the theorem the asymptotic support of Γ and denote it by AS(Γ).

2.4.7 Remark. For any λ ⊂ h∗ we have the inclusions

AS(I(Γ, λ)) ⊂ WF0(θ(Γ, λ)) ⊂ AS(Γ)

and we know that AS(I(Γ, λ)) = AS(Γ) for generic λ (outside of a proper algebraic
subvariety of h∗). Hence also WF0(θ(Γ, λ)) = AS(Γ) for generic λ.

3. Wave front sets of characters and of representations

3.1 Characters. We shall explain the relation of the distributions θ(Γ, λ)
to characters of infinite–dimensional representations. For this we now denote by
GR any connected Lie group with Lie algebra gR and finite centre. We also fix a
maximal compact subgroup K of GR . A (continuous, but not necessarily unitary)
representation π of GR on a Hilbert space Hπ is admissible if its restriction to
K decomposes with finite multiplicities, cf.[Wallach, 1988; the group GR could be
more generally a reductive group in the sense defined there]. Define a function j1/2

on g by

j1/2(X) =
det1/2sinh ad(X/2)

ad(X/2)
.

It is well–known that this is an entire function on g, in spite of the root cf. [Ross-
mann, 1984, p.377], for example. Its square j relates the Haar measures on GR and
gR : d(expX) = j(X)dX.
Like 2.2.1, the following theorem follows from Theorem 1.4 of [Rossmann, 1990]
together with well–known facts about characters.
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3.2 Theorem Let π be an irreducible admissible representation of GR. For
f ∈ C∞

c (gR) define

π(f) =
∫
X∈gR

f(X)π(expX)j1/2(X).

Then π(f) is of trace class and ch(π) : f → tr π(f) is a distribution of the form

ch(π) = θ(Γ, λo) (1)

for a unique W · λo ∈ W\h∗ and a unique Γ ∈ H2n(S)W (λo).

For a given Γ and λo we shall call θ(Γ, λo) a character of GR if it is of the
formch(π). It should be noted, however, that it determines the distribution charac-
ter of π only on the image of the exponential map, not necessarily on all of GR.

3.3 The wave front set of a representation. According to Howe [1981]
the wave front set of an admissible representation π of GR, denoted WF(π), is
defined as the closure of the union of the wave front sets of continuous matrix co-
efficients of π, i.e. functions of the form g → tr(π(g)T ) where T is a trace class
operator. As explained there, WF(π) may be identified with a subset of ig∗R (the
factor i coming from our conventions). We shall need the following result of [Howe,
1981, Theorem 1.8].

3.4 Theorem (Howe). WF (π) coincides with the wave–front set at the
identity of the distribution character of π.

Actually, in loc. cit. the representation is assumed to be unitary. We briefly
outline the modification required in the present setting, without repeating the rest
of the argument. For a unitary representation π one has the relation π(ϕ)∗π(ϕ) =
π(ϕ∗ ∗ ϕ), which is used in equation (1.32), p.128 , loc. cit. To find a replacement
for it, we write out explicitly:

π(ϕ)∗π(ϕ) =
∫
g

∫
h

ϕ̄(g)ϕ(h)π(g)∗π(h)dgdh

=
∫
g

ϕ̄(g)[π(g)∗π(g)]
( ∫

h

ϕ(gh)π(h)dh
)

dg

=
∫
g

ϕ̄(g)[π(g)∗π(g)]π(L(g−1)ϕ)dg

(2)

where L(g−1)ϕ(h) = ϕ(g−1h) and π(ϕ) =
∫
ϕ(g)π(g)dg.

As in loc. cit., fix a small neighbourhood V of 1 in GR and a bounded open set
U ⊂ ig∗R. For ϕ ∈ C∞

c (V ) and ξ ∈ g∗ set

ϕξ(expX) = e〈ξ,X〉ϕ(expX).
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Assume that for ϕ ∈ C∞
c (V ), ξ ∈ U, and all N,

lim
t→0

t−N tr π(ϕξ/t) = 0 (3)

uniformly in ξ ∈ U. We have to show that in the same sense (with V replaced by a
possibly smaller V1) also

lim
t→0

t−N tr π(ϕξ/t)∗π(ϕξ/t) = 0. (4)

For g ∈ V and t ∈ R, set gt = exp tX if g = expX. Change variables g → gt in the
integral (2) to find that the left side of (4) equals

lim
t→0

t−N+dimg tr
∫
g

ϕ̄ξ(gt)[π(gt)∗π(gt)]π(L(g−t)ϕξ/t)dg (5)

The assumption (3) implies that without the term in brackets the limit is zero (for
suitable V1). Since the term in brackets → 1 as t→ 0, it does not affect the limit,
which is therefore still zero.
As an application of Theorem 2.4.4 we prove

3.5 Theorem. Let π be an irreducible admissible representation of GR.
Write its character in the form ch(π) = θ(Γ, λo). Then WF(π) = AS(Γ).

Proof. The distributions θ(Γ, λ) with θ(Γ, λo) = ch(Γ, λo) as in the statement
of the theorem form a coherent family in the sense of representation theory (cf.
[Hecht–Schmidt, 1983], for example; the distributions on the group GR used there
are pulled–back to the Lie algebra gR, and only those value of λ for which θ(Γ, λ)
comes in this way from a distribution on the group are considered.) We assume
that λo is chosen dominant with respect to the Borel subalgebra b entering into
the definition of pλ. For dominant, integral µ ∈ h∗ the distribution θ(Γ, λo + µ) is
then the character, as in (1), of a subquotient π′ of the tensor product π ⊗ Φ(µ)
of π with the finite–dimensional representation Φ(µ) of highest weight µ. It follows
from the definition of WF(π), recalled in 2.4 (d) above, that

WF(π′) ⊂ WF(π ⊗ Φ(µ)) = WF(π).

By theorem 3.4, this gives WF(chπ′) ⊂ WF(chπ), i.e.

WF0(θ(Γ, λo + µ)) ⊂ WF0(θ(Γ, λo)). (6)

From theorem 2.4.4 we know that WF0(θ(Γ, λ)) ⊂ AS(Γ) for all λ, with equal-
ity for λ outside of an algebraic subvariety of h∗. It follows that WF0(θ(Γ, λo)) =
AS(Γ). �
This proves a conjecture of Barbasch and Vogan [1980, p. 28].

3.5.1 It follows from (6) and 2.4.7 that AS(I(Γ, λo)) = AS(Γ) as well.
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4. K–character and leading nilpotents

4.1 Restrictions to k. We momentarily return to the generalized functions
I(Γ, λ) on ig∗R, without reference to characters. Let k = gR ∩ u be the maximal
compact subalgebra of gR fixed by the Cartan involution τ defining U. We recall
that τ is assumed to commute with the conjugation σ with respect to gR in g. We
write

ξ±σ =
1
2

(ξ ± σξ)

for the projection of ξ ∈ g∗ onto the (±1)–eigenspace of σ, and define ξ±τ , ξ±σ,±τ

analogously. We write Q(ξ) for the real quadratic form on g∗ induced by the Killing
form of g as real Lie algebra.

4.1.1 Lemma. As functions of ξ ∈ g∗,

|Q(ξ)|, ‖ξσ‖ ≤ c implies ‖ξ‖2 ≤ a‖ξ−σ,ετ‖2 + b

with constants a, b depending only on c and given ε = ±1.

Proof. This follows immediately from the orthogonality of the components
ξ±τ,±σ. We omit the details. �

As a consequence of this lemma we get:

4.1.2 Lemma. Let f ∈ C∞
c (k). Let f̂ be its Fourier transform, considered as

function on g∗ :

f̂(ξ) =
∫
X∈k

e〈ξ,X〉f(X).

Then f̂ ∈ ′H(g∗).

Proof. By the Paley–Wiener theorem for k we have estimates of the form 2.1
eq.(1):

|f̂(ξ)| ≤ AeB‖ξσ,τ‖

1 + ‖ξστ‖N .

In strips of the form 1.2 eq.(6) we have ‖ξσ‖ ≤ const. and |Q(ξ)| ≤ const. From
the first inequality it follows that ‖ξσ,τ‖ ≤ const. and together with the second
and 4.1.1 that further ‖ξστ‖ ≥ const.‖ξ‖+ const. This implies that one has in fact
estimates of the form

|f̂(ξ)| ≤ C

1 + ‖ξ‖N
in these strips. �
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We shall need a regularity condition on the Ωλ which depends on the real form
gR. This can be formulated intrinsically in terms of Ωλ as well as in terms of the
intersections Ωλ ∩ h∗ with σ–stable Cartan subalgebras h. The definition requires
some preliminaries.

4.1.3 Notation. If h is any σ–stable Cartan subalgebra of g, then

h = t + a (1)

denotes the unique σ–stable decomposition so that tR is compact andaR is split in
gR. We write m for the centralizer of a in g. The imaginary roots of h are those
of (m, h); W (m, h) is naturally a subgroup of W (g, h). We denote by W (gR, h) the
subgroup of W (g, h) realized in GR; it preserves the decomposition (1). We write
W (gR, t) for the group of transformations of t induced by the action of W (gR, h).
We recall that any σ –stable Cartan h is GR–conjugate to a σ, τ–stable one; then
W (gR, h) = W (k, h) and hence W (gR, t) = W (k, t) for the corresponding groups of
transformations of t. If several σ–stable Cartan subalgebras h′, h′′, · · · are under
consideration, as in the following lemma, we write t′, t′′, · · · etc. To avoid confusion
arising from the presence of several Cartan subalgebras we do not identify G\\g∗
with W\h∗ and use the notation Ωθ instead of Ωλ.

4.1.4 Lemma. Let θ ∈ G\\g∗ be a regular element (i.e. the stabilizers of ele-
ments of Ωθ are Cartan subalgebras). The following conditions on θ are equivalent.
a) If λ′, λ′′ ∈ Ωθ have σ–stable stabilizers h′, h′′ and if (λ′|t′) and (λ′′|t′′) are GR

–conjugate, then λ′, λ′′ are GR –conjugate.
b) Let h be any σ–stable Cartan subalgebra. If λ′, λ′′ ∈ Ωθ ∩ h∗ and if (λ′|t) and
(λ′′|t) are W (gR, t)–conjugate, then λ′ and λ′′ are W (gR, h) –conjugate.
c) Let h be any σ, τ–stable Cartan subalgebra. If λ′, λ′′ ∈ Ωθ ∩ h∗ and if (λ′|t) and
(λ′′|t) are W (k, t)–conjugate, then λ′ and λ′′ are W (k, h)–conjugate.
These elements θ form a Zariski open and dense subset of G\\g∗.

Proof. (a) ⇒ (b) is clear and (b)⇔ (c) is standard.
(c) ⇒ (a). Assume (c) holds. Suppose λ′, λ′′ ∈ Ωθ with σ–stable centralizers h′, h′′

and assume (λ′|t′) and (λ′′|t′) are GR–conjugate. Since λ′ and λ′′ are g–regular,
(λ′|t′) and (λ′′|t′) are m′–regular and m′′–regular, respectively. After conjugation by
GR, we may assume that t′ = t′′ =: t. Then h′ and h′′ are split Cartan subalgebras
of the centralizer of t in g, hence conjugate by the centralizer of t in GR. We may
then assume that h′ = h′′ = h. We may further assume that h is also τ –stable.
Since (λ′|t′) and (λ′′|t′) are GR–conjugate, they are in fact W (k, t)–conjugate and
(c) implies that λ′ and λ′′ are W (k, h) –conjugate as well. This shows that (a) holds.
It remains to prove the last assertion. We shall use the characterization (c). Since
there are only finitely many K–conjugacy classes of σ, τ–stable Cartan subalgebras,
it suffices deal with only one, say h. It suffices to show that the λ ∈ h∗ satisfying

if w ∈ W (g, h) and (w · λ)|t = λ|t, then w ∈W (k, h) (2)
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are Zariski–open and dense in h∗ : if Ωθ ∩ h∗ is of the form W · λ for such a λ, then
(c) holds. (The λ ∈ h∗ are here not required to be regular.) That the set of λ ∈ h∗

satisfying (2) is open is clear; it remains to show that it is non–empty. Take in
particular λ ∈ t∗; then equation in (2) then implies that w · λ = λ, as one sees by
considering components according to h = t + a. Choose λ ∈ t∗ so that an element
of W (g, h) which fixes λ fixes all of t∗. Then w belongs to the centralizer of t, which
contains h as a split Cartan subalgebra. It follows that w ∈ W (gR, h) = W (k, h),
as required. �

4.1.5 Definition. An element θ ∈ G\\g∗ is gR–regular if it is regular and
satisfies the equivalent conditions of the lemma. We apply the same term to any
representative for θ in g∗.

We shall need the following result concerning restrictions to k.

4.1.6Theorem. For any Γ ∈ H2n(S) and any λ ∈ h∗ the distribution θ(Γ, λ)
on gR admits a restriction to k, denoted θk(Γ, λ) and given by

〈θk(Γ, λ), f〉 = 〈I(Γ, λ), f̂〉

for f ∈ C∞
c (k). If θk(Γ, λ) = 0 for a gR–regular λ, then θ(Γ, λ) = 0.

Proof. The existence of the restriction and the formula for it follow from 4.1.2
(cf. [Hörmander, 1983] for the definition of the restriction). To prove the second
assertion we need to recall the basis for the θ(Γ, λ)’s consisting of the standard
families θ(C, λ), as in [Rossmann, 1990]. They are indexed by a set of repre-
sentatives {C} for the K–conjugacy classes of chambers C ⊂ ih∗R cut out by the
imaginary roots for the various σ, τ–stable Cartan subalgebras h of g. Fix such a
Cartan subalgebra h. Write h = t+a as in (1) and let p = m+n a σ–stable parabolic
subalgebra with Levi factor m = Cg(a). Let θm(C, λ) be the family for mR which
corresponds to the family if contours Γm,C,λ = pλΓm,C characterized by

Γm,C,λ = MR · λ when λ ∈ C. (3)

On the Cartan subalgebra tR of mR the distribution θm(C, λ) is given by Harish–
Chandra’s formula for the discrete series, i.e. up to a constant,

θm(C, λ) =
1
πm

∑
w∈W (m∩k,t)

sgnm(w)ewwCλ. (4)

Here wC ∈ W (g, h) maps the Borel subalgebra of m defined by C into the Borel
subalgebra of g entering into the definition of pλ. The denominator πm is the product
of a system of positive roots for (m, t).
The standard family θ = θ(C, λ) is induced from θm = θm(C, λ) in the following
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sense. Pull back θm to a PR –invariant distribution θp on pR by pR → mR ≈ pR/nR.
Let jg/p = jg/jp with the j–functions defined as in 3.1. Then

θ = Indg
pθp :=

∫
g∈GR/PR

g · (j−1/2
g/p θp). (5)

In this integral j−1/2
g/p θp is considered a distribution on gR concentrated on pR and

g ∈ GR acts by the adjoint representation. As a function of g ∈ GR, the integrand
is then a density on GR/PR so that the integral is defined. The equation (5) defines
the induction of invariant distributions in general; the fact the standard families (as
defined here) are obtained by this procedure follows from [Rossmann, 1984, p.377].
We shall need a lemma.

4.1.7 Lemma. The restriction of the distribution θ = θ(C, λ) to k is

θk = Indk
m∩kθm∩k =

∫
k∈K/M∩K

k · (j−1/2
k/m∩kθm∩k) (6)

where θm∩k is the restriction of θm to m ∩ k.

Proof of 4.1.7. For λ ∈ C ⊂ ih∗R , the contour Γλ ⊂ Ωλ which defines
θ = θ(C, λ) is

GR · λ = K · (MR · λ + ip⊥R),

hence
ΓC,λ = K · (Γm,C,λ + ip⊥R),

and this then holds for all regular λ. Let f ∈ C∞
c (k). One computes (we omit the

computations of some Jacobians, cf. [Rossmann, 1984, p.378] for similar computa-
tions):

〈θk, f〉 =
∫

ΓC,λ

f̂σnλ

=
∫
K·(Γm,C,λ+ip⊥

R)

f̂σnλ

=
∫
k∈K/M∩K

k ·
(
j
−1/2
k/m∩k

∫
Γm,C,λ

(f |m∩k)̂σnm

m,λ

)

=
∫
k∈K/M∩K

〈k · (j−1/2
k/k∩mθm∩k), f〉.

This is just the equation (6). �(4.1.7)

The distribution θm∩k is a function which on tR is still given by Harish–Chandra’s
formula (4), interpreted as in “Blattner’s conjecture” (cf. [Duflo et al., 1984]). We
write this out more explicitly. If f ∈ C∞

c (k), then

〈θk, f〉 = 〈j−1/2
k/m∩k θm∩k, f

K〉
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where f → fK :=
∫
k · f is the projection onto the K–invariant functions. The

restriction of fK to tR is then invariant under W (k, t) and in view of Harish–
Chandra’s formula (4) we get

〈θk(C, λ), f〉 =
∑

w∈W (k,t)

sgnm(w)〈j−1/2
k/m∩k π

−1
m e(wwCλ)|t,fK |tR〉. (7)

The pairing in this equation is integration over tR.
Suppose now that the θk(C, λ) are linearly dependent, say

∑
C

aC〈θk(C, λ), f〉 = 0 (8)

for all f ∈ C∞
c (k). We first assume that this happens already with C running over

the chambers in the given Cartan subalgebra h. It follows from (7) that then

∑
C

aC
∑

w∈W (k,t)

sgnm(w)ew(wCλ|t) = 0. (9)

Assume now that λ is gR–regular for g. This implies that the exponents belong to
distinct W (k, t)–orbits: otherwise one gets an equation

w′wC′ · λ = w′′wC′′ · λ, with w′, w′′ ∈ W (k, h)

which implies that wC′ and wC′′ lie in the same coset in W (k, h)\W (g, h), contrary
to their definition. Hence aC = 0 for all C.
It remains to show that the distributions θk(C, λ) remain independent even if one
lets C run over the chambers in a whole set of representatives of the K–conjugacy
classes of Cartan subalgebras h. For this we need another lemma.

4.1.8 Lemma. Let h = t + a and h′ = t′ + a′ be two σ, τ–stable Cartans in
g. If m ∩ k and m′ ∩ k are K–conjugate, then h and h′ are K–conjugate.

Proof of 4.1.8. Recall that m = Cg(a). Thus hR is a compact Cartan subalge-
bra of mR modulo its centre and tR is a maximal torus in m∩ k. Suppose m∩ k and
m′ ∩ k are K–conjugate. We may as well assume that m ∩ k = m′ ∩ k. Then tR and
t′R are maximal tori in m ∩ k, hence we may assume that t = t′. Both h and h′ are
then σ, τ–stable split Cartan subalgebras in the centralizer of t in g, hence h and h′

are conjugate by the centralizer of t in K. �(4.1.8)

The distribution θk(C, λ) in (8) is a delta–function concentrated on K · (m ∩ k)
where m belongs to the Cartan h containing C. It follows from 4.1.8 that already
the part of the sum in (8) corresponding to a given h must be zero. This finishes
the proof of the theorem. �
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4.2 Leading nilpotents of irreducible characters. We now turn to
characters and continue with the setup of §3. Thus π is an irreducible admissible
representation of GR. We write πK for its restriction to the maximal compact sub-
group K. In analogy, we also write θK(Γ, λ) for θk(Γ, λ) and jK for the j–function
for k (cf. 3.1).

4.2.1 Lemma. Let π be an irreducible admissible representation of GR. For
any f ∈ C∞

c (k) the operator

πK(f) =
∫
X∈k

f(X)π(expX)j1/2
K (X)

is of trace class and ch(πK) : f → trπK(f) is the distribution on k given by

ch(πK) = j
−1/2
G/K θK(Γ, λo)

where θ(Γ, λo) = ch(π) as in 3.2.

Proof. This result is due to Harish–Chandra; a proof can be found in [Duflo et
al., 1984, A.5] or [Barbasch–Vogan, 1980, 3.4], for example. �

4.2.2 Theorem. Let ch(π) = θ(Γ, λo) be the character of an irreducible
admissible representation π of GR as in 3.2. Then all leading nilpotents of AS(Γ)
are contained in a single complex orbit and the leading term of the asymptotic
expansion of θ(Γ, λo) at zero (cf. 2.3, eq (7)) takes the form

θ(Γ, λo) ∼
∑
O

cO(Γ, λo)θO (10)

where O runs over the leading nilpotents in AS(Γ). Furthermore, θO is the Fourier
transform of the canonical invariant measure µO on O, and cO(Γ, λ) is the polyno-
mial on h∗ defined by

cO(Γ, λ) =
1

e!d!

∫
Γν

τeλ. (11)

This polynomial is the harmonic polynomial associated to the image of Γν = Γ∩Bν
in H2e(B) under Borel’s isomorphism. The value cO(Γ, λo) of this polynomial at
λ = λo is non–zero.

4.2.3 Remarks and explanations. a) Recall that the leading nilpotents
in AS(Γ) are the GR–orbits in AS(Γ) which are not contained in the closure of any
other orbit in AS(Γ). As mentioned in the introduction, the assertion of the theorem
is stronger than the same assertion with “leading nilpotents of AS(Γ)” replaced
by “nilpotent orbits of maximal dimension in AS(Γ)”: the theorem identifies the
leading terms of the series (16) in 1.6.1 relative to the closure order on the O’s, not
just relative to the dimension order (or equivalently homogeneity degree).
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b) In the formula for cO(Γ, λ) we take ν ∈ O and set Γν = ΓO ∩ Bν ∈ H2e(Bν)Aν,R

(cf. [1995, 3.3]). We have also set e = dimC Bν, as usual.
c) The form τλ on B is the one defined in 1.3. Borel’s isomorphism associates to
each γ ∈ H.(B) the polynomial cγ on h∗ given by

cγ(λ) =
∫
γ

e(−1/2πi)τλ .

See [Rossmann, 1991(II), p.170] for more details and references. In the theorem
we have omitted the factor (−1/2πi), which could have been incorporated in the
definition of the integrals I(Γ, λ).

Proof. Let Iπ be the ideal of the universal enveloping algebra U(g) which
annihilates π. Then the variety V (grIπ) ⊂ g∗ defined by the graded ideal grIπ ⊂
grU(g) = C[g∗] is contained in the closure of a single complex orbit O : this follows
from the irreducibility of Joseph’s Weyl group representations [Joseph, 1980], as
shown in [Borho–Brylinsky, 1982]. It follows from [Barbasch–Vogan, 1979, Theorem
4.1] or [Howe, 1982, proof of Proposition 1.2] that WF0(ch(π)) ⊂ V (grIπ). To show
that all of the leading nilpotents in AS(Γ) are contained in the complex orbit O it
suffices to show that any leading nilpotent O in WF0(ch(π)) satisfies

dimR O = dimCO. (12)

We shall prove this using a result of Vogan [1978, Theorem 1.2], the results of §2
and §3, and an adaptation of an argument in [Barbasch–Vogan, 1980].
The irreducible representations ρµ of K can be indexed by elements µ of a lattice
in h∗ ∩ ik∗ (assuming that h ∩ k is a maximal torus in k) so that the character
χµ = ch(ρµ) of the corresponding representation ρµ of K is given by a formula as
in Theorem 3.2. To be precise, for f ∈ C∞

c (k) set

ρµ(f) =
∫
X∈k

f(X)ρµ(expX)j1/2
K (X).

Then

〈χµ, f〉 := trρµ(f) =
∫
K·µ

f̂σmµ (13)

where σµ is the canonical two–form on K · µ,m = dimR K · µ. Write [πK : χµ] for
the multiplicity of χµ in πK . The result of Vogan mentioned implies that there is
C �= 0 so that for t sufficiently large

∑
µ:‖µ‖≤t−1

[πK : χµ]χµ(1) ≥ Ct−d (14)

with d = (1/2) dimC V (Iπ)=(1/2) dimCO. (The fact that the d in (14) is (1/2)
dimC (V (Iπ)) follows from [Joseph, 1978].)
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Let f ∈ C∞
c (k)K be a K–invariant function. It follows from (10) that apart from a

positive constant,
〈χµ, f〉 = f̂(µ)χµ(1).

Hence

〈ch(πK), f〉 =
∑
µ

[πK : χµ]〈χµ, f〉

=
∑
µ

[πK : χµ]χµ(1)f̂(µ)

Assume now that
f̂(0) �= 0, (15)

say Ref(0) > 0. Then there is ε > 0 and r > 0 so that Ref̂(ξ) ≥ ε for ‖ξ‖ ≤ r.
Write

ft(·) = t− dim kf(t−1·),
so that (ft)̂ = f̂(t·). We get

Re〈ch(πK), ft〉 =
∑
µ

[πK : χµ]χµ(1)Ref̂(t · µ)

≥ ε
∑

‖tµ‖≤r
[πK : χµ]χµ(1)

≥ Ct−d

for some non–zero constant C. Thus

〈ch(πK), ft〉 = Ct−d + O(t−d+1) (16)

as t→ 0. Lemma 4.1.7 implies that this holds also with ch(πK) replaced by θ(Γ, λo)
because the factor j/jK takes the value 1 at zero, hence does not affect the first
term of the asymptotic expansion. We shall need the following assertion.

Let f ∈ C∞
c (k)K with f(0) �= 0. There is a homogeneous polynomial C(λ) in λ

with C(λo) �= 0 so that for any λ ∈ h∗ ,

〈I(Γ, λ), f̂(t·)〉 = C(λ)t−d + O(t−d+1) (17)

That this holds for λ = λo follows from (16). We compare (17) with the expansion
of Theorem 1.6.1. Since we already know that AS(Γ) is contained in the closure of
O, the exponent d = (1/2) dimC(O) occurring in (17) for λ = λo is the maximal
such exponent which can occur for any λ. The assertion (17) follows.
We claim that (12) will follow from the following statement.
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If O is a leading nilpotent of A := AS(Γ), then there is f ∈ C∞
c (k) so that

〈f̂(0) �= 0, but 〈I(Γ′, ·), f̂〉 = 0 for Γ′ ∈ ′H2n(SA−O). (18)

Indeed, if such an f exists, then it may be chosen to be K–invariant, by the K–
invariance the condition (18) on f, so that (17) applies. On the other hand, the
second condition in (18) implies that the only leading nilpotent which contributes
to the expansion of the left side in (17) for such an f is O. By 1.6.1 this expansion
then looks like

〈I(Γ, λ), f(t·)〉 = CO(λ)t−dO + O(t−dO+1) (19)

where
CO(λ) = cO(Γ, λ)〈µO, f̂〉

with cO(Γ, λ) and µO as stated in the theorem. Here dO = (1/2) dimR O and
eO + dO = n as usual. Since C(·) �= 0, (17) implies that −d = −dO + k for some
k ≥ 0, since the degrees of all terms belonging to O in the expansion have this
property, cf. 1.6.1. Hence d ≤ dO. Since we already know that O is in the closure
of O this gives d = dO , which gives (12).
We now prove (18). For this we momentarily fix a gR–regular λ ∈ h∗ and consider
the map

θk(·, λ) : H2n(S) → C∞
c (k)∗ (20)

given by Theorem 4.1.7. It follows from that theorem that (20) is injective. The
same is then true for the induced map

θk(·, λ) : H2n(SB) ⊂→ C∞
c (k)∗ (21)

for any closed subset B ∈ GR\NR, because the natural map H2n(SB) → H2n(S)
is injective for such B, by [1995, 4.3.1]. This applies in particular to B = A−O.
By way of contradiction, suppose that (18) is false. This means that in C∞

c (k) we
have

θk(H2n(SB), λ)⊥ ⊂ δ⊥

where δ ∈ C∞
c (k)∗ is the functional f → f(0) and the left side is the orthogonal to

the image of (21) with B = A − O. It follows that δ ∈ θk(H2n(SB)), so that there
is ∆ ∈ H2n(SA−O) satisfying

θk(∆, λ) = δ (22)

as distribution on k. Compare this equation with the formula (7) for the basis
θk(C, λ) of these distributions: the support of θk(C, λ) is contained in the K–orbit
of m ∩ k and these supports are filtered according to the inclusion relation among
the m ∩ k = Ck(a). It follows that there can be an equation such as (22) only if
there is an m with m ∩ k = {0}, i.e. the corresponding Cartan subalgebra h has
t = {0}, i.e. is split for gR. The parabolic subalgebra p is (8) is then a split Borel
subalgebra and the distribution θ(C, λ) in (8) is of the form θ(Γ1, λ) where Γ1

is the oriented conormal variety of the closed GR–orbit on B. (This follows from
[Rossmann, 1984].) But then A(Γ1) = NR so Γ1 is not contained in H2n(SB) for
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any proper closed subset B of GR\NR. This contradiction proves that (18) holds.
This completes the proof of (12) and thereby the first part of the theorem, including
the expansion (10). The fact that the term cO(Γ, λo)θO in this formula has the
stated properties was shown during the proof as well. �
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