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Abstract. The paper develops a Picard-Lefschetz theory for the coadjoint quotient
of a semisimple Lie algebra and analyzes the resulting monodromy representation of
the Weyl group.

Introduction

The coadjoint quotient of a complex semisimple Lie algebra g is the quotient
map in the sense of algebraic geometry,

q : g∗ → G\\g∗,

for the action of G = Ad(g). Its base G\\g∗ is an affine space; as a set, it can be
identified with the quotient W\h∗ where h is a Cartan subalgebra and W its Weyl
group. For regular values θ of the map q the fibres Ωθ = q−1(θ) are single G–
orbits; as θ → 0 they degenerate into the nilpotent cone Ω0 = N . From Lefschetz’s
topological point of view one is interested in the behaviour of cycles Γθ on the fibres
Ωθ as θ = θ(t) varies along a curve in the regular set and the Γθ(t) are taken along
by continuous deformation, i.e. by isotopic transport in the fibration defined by q
over its set of regular values. In homology, the isotopic transport gives the Gauss–
Manin transport of homology classes in the fibres; by transport around loops it
gives the monodromy representation of the fundamental group of the set of regular
values in the homology of the fibre over the base–point. From Picard’s analytic
point of view, one is interested in the behaviour of integrals

I(θ) =
∫

Γθ

	θ

of holomorphic forms 	θ of top degree dimCΩθ over cycles Γθ of this dimension,
especially in the asymptotic behaviour of the I(θ) as θ approaches a singular value
and in the ramification of I(θ) as θ describes a loop in the regular set. Both points
of view are of interest for the coadjoint quotient: the topological point of view
leads to Springer’s theory of Weyl group representations [Springer, 1976, 1978,
1993], the analytic point of view to the character theory of infinite dimensional
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representations of real forms of G [Rossmann, 1984, 1990, 1991]. In this paper we
shall be concerned with the topological and geometric aspects of the theory; the
analytic aspects, which require very different methods, follow in a sequel.
The classical theory of Picard and Lefschetz is concerned with linear systems

on a projective variety, not on an affine variety such as g∗. This situation can
be created by introducing a suitable projective completion g∗c of g∗. The family
of varieties {Ωθ} is viewed as a linear system of dimension equal to the rank of
g, cut out from the graph {(ξ, θ) : θ = q(ξ)} ≈ g∗ by the linear subspaces θ =
const. It turns out that the closures Ωcλ of the fibres Ωλ all have the same part at
infinity, say F = Ωcλ − Ωλ (isomorphic with the projectivized nilpotent cone Ω0);
in classical terminology, this means that F belongs to the fixed locus of the linear
system {Ωcλ}. One can therefore require that F remain fixed under the isotopic
transport. As a consequence, the monodromy representation can be realized not
only in the homology H.(Ω) with compact supports, but also in the homology with
respect to other families of supports. This is essential, both for the topological
theory involving Springer’s representations and for the analytic theory involving
characters.
In overview, the paper is organized as follows. In §1 we discuss some general con-

cepts from Picard–Lefschetz theory and give a construction of restricted monodromy
representations based on a simple general principle (cf. 1.1). In §2 we introduce
the coadjoint quotient, discuss some of its properties, and begin the study of the
homology of the standard fibre. This leads to an analysis of the top homology of
some rather peculiar varieties, which is carried out in §3 and is summarized in a
decomposition theorem (Theorem 3.6). These results are applied to the coadjoint
quotient in §4−5, as we now explain in more detail.
Fix a standard fibre Ω, homeomorphic with Ωλ for regular λ. One can choose

such homeomorphisms pλ : Ω→ Ωλ, λ ∈ h∗reg, which depend continuously on λ and
approach a limit map p0 : Ω → Ω0 =: N as λ → 0. This is the Springer resolution
of the nilpotent variety N . The fibre p−1

0 (ν) over ν ∈ N is the Springer variety Bν .
The monodromy representation of the fibration g∗reg → W\h∗reg can be “re-

stricted” from Ω to p−1
0 (ν) = Bν (in a sense to be clarified) to produce a repre-

sentation of W on H.(Bν), equivalent to Springer’s representation [Springer, 1978].
According to Springer’s theory, all irreducible characters χν,φ of W are realized in
the subspaces of the top homology H2e(Bν) which transform by a given character
φ of the component group Aν = Gν /Go

ν of the stabilizer of ν in G.
Let go be the real subalgebra of g fixed by an involutive automorphism of g as

real Lie algebra, Go the corresponding subgroup of G. As a family of supports for
the homology on Ωλ we take the closed subsets contained in strips of the from

‖Rgoξ‖ ≤ const.
where Rgo : g∗ → g∗o is the natural map, g

∗ being identified with the real dual of g.
The corresponding homology group will be denoted ′H.(Ωλ).
If the family of cycles {Γλ} is locally constant for the Gauss–Manin connection,

then Γλ = pλΓ for a fixed cycle Γ ∈ ′H2n(Ω). As λ → 0, pλ(suppΓ) approaches
p0(suppΓ), which is subset of No := N ∩ g⊥o stable under Go. This leads to a
filtration of ′H2n(Ω) by closed subsets A ⊂ Go\No (i.e. Go–stable closed subsets of
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No : ′H2n(Ω)A consists of the Γ with p0(suppΓ) ⊂ A. One can describe this situa-
tion in a somewhat different way by introducing the inverse image S = p−1

0 (No) of
No under the map Ω→ N , and more generally SA = p−1

0 (A) for each A ⊂ Go\No.
Then it turns out that ′H2n(Ω) ≈ H2n(S) and ′H2n(Ω)A ≈ H2n(SA ), homology
with arbitrary supports on S. Thus the monodromy representation ofW on ′H2n(Ω)
becomes a representation on H2n(S). The closure relation among the A’s induce a
filtration on H2n(S), whose graded group will be denoted grH2n(S). We prove:

Theorem A. a) H2n(SA) is a W–stable subspace of H2n(S) for any closed
A ⊂ Go\No.
b) There is a natural W–isomorphism

grH2n(S) ≈
∑
ν

H2e(Bν)Ao,ν .

where ν runs over a set of representatives for Go\No, and Aν,o denotes the image
of Go,ν in Aν .

A centrepiece of classical Picard–Lefschetz theory is the Picard–Lefschetz Theo-
rem. It gives a formula for the monodromy of an isolated quadratic singularity;
for even fibre dimension it says that the generator acts as a reflection along the
vanishing cycle. In §5 we prove an analogous result for the monodromy action of a
simple reflection s ∈ W on H2n(S). To state it, let λo ∈ h∗ be fixed by s and no
other reflection. For λ = λo the map pλ : Ω→ Ωλ mentioned above becomes a map
po : Ω → Ωo, the limit map at λo. The variety Ωo contains the orbit Oo of λo and
we set So = p−1

o (Oo) ∩ S. The subvariety So replaces the classical vanishing cycle
in the following sense.

Theorem B. The monodromy action of s in H2n(S) is a reflection along the
subspace H2n(So) of H2n(S).
The result we prove is actually somewhat more precise (cf. Theorem 5.8). The

proof uses a reduction to sl(2,C) where the Picard–Lefschetz Theorem applies in
its classical form. This is the basic case, which should be kept in mind throughout;
see Example 4.12, especially the pictures.

If Theorem A is applied to the case when (g, go) is of the form (g×g, diag(g)), we
recover Springer’s result that every irreducible representation of W is realized on
an Aν– isotypic component of H2e(Bν). In general, the subalgebras of g of the type
go fall naturally into pairs g+, g− so that g+∩g− is a maximal compact subalgebra
in either. Fix such a pair g± and write S± for the corresponding varieties S. As a
consequence of the Theorem A one finds that

H2n(S+) ≈ H2n(S−)

as W–modules. This seems a rather remarkable fact, since the varieties S+ and
S− look superficially quite different; it is an aspect of the well–known “KC −GR–
duality” in the structure theory and representation theory of semisimple groups.
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That such a result should exist was pointed out to me by T.A. Springer, who
proved a theorem on H2n(S) in an algebraic setting [Springer, 1993], which is in
the above sense dual to a result of [Rossmann, 1990]. I thank him for explaining
this to me.

1. Some concepts from Picard–Lefschetz theory

1.1 A general principle. Let q :M → Q be a surjective, holomorphic map
between complex manifolds which is a topologically trivial fibration, locally over
its set of regular values, say q : Mr → Qr. Picard–Lefschetz theory is concerned
with the monodromy of this fibration locally around a critical value θo. It is the
purpose of this section to make precise the following heuristic principle about this
monodromy.

If the deformation of the generic fibre q−1(θ1) into the critical fibre q−1(θo) can
be described by a limit map p0 : q−1(θ1)→ q−1(θo), defined at best up to homotopy,
then this map is invariant under the monodromy around θo.

This means that after isotopic transport along a small loop around θ0 in Qr a
fibre p−1

0 (y) ⊂ q−1(θ1) of the limit map returns to a neighbourhood of its initial
location, but possibly in another position. The change in position corresponds to
a transformation of p−1

0 (y), defined up to homotopy, which induces a monodromy
transformation restricted to cycles in p−1

0 (y). These cycles are vanishing cycles in
the sense of Lefschetz [1924]: their image under the limit map is the zero cycle.
The situation is illustrated in Fig. (4.3) and (5.1).
We shall use this principle only in a very special case, when q :M → Q becomes

a topologically trivial fibration q̃ : M̃ → Q̃ over a ramified covering Q̃ of Q in which
θo is covered by a single point λo. For technical reasons we shall require thatM and
M̃ admit fibrewise completions M c and M̃ c. The complex structure is not required
at this point. The precise formulation we shall use can be stated as follows. (The
definitions of non–standard terms will be given below.)

1.1.1 Theorem. Let
M̃

ρ→ M
q̃ ↓ ↓ q
Q̃

π→ Q

be a commutative diagram of morphisms of real analytic manifolds. Assume there
are embeddings M ⊂ M c and M̃ ⊂ M̃ c as strata semi–analytic sets so that q, q̃,
and ρ extend to M c and M̃ c. Fix θo ∈ Q and λo ∈ Q̃ and assume that
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a) π : Q̃→ Q is a ramified covering with q−1(θo) = {λo} as point of total rami-
fication, regular on Q̃r → Qr,

b) ρ : M̃ → M is proper and induces homeomorphisms q̃−1(λ) ≈→ q−1(θ) of the
fibres over λ ∈ Q̃r and θ = π(λ) ∈ Qr,

c) q̃ : M̃ c → Q̃ is proper and its restrictions to the strata of M̃ c are surjective
submersions.

Then
A) q̃ : M̃ → Q̃ is a topologically trivial fibration over a neighbourhood of λo in Q̃,

B) the maps pλ : q̃−1(λo)→ q̃−1(λ) ≈ q−1(π(λ)), λ ∈ Q̃r, defined by a local trivial-
ization have ρ : q̃−1(λo)→ q−1(θo) as limit map,
C) for any semi–analytic subset V of q−1(θo), the isotopic monodromy representa-
tion of the covering group W of Q̃r → Qr admits a restriction to ρ−1(V ), yielding
a homomorphism of the covering group W into the group of homotopy equivalences
of ρ−1(V ).

1.1.2. The case we have in mind is the coadjoint quotient of a semisimple
complex Lie algebra, defined in §2. In that case M and M̃ are smooth complex
varieties, M c and M̃ c can be taken to be complex varieties as well, and M̃ c is also
smooth. These constructs will be given explicity, but it is clearer to place oneself
in the more general situation of the theorem.
In some form, results of this kind go back to the beginnings of Picard–Lefschetz

theory. We outline the proof of the version above in (1.2–1.11) in order to introduce
the constructions and definitions needed later. The the proofs of various auxiliary
lemmas are easy and will be omitted.

1.2 Trivializations. Let π : Y → L be any surjective continuous map of
topological spaces, assumed to be locally compact and paracompact metric spaces.
Recall that π : Y → L is called a (globally) trivial fibration if (Y, L;π) is homeo-
morphic with a product (L× F,L; proj) and is called a locally trivial fibration if it
is trivial over some neighbourhood of any given point of L. Recall further:

1.2.1 A locally trivial fibration over a contractible base is globally trivial.

We shall make use of the following simple observation. A trivialization Y ≈ L×F
of π induces homeomorphisms F ≈ π−1(λ) of the fibers of π with a standard fibre
F . These homeomorphisms depend on the trivialization, but their homotopy class
does not, in the following sense.

1.2.4 Lemma. Let π : Y → L be a continuous map. Suppose π admits a
global trivialization F × L

≈→ Y and let

pλ : F → Fλ (1)

be the corresponding family of homeomorphisms of the standard fibre F with the
fibres Fλ = π−1(λ). If L is path–connected, then the homotopy class of the map
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pµ ◦ p−1
λ : Fλ → Fµ (2)

is independent of the particular trivialization. �

1.3 Notation and hypotheses. We now fix a continuous surjective map
q : M → Q. We assume that there is an open subset Qr of Q, Mr = q−1(Qr) so
that q : Mr → Qr is a locally trivial fibration. Fix a point in Q, which will be
denoted 0, and assume that Qr and Qr ∪ {0} are path–connected. For any θ ∈ Q
we denote by Ωθ the fibre q−1(θ). In particular Ω0 = q−1(0).

1.4 Isotopic transport and isotopic monodromy. Let γ : θ = θ(t),
0 ≤ t ≤ 1, be a path in Qr. A global trivialization of the fibration Mr → Qr over γ
(which exists, since a locally trivial fibration over an interval is trivial) gives family
of homeomorphisms Ωθ(0) → Ωθ(t) and in particular a homeomorphism

pγ : Ωθ(0) → Ωθ(1) (3)

which we call isotopic transport along γ. The following lemma follows from 1.2.4
with L an interval or a square.

1.4.1 Lemma. The homotopy class of pγ is uniquely determined by γ and
depends only on the homotopy class of γ. �

For fixed θ1 ∈ Qr, the isotopic transport around loops in Qr is a homomorphism
of π1(Qr, θ1) into the group of homotopy equivalences of Ωθ1 , which we shall call
the isotopic monodromy representation. It induces a group representation in the
usual sense in the homology groups of Ωθ1 .

1.5 Coverings. We now suppose that Mr
q→ Qr becomes globally trivial

topologically after passing to a covering. This means that there is a commutative
diagram of continuous maps

M̃r
ρ→ Mr

q̃ ↓ ↓ q
Q̃r

π→ Qr

(4)

with the following properties.

a) The map q̃ : M̃r → Q̃r is a topologically trivial fibration.
b) The map π : Q̃r → Qr is a covering.
c) The map ρ : M̃r →Mr induces a homeomorphism q̃−1(λ) ≈→ q−1(θ) if θ = π(λ).

Condition (a) means that there is a topological space Ω and a homeomorphism

Q̃r × Ω ≈→ M̃r (5)
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so that M̃r → Q̃r becomes the projection Q̃r × Ω → Q̃r. The space Ω will be
called the standard fibre and the homeomorphism (5) will be written in the form
(λ, z)→ p̃λ(z). For θ ∈ Q we write Ωθ = q−1(θ) as above, and for λ ∈ Q̃r we write
Ω̃λ = q̃−1(λ). Then p̃λ is a homeomorphism

p̃λ : Ω
≈→ Ω̃λ. (6)

It will be convenient to set Ωλ = Ωθ if θ = π(λ). For λ ∈ Q̃r, the map pλ := ρ ◦ p̃λ
is a homeomorphism

pλ : Ω→ Ωλ. (7)

1.6 If Qr has a contractible covering space Q̃r → Qr, then the pull–back of the
locally trivial fibre space Mr → Qr to Q̃r becomes globally trivial over Q̃r, hence
in this case one always has a diagram of the type (4). The space Q can here be
replaced by any neighbourhood of the critical value 0 ∈ Q.We explicitly record the
following consequence of 1.4.

1.7 Lemma. Let µ, λ ∈ Qr. The homotopy class of the map

pµ ◦ p−1
λ : Ωλ → Ωµ (8)

is independent of the trivialization (5) which defines the maps (7). �

1.8 Let W be the group of covering transformations of Q̃r → Qr. For any
w ∈W, and λ ∈ Qr define a transformation

aλ(w) = p−1
w·λ ◦ pλ : Ω→ Ω (w ∈ W,λ ∈ Qr). (9)

This is essentially the same as the isotopic monodromy: if one identifies Ω with Ωλ
by means of the map (7), then aλ(w) coincides with the isotopic parallel transport
around a loop at π(λ) which lifts to a path with endpoints λ and w · λ.

1.9 The limit map. Fix metrics on Q and onM which define the topology.
Both metrics will be written as d(x, y). We use the notation

Mε(V ) := {x ∈M : d(x, y) < ε for some y ∈ V }
for the ε -neighbourhood of a subset V ⊂ M. We call a neighbourhood U of V
retractible if there is a deformation retraction r : U → V.

1.9.1 Assumption and definition. We assume that there is p0 : Ω → Ω0

so that
lim

π(λ)→0
pλ = p0 (10)

uniformly as maps Ω→M. This means that for all ε > 0 there is δ > 0 so that

d(π(λ), 0) ≤ δ ⇒ d(pλ(x), p0(x)) ≤ ε (11)

for all x ∈ Ω and all λ ∈ Q̃r.We shall call p0 the limit map. The limit map p0 itself
depends on the trivialization (5) which defines the maps pλ, but its homotopy class
does not, at least under the rather weak hypotheses of the following lemma.
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1.9.2 Lemma. Suppose there is ε > 0 so that Ω0 is a retract of Mε(Ω0) and
let r : Mε(Ω0) → Ω0 be a retraction. Then there is δ > 0 so that for any λ ∈ Qr

with d(π(λ), 0) < δ
p0 ∼ r ◦ pλ : Ω→ Ω0

(homotopic maps). In particular, the homotopy class of p0 is independent of the
trivialization (5) if one takes as standard fibre Ω = Ωλ1 for a fixed λ1 ∈ Qr. �

The following lemma is the essential ingredient in the construction of the mon-
odromy representation on of W.

1.9.3 Lemma. Let V be any subset of Ω0. Assume there is an ε–neighbour-
hood U of V in Ω0 so that the inclusion i : p−1

0 (V ) → p−1
0 (U) admits a retraction

r : p−1
0 (U)→ p−1

0 (V ). For any w ∈ W there is δ > 0 so that

aλ(w)p−1
0 (V ) ⊂ p−1

0 (U) (12)

for λ ∈ Q̃r, d(π(λ), 0) < δ. The transformations

r ◦ aλ(w) ◦ i : p−1
0 (V )→ p−1

0 (V ) (13)

are then defined for such λ and their homotopy class aV (w) is independent of λ.
The map w → aV (w) is a homomorphism of W into the group of homotopy equiv-
alences of p−1

0 (V ). �

We again omit the proof, but note that it is based on the following relation,
which we record for reference:

aλ(wy) = ay·λ(w)aλ(y). (14)

We shall paraphrase (12) by saying that the limit map p0 is invariant under the
monodromy transformations aλ(w). The homomorphism of W into the group of
homotopy equivalence of p−1

0 (V ) will be called the restriction of the isotopic mon-
odromy representation to p−1

0 (V ).

1.9.4 Concerning the hypothesis in 1.9.3 we recall that any subcomplex of
a finite simplicial complex has a retractible neighbourhood. It follows that the
hypothesis is satisfied whenever p0 : Ω→ Ω0 can be realized as the restriction of a
map p0 : Ωc → Ωc0 of finite simplicial complexes and V as an open subcomplex of
Ωc0.

1.10 Simultaneous topological resolutions. We now suppose that M
q→

Q becomes globally trivial topologically after passing to a ramified covering. This
means that (4) extends to a commutative diagram of continuous maps

M̃
ρ→ M

q̃ ↓ ↓ q
Q̃

π→ Q

(15)
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with the following properties, in addition to those listed in connection with (4).
First of all we require that (15) extends (4) with M̃r = ρ̃−1(Mr) and Q̃r = π−1(Qr).
Further we require that

a) The map q̃ : M̃ → Q̃ is a topologically trivial fibration
b) The map π : Q̃→ Q is continuous, surjective, finite, and q−1(0) = {0̃}, a single
point.
c) The map ρ : M̃ →M is proper.

A map π : Q̃ → Q with the properties (b) and which restricts to a covering
q : Q̃r → Qr on open sets with Q̃r ∪ {0̃} and (hence) Qr ∪ {0} arc–connected
will be called a ramified covering with point of total ramification q−1(0) = 0̃, reg-
ular on Q̃r → Qr.We shall refer to a diagram (15) of this kind as a simultaneous
topological resolution of the map q : M → Q. It is analogous to the simultaneous
resolution in algebraic geometry [Brieskorn 1966, Slodowy 1980], except that we
require that q̃ : M̃ → Q̃ be globally trivial and that q−1(0) = {0̃}, since we can
replace Q by a suitable neighbourhood of 0.
We keep the notation introduced above in connection with (4). Fix a local topo-
logical trivialization Ω× Q̃

≈→ M̃ of q̃ over a neighbourhood of 0. As standard fibre
we can now choose

Ω = q̃−1(0̃). (16)

The maps (6) and (7) are now defined for all λ in the neighbourhood of 0̃ over which
the trivialization is defined. The maps pλ converge pointwise to p0 as π(λ) → 0,
and if this limit is uniform then p0 is the limit map defined by (10). Furthermore,
we note that under the choice (16) as standard fibre, the map p0 : Ω→ Ω0 coincides
with the resolution map ρ : q̃−1(0)→ q−1(0).

1.10.1 We shall use Thom’s Isotopy Theorem:

Let f : X → Y be a morphism of real analytic manifolds. Suppose X admits
an embedding X → Xc as a stratum of a stratified semi–analytic set Xc, so that f
extends to a proper morphism f c : Xc → Y. Assume that the restriction of f to each
stratum is a surjective submersion. Then each such restriction, and in particular
f : X → Y, is locally topologically trivial fibration.

We refer to [Thom, 1969, chap. III] for the proof and for the definition of “strat-
ified semianalytic set”.

1.10.2 Addendum to 1.10.1. The trivializations have the following local-
ization property.



10 W. ROSSMANN

A trivialization of f : X → Y can be chosen locally over Y so as to coincide on
a compact set C ⊂ U with a given trivialization of the restriction of f to an open
subset U of X.

This follows from the proof of the theorem [loc. cit.]: the trivializations are
obtained by integration of vector fields, which can be patched using partitions of
unity. It is this localization property which makes possible the localization around
the critical set characteristic of Picard–Lefschetz theory.

1.10.3 We now return to theorem 1.1.1. The assertion (A) is a consequence
of 1.10.1. The assertion (B) follows from the assumption that q̃ : M̃ c → Q̃ is
proper: its fibres Ωcλ are compact, so the maps pλ : Ω

c → Ωcλ converge uniformly
to p0 = ρ|Ω, as required in 1.9.1. The assertion (C) follows from lemmas 1.9.2 and
1.9.3 provided V has a retractible ε–neighbourhood in M. And this follows from
the fact that the compact semi–analytic set Ωc admits a triangularization into a
simplicial complex K containing the semianalytic subset V as a difference K1−K2

of subcomplexes K1 ⊃ K2. This finishes the outline of the proof of theorem 1.1.1.

1.10.4 We shall need a refinement of the theorem. Namely suppose that the
completion q :M c → Q is a trivial fibration on the part at infinityM c−M . In that
case the standard fibre Ω aquires a part at infinity, say F = Ωc −Ω which remains
pointwise fixed by the transformations aλ(w). These transformations then act also
in the homology with supports restricted by conditions at infinity, to specified in
detail for the coadjoint quotient. We shall now turn to some mostly standard con-
cepts which will be needed later.

1.11Gauss–Manin connection and monodromy representation. The
isotopic transport (3) of a locally trivial fibration Mr

q→ Qr defines a map (pγ)∗ :
H.(Ωθ(0))→ H.(Ωθ(1)), theGauss–Manin transport along γ. In case q is a C∞ (holo-
morphic map) between C∞ (complex) manifolds, this is the parallel transport with
respect to a flat connection in the C∞ (holomorphic) vector bundle θ → H.(Ωθ)
over Qr. The isotopic monodromy representation of π1(Qr, θ1) induces a represen-
tation in H.(Ωθ1) in the usual sense, called monodromy representation in homology.

1.12 Homology with other supports. The homology above was under-
stood to have compact supports, as is customary. We indicate the adjustments
required if one takes for H.(·) homology with another family of supports. We place
ourselves in the situation of Theorem 1.1.1. Let Φ be a family of supports on M.
We take Φ̃ = ρ−1Φ as family of supports on M̃ and for each θ ∈ Q (resp. λ ∈ Q̃)
we take Φ|Ωθ (resp. Φ̃|Ω̃λ) as family of supports on Ωθ (resp. Ω̃λ). This applies in
particular to Ω = Ω̃0̃, which we take as standard fibre. As a condition on the local
trivialization of Ω × Q̃

≈→ M̃ we require that it induce for each λ ∈ Q̃ a bijection
of (Φ̃|Ω) × {λ} with (Φ̃|Ω̃λ) and that it map into Φ̃ sets of the form A × B with
A ⊂ Ω belonging to Φ̃ and B ⊂ Q̃ compact. It follows from [Borel–Moore, 1960,
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3.5, 4.3] that under these conditions the maps p̃λ induce maps in homology with
the indicated supports which do not change under the type of homotopy used in
(2) and are therefore independent of the trivialization.

1.12.1 In case q : M → Q is the coadjoint quotient map, to be discussed
later, M c can be taken to be a projective variety in which the completions Ωcλ of
the fibres Ωλ all have the same part at infinity, say Ωcλ −Ωλ = F, in the sense that
there is a natural trivialization M c −M ≈ F × Q. In that case it makes sense to
require that F stay fixed under the isotopic transport, i.e. that the maps pλ agree
over F. This insures that the corresponding transformations aλ(w) operate in in
the homology for any family of supports.

1.12.2 For reference, we record three elementary properties [loc. cit.] which
will be used frequently, but only for homology with arbitrary supports here denoted
H.(·).
a) If U is an open subspace of X then the inclusion U

j→ X induces a natural map

H.(X)
j∗→ H.(U). (17)

b) If F is a closed subspace of X, then the inclusion F i→ X induces a natural map

H.(F )
i∗→ H.(X). (18)

c) If U = X − F with U,F as above, then there exists a long exact sequence

· · · → Hq(F )
i∗→ Hq(X)

j∗→ Hq(U)
∂→ Hq−1(F )→ · · · . (19)

A model for homology with arbitrary supports for real–analytic varieties which is
particularly convenient in the present context may be constructed from subanalytic
chains as in [Kashiwara–Shapira, 1990]. We usually have this model in mind, so
chains or cycles will always be understood to be subanalytic.

1.13 Notes. The origins of the theory are [Picard–Simart, 1897, Chap. IV]
and especially Lefschetz’s astonishing monograph [Lefschetz, 1924]. More recent
references are [Deligne et Katz, 1970] and [Arnold et al. 1988; chapters I and III].
See also [Brieskorn,1970]. Simultaneous resolutions were used in [Brieskorn,1966].
The simultaneous resolution of the (co)adjoint quotient to be discussed later is due
to Grothendieck. It is studied in [Slodowy, 1980].

2. Picard–Lefschetz theory for the coadjoint quotient

2.1 The coadjoint quotient. Let g be a complex semisimple Lie algebra.
Consider the quotient map

g∗
q→ G\\g∗ (1)
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with G = Ad(g) acting on the complex dual space g∗ by the coadjoint represen-
tation, which will be more natural for what we have in mind than the adjoint
representation. The quotient is here taken in the sense of algebraic geometry, as
the affine variety associated to the ring C[g∗]G of G–invariant polynomial functions
on g∗. (The double slash is intended to indicate this; we write the group on the
left if it acts on the left.) The ring C[g∗]G is a polynomial ring on l = rank(g)
generators, and G\\g∗ is isomorphic with Cl. More concretely, as a set G\\g∗ may
be identified with the quotient W\h∗ of the dual of a Cartan subalgebra h of g by
the action of the Weyl group W. The fibre of q over the element W · λ ∈ W\h∗ is
the variety

Ωλ = {ξ ∈ g∗ : f(ξ) = f(λ) for all f ∈ C[g∗]G}.
When λ is regular, this is the orbit G · λ; for λ = 0 it is the nilpotent variety N in
g∗. The restriction of q to the set g∗r of regular semisimple elements provides the lo-
cally trivial fibration q : g∗r →W\h∗r .We shall be interested in the Picard–Lefschetz
theory for the map g∗

q→ G\\g∗ around the most singular fibre N = q−1(0).

2.2 The simultaneous resolution. According to Grothendieck, the quo-
tient map q admits a simultaneous resolution of singularities as follows (cf. [Slodowy,
1980]). Let B ≈ G/B be the flag manifold of g. For x ∈ B denote by bx the Lie
algebra of its stabilizer Bx in G, and by nx the nilpotent radical of bx. Fix xo ∈ B
so that b := bxo contains h and write n = nxo . Let

g̃∗ = {(x, ξ) : x ∈ B, ξ ∈ (g/nx)∗} ≈ G×B (g/n)∗.

This is a complex manifold. The simultaneous resolution is the natural map g̃∗
ρ→

g∗; it fits into a commutative diagram

g̃∗
ρ→ g∗

q̃ ↓ ↓ q
h∗ → W\h∗

(2)

which is basic in what is to follow. It has the properties listed in 1.10. The
map q̃ is locally trivial holomorphically and globally trivial topologically. A global
trivialization of q̃ may be constructed as follows. The fibre of q̃ over zero is

B∗ = {(x, ν) : x ∈ B, ν ∈ (g/bx)∗} ≈ G×B (g/b)∗

which may be identified with the cotangent bundle of B with projection π : B∗ → B,
π(x, ν) = ν. In particular, B∗ is a complex manifold of complex dimension 2n,
n = dimC B.

Let U be a compact form of G, chosen so that U ∩H is a maximal torus. Any
element of B is of the form x = u(x)xo with u(x) ∈ U unique up to right translation
by U ∩H.



PICARD-LEFSCHETZ THEORY 13

2.3 Lemma . The fibration g̃∗ → h∗ admits a real–analytic U–equivariant
global trivialization

g̃∗
U≈ B∗ × h∗, (3)

or equivalently

G×B (g/n)∗
U≈U ×(U∩H) (g/b)∗ × h∗ (4)

A trivialization map B∗ × h∗ ≈→ g̃∗ is given by (x, ν, λ)→ (x, u(x) · λ+ ν).

We omit the elementary verification but record that the maps pλ corresponding
to this trivialization as in 1.5, eq.(7) are given by

pλ : B∗ → Ωλ, (x, ν)→ u(x) · λ+ ν. (5)

For regular λ this map is therefore a homeomorphism. One should note that for
general λ, this map is not holomorphic and is not equivariant for the action of G
(only for U). For λ = 0, however, it is both:

p0 = ρ : B∗ → N , (x, ν)→ ν (6)

is the restriction of the map ρ in (2), the Springer resolution of the nilpotent cone
N ; it is the moment map for the action of G on the symplectic manifold B∗.

2.3.1 There is a commutative diagram

B∗ pλ→ Ωλ
π ↘ ↙ πλ

B
where πλ : Ωλ → B is the map πλ(g · λ) = g · xo. In particular, for regular λ ∈ h∗

the map π ◦p−1
λ = πλ is G–equivariant and holomorphic, even though pλ is neither.

2.4 Completions . We introduce a completion of the simultaneous reso-
lution (2). We first deal with the coadjoint quotient g∗ → G\\g∗ itself. For any
complex vector space V, let CV = P (V × C) = C×\[V × C − (0, 0)] denote its
projective completion , to be distinguished from P V = C×\[V − {0}]. We denote
by v/t ∈ CV the class of (v, t) ∈ V × C − (0, 0) and we identify V with a subset
of CV (the finite part of CV ) so that v = v/1. There is an embedding P V ⊂ CV
as the hyperplane at infinity {v/0 : v ∈ V }. Note that any linear map A : V → W
extends to A : CV → CW via A(v/t) = (Av)/t.

2.4.1 Instead of the projective completion one could take for CV the spher-
ical completion R×

+\[V ×R− (0, 0)]. It is a manifold with boundary, homeomorphic
with a closed ball in V. The constructions below are then analogous to Milnor’s
sphere construction [Milnor, 1968], except that the sphere lies at ∞ rather than at
ε of the singularity. The spherical completion is preferable when the topology of
the boundary comes into play, which is simpler for a sphere.
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2.4.2 Definition. Let

g∗c = {(ξ/τ, θ) ∈ Cg∗ ×W\h∗ : q(ξ) = τ · θ}.
The variety g∗c can be viewed as a fibrewise completion of g∗, with “fibrewise”
referring to the fibres Ωθ of the coadjoint quotient g∗ →W\h∗. The coadjoint quo-
tient extends naturally to a map g∗c

q→ W\h∗, also denoted q, and we denote by
Ωcθ the fibre of this map over θ ∈ W\h∗. We shall analyze it some detail in the
following lemma.

2.4.3 Lemma. The natural diagram

g∗ ⊂→ g∗c

q ↘ ↙ q
W\h∗

is commutative and the map g∗ → g∗c is an embedding onto an open dense sub-
manifold of gc (the finite part of g∗c). Its complement g∗c − g∗ (the part at infinity
of g∗c) is the direct product PN ×W\h∗ and Ωcθ − Ωθ = PN × {θ}. (PN is the
projectivized nilpotent cone.)

Proof. The map g∗ ⊂→ g∗c is given by ξ → (ξ/1, q(ξ)) and is one–to–one onto
the intersection of g∗c with g∗ × W\h∗, which is Zariski–open in Cg∗ × g. The
map gc

q→ W\h∗ is induced by the projection of Cg∗ ×W\h∗ onto W\h∗ and is
surjective. For θ ∈W\h∗, the fibre in question is

Ωcθ = {(ξ/τ, θ) : ξ/τ ∈ Cg∗, q(ξ) = τ · θ} (7)

from which the assertions are evident. �

The following picture emerges. In the projective completion Cg∗ of g∗ the clo-
sures of all fibres Ωθ intersect at infinity in the projectivized nilpotent cone PN .
In g∗c the fibres get separated, with disjoint copies PN × {θ} of PN at infinity.
We now introduce a fibrewise completion of g̃∗ in which all fibres become smooth.

2.4.4 Definition. Let

g̃∗c = {(x, ξ/τ, λ) : x ∈ B, ξ/τ ∈ C(g/nx)∗, λ ∈ h∗, q(τλ) = q(ξ)}.

To analyze g̃∗c we introduce two auxiliary varieties:

(g/n)c = {(ξ/τ, θ) ∈ C(g/n)∗ ×W\h∗ : q(ξ) = τ · θ};
B∗c = {(x, ν/τ) : x ∈ B, ν/τ ∈ C(g/bx)∗}.
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2.4.5 Lemma. a) There is a natural isomorphism
g̃∗c ≈ G×B (g/n)c (8)

In particular, g̃∗c is smooth and g̃∗c → h∗ is a submersion.
b) There is a natural commutative diagram

g̃∗ ⊂ g̃∗c
ρ→ g∗ ⊂ g∗c

q̃ ↓ ↓ q
h∗ → W\h∗

(9)

The inclusions have open and dense images.
c) The fibration g̃∗c → h∗ admits a U–equivariant, real–analytic global trivialization
given by

g̃∗c
U≈ B∗c × h∗, (10)

or equivalently

G×B (g/n)c
U≈ U ×T C(g/b)∗ × h∗. (11)

A trivialization map B∗c×h∗ ≈→ g̃∗c is given by (u·xo, u·ν/τ, λ)→ (u·(τλ+ν)/τ, λ}.
We omit the simple verifications.
In view of lemmas 2.4.2 and 2.4.4, the constructions of section 1 in the form of

Theorem 1.1.1 apply in the present context. In particular, the limit map introduced
there is now the Springer resolution (6) and we have the restricted monodromy rep-
resentations defined in terms of this map as in 1.9.3. We shall now introduce the
homology of interest in connection with characters of real semisimple groups.

2.5A homology for subalgebras. From now on we shall consider g as real
Lie algebra and we denote by g∗ the real dual space of g, unless specified otherwise.
To avoid confusion, we denote the real pairing of g and g∗ by (X, ξ) and keep the
notation 〈X, ξ〉 for the complex pairing. We agree that

(X, ξ) = Re〈X, ξ〉.
Let τ be the Cartan involution of g whose fixed–point set is the Lie algebra of the
compact form U of G. We use the notation (X,Y ) for the real Killing form of g,
which should cause no confusion since it agrees with the notation (X, ξ) when g is
identified with g∗ by the Killing form, as is sometimes convenient; but generally
we distinguish g and g∗ in notation. We shall need an auxiliary Euclidian inner
product on g∗, which we take to be

(ξ, η)τ = −(ξ, τη).
The corresponding Euclidian norm is denoted ‖ξ‖2.
Let go be any real subalgebra of g and Go the corresponding subgroup of G = Ad(g)
. Write Rgo : g∗ → g∗o for natural projection, g⊥o for its kernel. As a family of
supports on g∗ we introduce the closed subsets of g∗ which are contained in strips
of the form

‖Rgo(ξ)‖ ≤ const., ‖q(ξ)‖ ≤ const. (12)

This condition also defines families of supports on the fibres Ωθ and Ω̃λ, in partic-
ular on B∗, as explained in 1.12. The corresponding homologies will be denoted
′H(·). Note that the second condition in (12) is vacuous on a given Ωλ.
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2.5.1 The homology ′H∗(Ωθ) admits realizations by several chain complexes.
Here we have in mind subanalytic chains on Ωθ as in [Kashiwara–Shapira, 1990,
§9.2], but subject to the condition (12) on their supports. Another model may
be constructed using infinite (but locally finite) singular chains as in [Rossmann
1984, 1990]. A model in classical simplicial homology is also available: consider the
completion Ωcθ as a simplicial complex K by a triangularization. Assume that its
part at infinity Ωcθ−Ωθ is a subcomplex L, as is L1 = Ω∞

θ ∩ g⊥o
c. Put L2 = L−L1.

Then

′H.(Ωθ) = H.(K− L2;L1).

The homology on the right is of the type discussed in [Lefschetz, 1965, p.140 ff].
Similar remarks apply to the homology groups ′H.(Ω̃λ).

2.6 The conormal variety S. The conormal variety of the Go–action on
B is

S = {(x, ν) ∈ B∗ : ν ∈ g⊥o }.
There are two natural maps

a) π : S → B, (x, ν)→ x,
b) ρ : S → N (g⊥o ), (x, ν)→ ν. (13)

They lead to two quite different views of the variety S as follows.

a) S is the union of the conormal bundles of the Go –orbits on B.
b) S is the inverse image of N (g⊥o ) under the Springer resolution ρ : B∗ → N .

For the interpretation in a) one identifies B∗ with the real cotangent bundle of
B by means of the real pairing (X, ν) = Re〈X, ν〉 on (g/bx) × (g/bx)∗. There is
another interpretation of S which is sometimes useful. Namely, define

ρgo : B∗ → g∗o, ρgo(x, ν) = Rgo(ν).

This is the moment map of the action of Go on B∗, considered as the real cotangent
bundle of B. Then S = ρg−

o 1(0), the inverse image of 0 ∈ g∗o. The pictures in §4.12
illustrate the situation. The importance of the variety S in the present context
comes from the following fact.

2.6.1Proposition. The inclusion S → B∗ induces an isomorphism H.(S) ≈→
′H.(B∗) where H.(S) denotes homology with arbitrary supports.

Proof. For any c > 0 set Vc = {(x, ν) ∈ B∗ : ‖Rgo(ν)‖ ≤ c}. Then
′H.(B∗) = lim

c→0
H.(Vc),
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the inductive limits of the homologies of the Vc with arbitrary supports, cf. [Borel–
Moore, 1960, Theorem 3.4]. For any t > 0, the map Vc → Vtc, (x, ν) → (x, tν),
induces an isomorphism

H.(Vc) ≈ H.(Vtc).

For sufficiently small ε > 0, the closed neighbourhood Vε of S admits a proper
retraction to S : it suffices to choose a triangularization of the projective variety
B∗c which contains the closure of S as a subcomplex and to apply the remark 1.9.4.
Thus

H.(Vε) ≈ H.(S)
for such ε > 0. Combining these isomorphisms one gets the desired isomorphism
′H.(B∗) ≈ H.(S). �

2.6.2 The lemma proves in particular the isomorphism of the various models
for the homology ′H.(B∗) mentioned in 2.5.1, since the corresponding isomorphisms
hold for H.(S).

2.6.3 Assume that Go has finitely many orbits on B. It is then clear from
(13), (a) that S is a real–analytic variety of dimension

dimR S = dimC B∗ = 2n

n = dimC B as before. Its homology in dimension 2n = dimR(S) can be described
quite explicitly as follows. Let Ssm the manifold of smooth points of the real
analytic variety S. By a component C of S we shall mean a connected component
of Ssm. Together with an orientation, it defines a 2n–chain [C] on S. It is easy
to see (and will be verified below in a more general situation) that any 2n–cycle
Γ ∈ H2n(S) a can be uniquely represented in the form

Γ =
∑
C

mC [C] (mC ∈ Z) (14)

where C runs over the connected components of Ssm. However, the chains [C] them-
selves need not be cycles, unless S is a complex variety.

2.6.4 Example. Take go = b. The B–orbits on B are of the form Ow =
Bwxo, w ∈ W. The components of S are the conormals Cw of the Ow. Recall the
maps pλ : B∗ → Ωλ, (x, ν) → u(x) · λ + ν, in (5) which enter into the definition of
the monodromy transformations

aλ(w) = p−1
wλ ◦ pλ : B∗ → B∗

(cf.1.8). We consider the basis [Cw], w ∈W, of ′H2n(B∗) ≈ H2n(S).
Let Vw = B ∩ wN̄w−1 where N̄ is the unipotent radical of the Borel subalgebra
containing H opposite to B, so that Vw is a set of coset representatives for B/B ∩
wBw−1. Then Ow = Vw · wxo and

Cw = Vw · ({wxo} × wb⊥ ∩ b⊥).
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We write the decomposition of the cycle [Cw] into the fibres of Cw → Ow as

[Cw] =
⊔

v∈Vw

v · [{wxo} × wb⊥ ∩ b⊥],

to be interpreted as a chain (the image of [Vw×wb⊥∩b⊥]). Under the map pλ this
becomes

pλ[Cw] =
⊔

v∈Vw

[u(vw)λ+̇vwb⊥ ∩ b⊥] (15)

where +̇ is pointwise addition in g∗, the dot being added to distinguish it from
addition of chains. The element u(v) ∈ U/(U ∩H) is defined by G = UB. For the
closed orbit C1 = {xo} we get

pwλ(C1) = wλ+̇b⊥.

We assume that λ is regular. Then b → w · λ maps B/H bijectively onto wλ+̇b⊥

and maps (B ∩ wBw−1)/H onto (wλ+̇wb⊥ ∩ b⊥). Since B = Vw(B ∩ wBw−1) ≈
Vw × (B ∩wBw−1) we find that wλ+̇b⊥ = Vw(wλ+̇wb⊥ ∩ b⊥), i.e.

pwλ[C1] =
⊔

v∈Vw

[vwλ+̇vwb⊥ ∩ b⊥]. (16)

We note the similarity of (15) and (16). However, these cycles on are not the same.
On B∗ they correspond (under pλ) to the cycles [Cw] and [aλ(w)C1] respectively.
The first lies on S, the second does not (for w �= 1). To realize [aλ(w)C1] on S
it must be retracted to S as in the proof of 2.6.1. This cycle lies over Ow, i.e.
π(aλ(w)C1) = π ◦ p−1

λ (Bw · λ) = Bw · xo = Ow, because π ◦ p−1
λ is G–equivariant

(2.3.1). Thus the retraction of [aλ(w)C1] to S can take place over the closure Ōw

of Ow. It follows from (15) and (16) the result of the retraction is of the form

[aλ(w)C1] = ±[Cw] + · · · (17)

where the dots indicate a cycle over the topological boundary Ōw − Ow of Ow in
Ōw and the sign depends on w and on the orientations. (This is also a corollary
of Theorem 5.8 below.) It is not easy to find an explicit formula for these cycles.
For the case G = SL2(C) this is the Picard–Lefschetz formula in its most basic
form (cf. 4.12). Some additional information will be given in the next section.
The formula (17) shows at least that the cycles [aλ(w)C1], w ∈ W, form a basis
for ′H2n(B∗) ≈ H2n(S), so that the monodromy representation of W in ′H2n(B∗)
is equivalent to the regular representation on Z[W ] with [C1] corresponding to the
canonical generator 1 ∈Z[W ].

2.6.5 While the transformations aλ(w) of B∗ do not leave the subvariety S in-
variant, they do leave the zero section B invariant: aλ(w) operates on B ≈ U/H∩U
by u · xo → uw−1xo. This follows directly from the definition (5).
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We shall be interested in subalgebras go for which Go has finitely many orbits
both on B and on N (g⊥o ), which is the case when go is a symmetric subalgebra in
the sense of the following definition.

2.6.6Definition. A symmetric subalgebra of g is the fixed–point set go = gσ

of an involutive automorphism σ of g as real Lie algebra.
We shall always assume that σ commutes with the Cartan involution τ fixing the
compact real form U of G, as can be arranged by suitable conjugation.

2.6.7 We recall that there are two basic types of involutions:

a) gR– case: σ is conjugate linear, go = gR, a real form of g.
b) kC –case: σ is complex linear, go = kC, the complexification of k := gτo .

Any pair (g, σ) can be decomposed into a direct product of pairs of these types.
These two types are in a natural duality: (g, σ+) is dual to (g, σ−) if σ+σ− = τ,
where τ is the fixed Cartan involution of g commuting with σ+ and σ−.

2.7 Finite orbit structure. Because of its importance later, we record the
following the well–known property of symmetric subalgebras.

Go has finitely many orbits on B and on N (g⊥o ) = N ∩ g⊥o . (18)

For the action of Go on B this follows from [Wolf, 1969] in the gR–case and from
[Rossmann, 1979, Theorem 13] in general. For the action of Go on N ∩ g⊥o this
follows from [Kostant and Rallis, 1971] in the gR–case and in the kC–case, and
from [Segikuchi, 1987] in general. We shall mainly be interested in the map
ρ : S → N (g⊥o ). However, much of the discussion will also apply to the map
S → B, and the results for this case are also of interest. We therefore formulate
the discussion in an abstract setting which applies to both.

3. The top homology of some peculiar varieties

3.1Notation. For any locally compact spaceX, let H.(X) denote homology
with arbitrary supports; coefficients are taken form Q, unless indicated otherwise.
When X is a real–analytic variety, an m–chain on X will be understood to mean a
subanalytic m–chain.

3.2 Lemma. Let X be an m–dimensional real analytic variety.
a) For any closed subset Z ⊂ X inclusion Z

⊂→ X induces an injection Hm(Z)
⊂→

Hm(X).
b) Let Xsm the m–dimensional manifold of smooth points of X. The natural map

Hm(X)→ Hm(Xsm)
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induced by the open embedding Xsm → X is injective. In particular any m–cycle
Γ ∈ Hm(X) a can be uniquely represented in the form

Γ =
∑
C

mC [C] (mC ∈ Q) (1)

where C runs over the connected component of Xsm and [C] is its fundamental
cycle in Hm(Xsm) corresponding to a fixed orientation of C.

Proof. a) This follows from the exact sequence

0 = Hm+1(X − Z)→ Hm(Z)→ Hm(X)

which is part the homology sequence of the closed subspace Z ⊂ X (1.19).
b) Consider part of the long–exact sequence of the closed subspace (singular set)
Xsi = X −Xsm of X:

Hm(Xsi)→ Hm(X)→ Hm(Xsm).

Since dimXsi < m we have Hm(Xsi) = 0, hence we get an injection

Hm(X)
⊂→ Hm(Xsm). (2)

Since Xsm is a real manifold of dimension m, the oriented connected components
C of Xsm form a basis for Hm(Xsm), which gives the assertion. �

3.3 Lemma. Let G be any real Lie group, f : X → Y a surjective G–
morphism of real analytic G–varieties. Suppose Y = G ·y ≈ G/H is a homogeneous
space and put F = f−1(y). Put m = dimX, and e = dimF. Fix an orientation on
Y. For any p, there is a one–to–one correspondence γ ↔ Γ, denoted Γ = G · γ and
γ = Γ ∩ F, between H–invariant (e− p)–chains γ on F and G–invariant (m− p)–
chains Γ on X. This correspondence commutes with the boundary operators. In top
degree, it induces an isomorphism in homology,

Hm(X) ≈ He(F )A

where A = H/Ho is the component group of H.

Proof. On the level of sets such a correspondence is given by γ → Γ = G · γ =⋃
gH∈Y g · γ with inverse Γ→ γ = Γ ∩ F. The correspondence of chains is induced
by this. Under this correspondence, connected components of Xsm correspond to
A–orbits of connected components of Fsm. This gives Hm(Xsm) ≈ He(Fsm)A ,
which restricts to Hm(X) ≈ He(F )A. �
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3.4 Notation. a) Let G be any real Lie group, Y a real analytic variety (not
necessarily smooth) with a G–action. We assume that G has finitely many orbits
on Y. Let G\Y denote the set of orbits of G in Y.We shall identify subsets of G\Y
with G–stable subsets of Y.
b) Define a partial order on G\Y by setting

O < Q if O ⊂ Q̄−Q

where Q̄ is the closure of Q in Y. We shall call this the closure order on G\Y.
c) For any subset A ⊂ G\Y define ∂A ⊂ G\Y by

∂A = {O ∈ G\Y : O < Q for some Q ∈ A}.

We also write A′ for ∂A, especially if there is risk of confusion with other uses of ∂.
d) For any A ⊂ G\Y, put Ao = A − ∂A. Thus Ao consists of the orbits O in A
which are not in the closure of any other orbit in A; these are precisely the orbits
which are open in A and will be called the leading orbits of A.
e) For any A ⊂ G\Y, write

A ⊃ A′ ⊃ A′′ ⊃ · · · ⊃ A(k) ⊃ A(k+1) ⊃ · · ·

for the chain of subsets on G\Y obtained by repeatedly applying the operation
B → B′ = ∂B. In particular, we get a filtration on G\Y, i.e. a filtration on Y by
G–stable subsets, denoted

Y ⊃ Y ′ ⊃ Y ′′ ⊃ · · · ⊃ Y (k) ⊃ Y (k+1) ⊃ · · · .

This filtration will be called the closure filtration on G\Y.
f) Let f : X → Y a surjective G–morphism of real analytic G–varieties. For
any subset A ⊂ G\Y let XA = f−1(A). The closure filtration on G\Y induces a
filtration on X,

X ⊃ X ′ ⊃ X ′′ ⊃ · · · ⊃ X(k) ⊃ X(k+1) ⊃ · · · (3)

with X(k) = f−1(Y (k)).
We now specialize to a very peculiar type of map.

3.5Hypotheses. Let X
f→ Y be a G–morphism of real–analyticG–varieties

with the following properties.
a) G has only finitely may orbits on Y.
b) For any y ∈ Y, the component group Ay = Gy/G

o
y of its stabilizer Gy is finite.

c) All XO = f−1(O) (O ∈ G\Y ) have the same dimension m = dimX.
d) For any y ∈ Y, (f−1(y))si has codimension ≥ 2 in f−1(y).
e) For any y ∈ Y, Hey−1(f−1(y)) = 0 where ey = dim f−1(y).
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3.6Theorem. a)The closure filtration on G\Y induces a filtration Hm(X) ⊃
Hm(X ′) ⊃ · · · ⊃ 0 on Hm(X) whose graded group is

grHm(X) ≈
∑

O∈G\Y
Hm(XO). (4)

b) For any G–orbit O = G · y ∈ G\Y one has

Hm(XO) ≈ Hey (f
−1(y))Ay . (5)

The isomorphism (4) is more precisely described in the following more detailed
version of the theorem.

3.6.1 Theorem. For any subset A of G\Y the inclusions XA′
i→ XA

j←
XA−A′ induce an exact sequence

0→ Hm(XA′) i∗→ Hm(XA)
j∗→ Hm(XA−A′)→ 0. (6)

and isomorphisms

Hm(XA)/Hm(XA′) ≈ Hm(XA−A′) ≈
∑

O∈A−A′
Hm(XO).

Proof of 3.6.1. a) Let A be any subset of G\Y and O a relatively closed orbit
in A. The exact sequence 1.12.2(c) of the closed subspace XO ⊂ XA gives an exact
sequence

Hm+1(XA−O)→ Hm(XO)→ Hm(XA)→ Hm(XA−O)→ Hm−1(XO). (7)

We haveHm+1(XA−O) = 0 trivially. We show that map Hm(XA−O)→ Hm−1(XO)
is zero as well. Every element of Hm(XA−O) can be represented by an m–chain Γ
on X, contained in XA−O = XA −XO, with ∂Γ ⊂ XO. As in (1), Γ can be written
as a linear combination of oriented m–dimensional components C of (XA−O)sm,
hence ∂Γ can be represented as a linear combination of the corresponding (m− 1)–
chains ∂C on XO. In particular, ∂Γ is a G–stable, (m−1)–cycle on XO. Fix y ∈ O,
let F = f−1(y), and let H = Gy, the stabilizer of y in G. By 3.3, there is a (e− 1)–
chain β on F so that ∂Γ = G · β. Here e = dimF. By hypothesis, He−1(F ) = 0, so
β = ∂α for some e–chain α on F. Let Go = supp β, an (e− 1)–dimensional closed
subanalytic subset of F. Then α determines a class in He(F −Go), because ∂α = β
has support on Go. The class of β = ∂α in He−1(F ) depends only on the class of
α in He(F − Go). Since Fsi has codimension ≥ 2 in F, we have He(F − Go) ≈
He(Fsm − Fsm ∩ Go), hence any element of He(F − Go) can be represented as a
linear combination of oriented components of Fsm − Fsm ∩Go. These components
are stable under the connected subgroup Ho of H, because Go = suppβ is stable
under H. Hence one can choose an Ho–stable e–chain α on F so that β = ∂α.
Since β is stable under the full group H, and since A = H/Ho is finite, one can can
replace α by |A|−1

∑
a∈A a ·α to obtain an H–stable e–chain α which still satisfies
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β = ∂α. The the G–stable m–chain G · α on XO which corresponds to α by 3.3
then satisfies ∂(G · α) = G · (∂α) = G · β = ∂Γ, hence ∂Γ ∼ 0 in Hm(XO).
Thus (7) reduces to

0→ Hm(XO)→ Hm(XA)→ Hm(XA−O)→ 0. (8)

This operation may be repeated: if Q is a relatively closed orbit in A−O one gets

0→ Hm(XQ)→ Hm(XA−O)→ Hm(XA−O−Q)→ 0. (9)

The inverse image ofHm(XQ) ⊂ Hm(XA−O) under the mapHm(XA)→ Hm(XA−O)
is Hm(XO∪Q) ⊂ Hm(XA). (We note that O ∪Q is closed in A, since A−O −Q is
open in A−O and hence in A.) Thus from (8) and (9) one gets

0→ Hm(XO∪Q)→ Hm(XA)→ Hm(XA−O−Q)→ 0. (10)

Successively subtracting the orbits in A′ from A in such a way that at each step the
orbit is closed in the set from which it is subtracted one finds an exact sequence

0→ Hm(XA′)→ Hm(XA)→ Hm(XA−A′)→ 0. (11)

By the definition of A′, the orbits O in A−A′ are open in A−A′, hence XA−A′ is
a disjoint union of the open subsets XO, O ∈ A−A′. This implies that

Hm(XA−A′) =
∑

O∈A−A′
Hm(XO),

and proves 3.6.1. �

Proof of theorem 3.6 a) This is a consequence of 3.6.1, together with 3.2(a),
which insures that the Hm(X(k)) can be considered as subgroups of Hm(X).
c) This follows from 3.3 applied to f : XO → O. �

3.7 For reference we record some simple observations related to the theorem.
a) In 3.6.1 one can replace A′ by any B with A′ ⊂ B ⊂ A to get

0→ Hm(XB)
i∗→ Hm(XA)

j∗→ Hm(XA−B)→ 0. (12)

This is clear from the proof and follows from the theorem as stated.
b)In 3.6 (a) one can replace the filtration Y (k) on Y by any G–stable filtration with
the property that for all k

Y (k+1) − Y (k) is a union of relatively open orbits.

For example, one can take for Y (k) the union of the orbits of codimension k in X.
The theorem remains valid for the corresponding filtration X(k) = f−1(Y (k)) of X.
The filtration defined in 3.4 is the coarsest one with the above property, hence gives
the strongest assertion in part (a) of the theorem.
c) The proof of the theorem requires that the order |A| of the component group
defined there be invertible in the coefficient ring of the homology and it is for this
reason that the coefficients were taken from Q rather than from Z. One can nat-
urally formulate a more precise statement by keeping track of these denominators,
but we shall not bother to do so. Similar remarks apply elsewhere.
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3.8 Definition. For any m–chain Γ on X we set A(Γ) = f(suppΓ) ⊂ G\Y.

3.9 Lemma. Let Γ ∈ Hm(X).
a) Then there is a unique decomposition

Γ =
∑

O∈G\Y
ΓO

where ΓO is a G–invariant m–chain on XO .
b) A(Γ) is the unique minimal closed subset A ⊂ G\Y so that Γ ∈ Hm(XA).
c) If O = G · y ∈ G\Y is a leading orbit in A(Γ), then ΓO ∈ Hm(XO) is an m–
cycle on XO and Γy := ΓO ∩ f−1(y) ∈ Hey(f−1(y))Ay is an ey–cycle on f−1(y), ey
= dim f−1(y).

Proof. a) Let Z = suppΓ. The disjoint decomposition X =
⋃

O∈G\Y XO gives
a disjoint decomposition Z =

⋃
O∈G\Y ZO and since dimXO = m for all O, this

induces a unique decomposition Γ =
∑

O∈G\Y ΓO where ΓO is an m–chain on XO

with support CO. Since any m–cycle Γ on X is a linear combination of connected
components of Xsm as in (1), it is G–invariant, hence so are the m–chains ΓO.
b) From its definition, A(Γ) is the unique minimal closed subset A of G\Y so that
suppΓ ⊂ XA. This implies the assertion.
c) If O is leading orbit in A(Γ), then XO is open in XA and ΓO is the image of
Γ under the natural map Hm(XA) → Hm(XO) of 1.12.2 (a). The last assertion
follows from 3.3. �

3.10 For an arbitrary orbit O the m–chain ΓO on XO need not be a cycle.
But if Γ ∈ H2n(XA), with A ⊂ G\Y closed, and if O is a leading orbit in A, then
ΓO is a cycle on XO : it coincides with the image of Γ under the map in the exact
sequence (12) with B = A−O :

0→ Hm(XA−O)→ Hm(XA)→ Hm(XO)→ 0. (13)

3.11 Conormal varieties. One situation of interest in which the theorem
applies concerns the conormal variety of an action with finitely many orbits. The
formal definition reads as follows.

3.11.1 Definition. Let G be a Lie group acting on a manifold M. The
conormal variety C of this action is subvariety of the cotangent bundle T ∗M defined
by

C = {(x, ξ) ∈ T ∗M : 〈ξ,X · x〉 = 0 for all X ∈ g}.
Thus C is the union of the conormal bundles CO of the G–orbits on M.
We observe that the hypotheses of the theorem are satisfied in the following case.
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3.11.2 Lemma. Let G be a Lie group acting on a manifold M, C the conor-
mal variety. Suppose G has only finitely many orbits on M and the isotropy groups
have only finitely many connected components. Then the projection π : C → M
satisfies the hypotheses 3.5.

Proof. Hypotheses a) and b) hold by assumption.
Hypothesis c) follows from the fact that π−1(O) = CO (O ∈ G\M), the conormal
bundle of O.
Hypothesis d) is trivially satisfied since π−1(y) ≈ Rn.
Hypothesis e) follows from the fact that for homology with arbitrary supports one
has

Hk(Rn) =
{

Q for k = n

0 otherwise.
�

4. The homology of the variety S and representations of Weyl groups

We now return to the variety S of 2.6.

4.1 Lemma. The two Go–maps S → B and S → N (g⊥o ) satisfy the hypothe-
ses 3.5.

Proof. For the map S → B this follows from 3.11.2. It remains to consider
the map S → N (g⊥o ). Over any Go–orbit O ∈ H\N (g⊥o ) , the map S → N (g⊥o )
restricts to Go–equivariant fibration

Bν ⊂→ SO → O (1)

where the fibre Bν over ν ∈ O is the Springer variety

Bν = {x ∈ B : ν ∈ (g/bx)∗}.

That hypothesis (c) is satisfied, i.e. that

dimR SO = 2n, (2)

is seen as follows. From (1) it follows that for O = Go · ν one has

dimR SO = dimR Go · ν + dimR Bν. (3)

Results of Spaltenstein and Steinberg imply that

dimC G · ν + 2dimC Bν = 2n, (4)

cf. [Rossmann, 1990, Lemma 4.4]. Furthermore,

dimC G · ν = dimR Go · ν; (5)
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this evident when go is a real form of g and follows from a result of Kostant and
Rallis [1971, p.770] for any symmetric subalgebra go of g. Hence for O = Go · ν

dimR SO = dimR Go · ν + dimR Bν = dimC G · ν + 2dimC Bν = 2n

as required. The hypothesis (d) is clear, since Bν is a complex algebraic variety,
and (e) follows from the fact that

Hk(Bν) = 0 for odd k,

which is proved in [De Concini, et al. , 1988] for integral homology, and was proved
earlier for rational homology by Shoji and by Beynon and Spaltenstein. �

For reference we state explicitly the content of the theorem for the two maps 2.6,
eq.(13). For the map π : S → B we only point out one consequence.

4.2 Theorem. The dimension of H2n(S) equals to the number of Go–orbits
on B :

H2n(S) Q≈ Q[Go\B]. (6)

Proof. By 3.2, any 2n–chain on S is uniquely a linear combination of of the chains
[SQ], Q ∈ Go\B, defined by the oriented conormals of the H–orbits S. By 3.6.1
each chains [SQ ] can be completed to a cycle of the form [SQ]+ · · · where the dots
denote a linear combination of cycles [SR] with R < Q. It clear from part (a) of 3.6
that these cycles then from a Q–basis of H2n(S). �

For the map ρ : S → N (g⊥o ) we restate theorem 3.6 in detail.

4.3 Theorem. a) The closure filtration on H\N (h⊥) induces a filtration on
H2n(S) whose graded group is

grH2n(S) ≈
∑

O∈GR\N (g⊥
o )

H2n(SO). (7)

b) For any G–orbit O = H · ν ∈ H\N (g⊥o ) one has

H2n(SO) ≈ Heν (Bν)Aν . (8)

Again we add the

4.3.1 Addendum to 4.3. For any subset A of Go\N (g⊥o ) the inclusions
SA′

i→ SA j← SA−A′ induce an exact sequence

0→ H2n(SA′) i∗→ H2n(SA) j∗→ H2n(SA−A′)→ 0 (9)
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and isomorphisms

H2n(SA)/H2n(SA′) ≈ H2n(SA−A′) ≈
∑

O∈A−A′
H2n(SO). (10)

4.4 Restricted monodromy representations. Let V ⊂ N (g⊥o ) be a sub-
set of N (g⊥o ) which can be realized as a relative subcomplex of some triangulation
of the pair of projective varieties (N c,N c−N ). Then the construction of 1.9.3 gives
a homomorphism of W into the group of homotopy equivalences of SV = ρ−1(V ).
Thus we have representations of W on all of the homology groups occurring in
4.3. (The comments in 1.10.4 are relevant here.) In particular for V = {ν} we get
SV = Bν, and H.(SV ) = H.(Bν), the usual homology with compact supports. In
this case the whole construction is independent of the subalgebra go which enters
into the support condition. Thus we get a representation of W on H.(Bν) for any
ν ∈ N ; it commutes with the natural representation of the complex component
group Aν := Gν/G

o
ν . In top degree 2e = dimR Bν these are the Springer represen-

tations constructed in [Springer, 1978] by other methods.

4.4.1 Addendum to Theorem 4.3 All maps in Theorem 4.3 are W–
equivariant for the restricted monodromy representations. Furthermore,

H2n(SO) ≈ H2e(Bν)Ao,ν . (11)

Proof. All of the restricted monodromy representation can the be realized by
the same operators aλ(w) according to 1.9.3. The W–equivariance of the maps
in Theorem 4.3 follows. The isomorphism (11) is given by Γ → Γ ∩ Bν as in 3.3.
The group Go,ν/G

o
o,ν may here be replaced by its image in the complex component

group Gν/G
o
ν : its representation on H2e(Bν) factors through this map, because

H2e(Bν) is spanned by the fundamental cycles of the irreducible components of
complex variety Bν, and these are cycles fixed by the connected group Go

ν . �

We recall Springer’s fundamental result concerning the representations of W on
the H2e(Bν) :

4.5 Theorem (Springer). The representation of W on the Aν–isotypic com-
ponent H2e(Bν)φ of H2e(Bν) transforming according to an irreducible character φ
of Aν is an irreducible representation of W. Let χν,φ be its character. Then every
irreducible character of W is of the form χν,φ for a pair (ν, φ), which is unique up
to conjugacy under G.

Since it is possible to deduce this theorem from results proved here by a short
and instructive argument (also due to Springer, unpublished), we include a proof.

Proof of the theorem. We apply the construction for (g, go) replaced by
(g× g, diagg), with embedded as the diagonal. Theorem 4.3 then gives

H2n(S) ≈
∑
ν

[H2e(Bν)⊗H2e(Bν)]Aν (12)
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with Aν = Gν/G
o
ν acting diagonally and ν running over a set of representatives of

the G–orbit in N = N (g∗). The decomposition is a (W ×W )– isomorphism. Since
the G–orbits on B × B are in this case in one–to–one correspondence with W, the
isomorphism (6), becomes

H2n(S) ≈ Q[W ]. (13)

This is a W ×W–isomorphism for the biregular representation on Q[W ], as follows
from the discussion in example 2.6.4. (An analytic proof can be found in [Ross-
mann, 1991]). Comparison of (12) with the familiar decomposition

C[W ] ≈
∑

χk ⊗ χk,

χk running over the irreducible characters of W, gives the theorem. �

4.6 For a given ν, not all characters φ of Aν need occur in (12). If those
that do are denoted Φν , then the proof shows more precisely that the irreducible
characters of W are indexed by G–conjugacy classes of pairs (ν, φ), ν ∈ N , φ ∈ Φν .
There are several other constructions of the Springer representations of W on the
H.(Bν). The one of Slodowy [1980 (1)] is similar to the one given here, and we verify
in some detail the following comparison lemma, because the proof will exhibit an
important localization property of the restricted monodromy representation to a
neighbourhood of Bν.

4.7 Lemma. The restricted monodromy representation on H.(Bν) defined
above is equivalent to the representation defined in [Slodowy, 1980 (1)].

Proof. Fix ν ∈ N . A local trivialization of g̃∗
q̃→ h∗ around Bν = ρ−1(ν) can be

constructed as follows, cf. [Slodowy, 1980 (1)]. Let S ⊂ g∗ be a local transversal
slice to the complex orbit G · ν; thus the action map G × S → g∗ is a submersion
near ν and one can find a submanifold patch V at the identity in G so that locally
around ν one has V × S ≈ g∗. By G–equivariance of g̃∗ → g∗ one also has locally
V × S̃ ≈ g̃∗ where S̃ is the preimage of S. In particular, S̃ is smooth and S̃ → h∗ a
submersion. This map admits a trivialization F × h∗ ≈ S̃, locally in a neighbour-
hood of Bν . Hence we get locally V × F × h∗ ≈ V × S̃ ≈ g̃∗, which gives the local
trivialization of g̃∗

q̃→ h∗ around Bν . We may assume that V is contractible (say a
ball), and may then as well be omitted as far as the monodromy is concerned. We

are now dealing with S̃
q̃→ h∗ and its local trivialization F × h∗ ≈ S̃. As before, we

obtain from it a homomorphism of W into the group of homotopy equivalences of
Bν ⊂ S̃. This is the construction in [Slodowy, 1980 (1)]. The difference between the

two constructions is that one uses a trivialization of g̃∗
q̃→ h∗ defined over a whole

neighbourhood of 0 in h∗, the other a trivialization defined only in some neighbour-
hood of Bν in g̃∗ or in S̃. But this is of no consequence as far as the homomorphism
of W into the group of homotopy equivalences of Bν is concerned: a given trivial-
ization in a neighbourhood of Bν in g̃∗ can always be extended to a trivialization
defined everywhere over a neighbourhood of 0 in h∗ (see 1.10.2). The corresponding
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transformations aλ(w) defined in 1.9.3 then agree near Bν and therefore induce the
same homomorphism of W into the group of homotopy equivalences of Bν. �

4.8 The lemma makes the connection between Springer’s Theorem 4.5 and
the construction in [Slodowy, 1980 (1)], a point left open there. The crux is that
the He(Bν) appear in the decomposition (7)−(8) of H2n(S). The whole theory is
naturally just an elaboration of the heuristic principle of 1.1 for the deformation of
the Ωλ into Ω0 = N , or rather of S into N (g⊥o ), based on closure filtration as in
3.4 (f).

4.9 Example. The filtration of the representation of W on H2n(S) induced
by the closure order on H\N (g⊥o ) can be quite intricate combinatorially. The
simplest case is g = pgl(n,C), go = pgl(n,R). In this case each term in the decom-
position in the decomposition (7) is irreducible: the representation of W = Sn in
H2e(Bν) is the irreducible representation of Sn associated to the partition of n given
by the size of the Jordan blocks of ν, with n = 1+ · · ·+1 corresponding to the sign
representation and n = n to the trivial representation. It can be shown that the
representation of Sn in the complete homology H.(Bν) is in this case induced from
the trivial representation of the subgroup of W corresponding to a Levi subgroup
of Go in which ν is the regular nilpotent. (For arbitrary G and ν it can be shown
to be induced from a distinguished nilpotent.) We observe that for Go · ν′ < Go · ν
in H\N (g⊥o ) there is a canonical map

H.(Bν)→ H.(Bν′
) (14)

defined as follows. Choose sufficiently small neighbourhood V of ν′ inN (g⊥o ) so that
the inclusion Bν′ ⊂ ρ−1(V ) induces an isomorphism in homology. SinceGo · ν′ <
Go · ν one can choose ν ∈ V and then gets a map (14) induced by the inclusion
Bν ⊂ ρ−1(V ). This map exists in general. For the present example it is the well–
known map which is the subject of the so–called Snapper conjecture. (Cf. [Lam,
1977]. This follows from [Hotta and Springer, 1977], Corollary 2.3, as pointed out
by the referee.)

4.10 Duality. As remarked earlier, the involutions σ of g (assumed to com-
mute with the given Cartan involution τ) come naturally in pairs σ+, σ− so that
σ+σ− = τ. Fix such a pair and write g+, g− for the corresponding fixed subalgebras
go, and S+,S− for the conormal varieties S. As a consequence of 4.3 and 4.4.1 we
have the

4.11 Corollary. H2n(S+) ≈ H2n(S−) as W–modules.

Proof. According to a well–known result of Kostant in the gR, kC– case, and
of [Sekiguchi, 1987] in general, there is a one–to–one correspondence O+ ↔ O−
between G+–orbits in N (g⊥+) and G−– orbits in N (g⊥−) : O+ ↔ O− it they belong
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to a common complex orbit G · ν; both kinds of orbits are in one–to–one corre-
spondence with so–called normal sl2–triples. The centralizer Gν of ν in G admits
a semidirect decomposition Gν = GφVν where Vν is a connected unipotent nor-
mal subgroup and Gφ is the centralizer of the whole sl2–triple φ belonging to ν,
a reductive group. ([Collingwood–McGovern, 1993], 3.7.3.) The component group
of G± ∩ Gν is the same as that of the group G± ∩ Gφ. Since the latter group is
reductive, its component group is the same as that of a maximal compact subgroup
([Wallach, 1988], 2.1.8), which can be taken to be K ∩ Gφ for both G+ ∩ Gφ and
G− ∩ Gφ. Hence the groups Ao,ν in 4.4.1 are the same and the representations of
W in the spaces H2n(SO) ≈ H2n(Bν)Ao,ν are isomorphic in the two cases. �

4.11.1 We refer to [Kostant and Rallis, 1971] for the theory of normal sl2–
triples and to [Sekiguchi, 1987] for details on the orbit correspondence on N . An
exposition of this theory can also be found in [Collingwood and McGovern, 1993].
There is an analogous orbit correspondence on B, due to [Wolf, 1969] in a special
case and to [Matsuki, 1979] in general. See also [Mircović et al. , 1992]. The two
correspondences should be related through the conormal varieties in B∗, but I am
not aware of any results which would the explain the above corollary more directly.

4.12 Example. We consider the case g = sl(2,C). This example has some
significance for the general theory, because around a generic critical point of q :
g∗ → W\h∗, corresponding to the vanishing of a single root, the singularity of q
has the same type as the singularity 0 for sl(2,C), as will be discussed in the next
section.
The coadjoint quotient q : g∗ → W\h∗ can be identified with quadratic function
q : C3 → C,

q(ξ) = ξ1ξ2 − ξ2
3

with ξ = (ξ1, ξ2, ξ3), a paradigm of Picard–Lefschetz theory, cf. [Arnold et al. 1988,
Chap. I]. The monodromy representation in the homology of the standard fibre
Ω ≈ B∗ in degree 2 = dimCΩ is given by the classical Picard–Lefschetz Theorem
[Lefschetz, II.8; V.6–7; Arnold et al. , 1988, Chap. I],

s · Γ ∼ Γ + 〈Γ,∆〉∆. (15)

Here Γ is a cycle with arbitrary support on B∗. The cycle ∆ is the classical Picard–
Lefschetz vanishing cycle; it is the fundamental cycle of the fibre S2 of the limit
map p0 : B∗ → N over the critical point 0 ∈ N , i.e. the fundamental cycle of
the zero section in B∗ as cotangent bundle of B = P1. The pairing 〈Γ,∆〉 is the
intersection index. Since 〈∆, ∆〉 = −2, the monodromy action of s can be viewed
as a reflection along the vanishing cycle. The operator Γ→ (s− 1)Γ is the classical
variation operator.
The formula (15) is usually understood as a homology relation, and its specific
interpretation as such depends on the family of supports defining the homology. It
is actually induced by a proper homotopy on Ω, and therefore holds as an identity
of homology classes for any family containing the compact sets.
We now specify three subalgebras go of g and consider the representation of W =
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{1, s} in ′H2(Ω) ≈ H2(S). In each case we exhibit a homeomorphic image of the
variety S and a basis for H2(S); this is done in pictures to avoid elaborate expla-
nations. We also write out the action of s on the basis in question.

a) go = b, a Borel subalgebra of g. The cycles ∆ and ∇ mentioned above both
live in ′H2(S) and form a basis for it. Cf. Fig. (4.1). The transformation formulas
for the basis {∆, ∇} are

s ·∆ = −∆, s · ∇ = ∇+∆,

in agreement with the Picard–Lefschetz formula (15); but now the cycles ∆ and ∇
live in the same homology group.

b) go = kC = sl(2,C). The transformation formulas for the basis {Γ+,Γ−,∆}
of H2(S) are:

s ·∆ = −∆, s · Γ+ = Γ+ +∆, s · Γ− = Γ− +∆. (16)

Cf. Fig. (4.2). To together with the fundamental cycle Γ0 of the whole variety S,
appropriately oriented, we evidently have the relation

Γ0 = Γ+ + Γ− +∆. (17)

c)go = gR = sl(2,R). In this case one can easily visualize the degeneration of S
into its image under the limit map, which here lies in the real subspace iR3. Cf.
Fig. (4.3). H2(S) has rank three as in (b). We again single out four particular
elements of H2(S); they satisfy the same relation as those in (b):

Γ̃0 = Γ̃+ + Γ̃− +∆ (18)

Cf. Fig. (4.4). The transformation formulas for the basis {Γ̃+, Γ̃−,∆} of H2(S)
are also the same as those in (b):

s ·∆ = −∆, s · Γ̃+ = Γ̃+ +∆, s · Γ̃− = Γ̃− +∆. (19)

4.12.1 Under the correspondence between cycles and characters mentioned in
the introduction, the relation (19) corresponds to the familiar decomposition of
principal series characters of SL(2,R). The examples (b) and (c) illustrate the
“KC, GR–duality” in this case.



Fig. (4.1). The variety S and two cycles ∇, ∆. Fig. (4.2). The variety S and three cycles Γ±, ∆.

Fig. (4.3). The variety S and its image under the limit map

Fig. (4.4). Four cycles on S : Γ̃0 = Γ̃+ + Γ̃− + ∆.

Fig. (5.1). Γ → sΓ ∼ Γ ± 〈Γ, ∆〉∆.
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5. A Picard–Lefschetz theorem for simple reflections

5.1 Preliminaries. The classical Picard–Lefschetz Theorem concerns the
monodromy of an isolated quadratic singularity, which one may take to be given
by the function q(x) = x2

0 + · · ·+ x2
m at x = 0 in Cm+1. It says that the generator

s of π1(C− {0}) acts on m–cycles Γ in the standard fibre Ω ≈ q−1(1) according to
the homology relation

sΓ ∼ Γ + (−1)(m+1)(m+2)/2〈Γ,∆〉∆ (1)

where ∆ is the vanishing cycle, represented by the real m–sphere in q−1(1). The
pairing 〈Γ,∆〉 is the intersection index. Form = 1 the situation can be visualized as
in Fig. (5.1), which brings out an important point: the cycle sΓ on Ω is homotopic
to Γ, but this homotopy does not fix the part at infinity and may therefore change
a homology class with non–compact supports as for ′H(Ω).
For even m the formula (1) represents a reflection along ∆, since then

(−1)(m+1)(m+2)/2 =
−2
〈∆,∆〉 .

The formula (1) applies to the coadjoint quotient of sl(2,C) with m = 2, for Γ
in any one of the homology groups ′H2(Ω) under consideration; this is illustrated
in example 4.13. Our Picard–Lefschetz Theorem for a simple reflection s will be
derived by a reduction to that case: we prove that s acts on H2n(S) as a reflection
along a space of vanishing cycles. Here and generally we understand by a reflection
along a subspace S of a vector space V a linear transformation s satisfying s2 = 1
which acts by −1 on S and by +1 on V/S. The same terminology applies to modules
over rings.
We are concerned with the monodromy of g∗ →W\h∗ around a point where exactly
one root vanishes. Let α ∈ h∗ be a simple root for (g, h, b), Hα ∈ h the coroot, and
s = sα the reflection along α. Fix an element λo of h∗ orthogonal to Hα, but not
orthogonal to any other coroot. When λ = λo, we write

po : B∗ → Ωo. (2)

for pλ : B∗ → Ωλ. It plays the rôle of the limit map at λo in the sense of 1.9. We
again assume given a subalgebra go of g, so that the homology ′H2n(B∗) is defined
and isomorphic to the top homology H2n(S) of the conormal variety S (2.6.1). The
subalgebra go need not be symmetric (2.6.6), but we assume that the corresponding
group Go has finitely many orbits on the flag manifold B.
We define a 2n–dimensional closed subvariety So of S which will play the rôle of
the vanishing m–sphere in the classical Picard–Lefschetz formula (1).

5.1.1 Definition. Let So = p−1
o (Oo) ∩ S, where po : B∗ → Ωo is the limit

map for λo, as in (2).
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We identify H2n(So) with a subspace of H2n(S). Our Picard –Lefschetz theorem
for s then reads:

5.1.2 Theorem. The monodromy action of s in H2n(S) is a reflection along
the subspace H2n(So) of H2n(S).
We shall actually prove a more precise, but also more technical, version of this

theorem, stated in 5.8 below. We first explain the simple principle (5.1.3) underly-
ing the theorem; the rest is devoted to the proof of the theorem in its formulation
5.8.
Superseding previous conventions, let Q̃ denote a small disc around λo in λo +
CHα ≈ C and Q its image in W\h∗. Then Q ≈ Ws\Q̃ where Ws = {1, s} and
Q̃→ Q is a branched double covering, whose branch point is the image of λo, still
denoted λo. Let M ⊂ g∗ be the connected component of q−1(Q) containing λo and
M̃ a connected component of its inverse image in g̃∗. Then we again have a diagram
as in Theorem 1.1.1, the critical fibre under consideration being q−1(λo) = Ωo; it
contains Oo := G ·λo as unique closed G– orbit. Let gs be the centralizer of λo in g,
so that (gs/centre) ≈ sl(2,C).We write Us,Bs,Ns, etc for the items corresponding
to U,B,N , etc when G is replaced by Gs.

5.1.3 Lemma. The map q : M → Q has λo as its only critical value. The
critical fibre is Ωo and the critical locus is Oo. One has Ωo ≈ G×Gs Ns and

M ≈ G×Gs (g
∗
s/centre), (3)

locally over neighbourhood of λo in Q.

We omit the simple verification and note only that the local isomorphism is
induced by the map

G×Gs g∗s → g∗, [g, ξ]→ g · ξ.
In principle, this lemma this lemma reduces the local monodromy of g∗ → G\\g∗
around λo to the coadjoint quotient of sl(2,C) around 0; it is an instance of the
familiar method of descent. The main difficulty is that effect of the splitting (3)
on the homology of the standard fibre, i.e. on ′H2n(B∗) ≈ H2n(S), is not entirely
transparent.

5.2 Notation. Let p = gs + b the parabolic subalgebra of g associated to
s, P the corresponding subgroup of G, and P ≈ G/P the generalized flag manifold.
We write py for the stabilizer in g of y ∈ P , ny for its nilpotent radical, and set
gy = py/ny ≈ sl(2,C) + (centre). We denote by py,o, ny,o the intersections with go
and set gy,o = py,o/ny,o. There is a natural map πs : B → P . We set By = π−1

s (y).
If x ∈ π−1

s (y), then By = Py · x ≈ Gy/By,x where by,x = bx/ny is the image of bx
in gy. We set

P∗ = {(y, η) : y ∈ P , η ∈ (g/py)∗}
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and note that
P∗ ≈ G×P (g/p)∗ ≈ U ×Us (g/p)

∗, (4)

the cotangent bundle of P .

5.3 The map B∗ → P∗. We shall make use of the particular maps pλ :
B∗ → Ωλ defined in §2, eq.(5). We shall need a formula for the monodromy trans-
formations aλ(s) = p−1

sλ ◦pλ of B∗ in terms of the analogous transformations as,λ(s)
of B∗

s defined relative to (gs, bs, Us).

5.3.1 Lemma. One has

B∗ ≈ U ×Us [B∗
s × (g/p)∗] (5)

as a U–equivariant fibre bundle over P ≈ U/Us. Under this isomorphism, the map
pλ : B∗ → Ωλ is given by

pλ(u · [(xs, νs); η] = u(us(xs)λ+ νs + η) (6)

and the transformation aλ(s) of B∗ by

aλ(s) · u · [(xs, νs); η] = u · [as,λ(s)(xs, νs); η] (7)

Proof. There is a natural exact sequence

0→ (gs/bs)∗ → (g/b)∗ → (g/p)∗ → 0.
We define a splitting of this sequence as follows. Let n(p) be the nilpotent radical
of p. Then there are direct sum decompositions p = gs ⊕ n(p) and b = bs ⊕ n(p),
which induce the desired splitting

(g/b)∗ ≈ (gs/bs)∗ × (g/p)∗. (8)

Then

B∗ ≈ U ×H∩U (g/b)∗

≈ U ×Us [Us ×H∩Us ((gs/bs)
∗ × (g/p)∗)]

≈ U ×Us [B∗
s × (g/p)∗],

which gives the isomorphism (5). Explicitly, the isomorphism

U ×Us [B∗
s × (g/p)∗] ≈→ B∗

is given by
u · [(xo, νs); η]→ u · (xo, νs + η).



36 W. ROSSMANN

The formula (6) follows. To prove (7), fix u · [(xo, νs); η] ∈ U ×Us (B∗
s × (g/p)∗) and

write
aλ(s) · u · [(xo, νs); η] = ũ · [(xo, ν̃s); η̃]. (9)

We solve this equation for the right side in terms of the left as follows. Apply psλ
to both sides using psλ ◦ aλ(s) = pλ to get

u · (λ + νs + η) = ũ · (sλ+ ν̃s + η̃).

Put ũ = uus with us ∈ Us and ν̃s, η̃ to be determined so that

λ+ νs + η = us(sλ+ ν̃s + η̃).

Thus specify us ∈ Us and ν̃s so that

λ+ νs = us(sλ+ ν̃s) (10)

and then η̃ so that
η = us · η̃

The equation (10) means that

us(xo, ν̃s) = as,λ(s)(xo, νs).

This gives
aλ(s)u[(xo, νs); η] = u[as,λ(s)(xo, νs); η].

Any xs ∈ Bs is of the form xs = usxo, so using the Us–equivariance of as,λ(s) we
get

aλ(s)u[(xs, νs); η] = aλ(s)uus[(xo, u−1
s νs);u−1

s η]

= uus[as,λ(s)(xo, u−1
s νs);u−1

s η]

= u[as,λ(s)(xs, νs); η]

as required. �

5.3.2 Definition. Define

r : B∗ → P∗ (11)

to correspond to the natural map

U ×Us [B∗
s × (g/p)∗]→ U ×Us (g/p)

∗

under the isomorphisms (4) and (5).
The following lemma explains the appearance of P∗ in the present context.
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5.3.3 Lemma. There is a commutative diagram of U–equivariant maps

B∗ po→ Ωo
r ↓ ↓
Oo

≈→ P∗

We omit the verification, which is immediate from the definitions.

For the proof of the theorem it will be convenient to use a slightly different
formulation of the above lemmas. For this purpose fix y ∈ P . For any x ∈ By we
have a sequence

0→ py/bx → g/bx → g/py → 0 (12)

hence also
0→ (g/py)∗ → (g/bx)∗ → (py/bx)∗ → 0. (13)

We write (13) as
0→ P∗

y → B∗
x → B∗

y,x → 0. (14)

It has the following interpretation:

By = π−1
s (y) ≈ CP1 is the flag manifold of gy ≈ sl(2,C) + (centre), embed-

ded in B.
P∗
y ,B∗

x, and B∗
y,x are respectively the cotangent spaces at y ∈ P , x ∈ B, and

x ∈ By.
B∗
x → B∗

y,x is the natural projection.

As in (8), the sequence (14) admits a splitting obtained from a decomposition

py = by,x ⊕ ny. (15)

As before, ny is the nilpotent radical of py and the decomposition (15) is
orthogonal for the positive definite form on g∗ corresponding to the involution
τ defining U. The decomposition (15) gives

B∗
x ≈ B∗

y,x × P∗
y . (16)

This gives a direct sum decomposition of B∗ as a vector bundle over P , which
is equivalent to the isomorphism (5).
The map r : B∗ → P∗ is the projection onto the second factor in (16); for a
given x ∈ B, this is the τ–orthogonal projection onto the subspace P∗

y of B∗
x.

In this way, B∗ becomes a fibre–bundle over P∗, with fibres B∗
y isomorphic to

the cotangent bundle of By ≈ CP1. We write this fibre–decomposition of B∗

as
B∗ =

⊔
(y,η)∈P∗

B∗
y × {η}. (17)
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The equation (17) is more intrinsically interpreted as follows. For y ∈ P , write
ay,λ(s) for the transformation of B∗

y obtained from as,λ(s) by conjugation with
an element u ∈ U satisfying y = u · yo. This is well–defined since as,λ(s)
commutes with the action of Us on B∗

s . Then (7) can be written in the form

aλ(s) · [(xy , νy); ηy] = [ay,λ(s)(xy , νy); ηy] (18)

with (xy , νy) ∈ B∗
y and ηy ∈ (g/py)∗. (In the future, we omit the subscripts “y”

from the notation when the dependence on y understood from the context.)
This means that the transformation aλ(s) of B∗ decomposes compatibly with
(17), indicated by

aλ(s) =
⊔

(y,η)∈P∗
ay,λ(s)× 1η. (19)

5.4 The map S → R.We now analyze the restriction to S of the map
r : B∗ → P∗. Thus we again assume given the subalgebra go of g and assume
that Go has finitely many orbits on B; S ⊂ B∗ is the conormal variety of the
Go–action on B.We denote by R ⊂ P∗ the conormal variety of the Go–action
on P :

R = {(y, η) ∈ P∗ : η ∈ (g/go)∗}.
Fix y ∈ P . For any x ∈ By we have an exact subsequence of (12),

0→ py,o/bx,o → go/bx,o → g/py,o → 0. (20)

hence also of (13),

0→
(

g/py
go/py,o

)∗
→

(
g/bx

go/bx,o

)∗
→

(
py/bx

py,o/bx,o

)∗
→ 0. (21)

Analogous to (14), we write (21) as

0→Ry → Sx → Sy,x → 0. (22)

The interpretation is now as follows.

Sy is the conormal variety of the Gy,o–action on By.
Ry ,Sx, and Sy,x are the conormals to Go · y,Go · x, and Gy,o · x at
y ∈ P , x ∈ B, and x ∈ By.
Sx → Sy,x is the natural projection.

Thus Ry, Sx, and Sy,x are, respectively, fibres of R → P , S → B,
and Sy → By. As in (16), the τ–orthogonal projection in (15) gives a
decomposition

Sx ≈ Sy,x ×Ry. (23)
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The restriction of r : B∗ → P∗ is obtained from the projection onto the
second factor in (23), hence gives a surjection

r : S → R. (24)

The fibres of (24) are isomorphic to the conormal varieties Sy of theGy,o–
actions on the By ≈ CP1. Like (17), we write this fibre–decomposition
of S as

S =
⊔

(y,η)∈R
Sy × {η}. (25)

The fibre decomposition (25) applies also to 2n–chains on S, as we shall
now discuss in a more general context.

5.5 Fiber decompositions of chains. Let f : X → Y be a real
analytic map. Let C ⊂ X and D ⊂ Y be oriented analytic submanifolds
so that f : C → D is a locally trivial fibration with fibres Cy = C∩f−1(y)
of dimension d. These fibres are then also analytic submanifolds. Thus
C,D, and Cy define subanalytic chains, denoted by the same letters. We
write

C =
⊔
y∈D

Cy (26)

This construction and notation carries over to subanalytic chains C, D
provided f restricts to a locally trivial fibration f : supp(C)→ supp(D)
and we use the same notation (26) for chains.

5.5.1 Lemma. The boundary operator satisfies the relation

∂C =
⊔
y∈D

∂Cy + C′ (27)

where C′ is a subanalytic chain with support in the preimage f−1(∂D)
of the topological boundary ∂D of D.

Proof. This follows directly from the definition of the boundary op-
erator, cf. [Kashiwara–Shapira, 1990, §9.2] �

5.6 Fiber decompositions of cycles on S. The map (24) is not
Go–equivariant, but it is compatible with the map πs : B → P , which
is. Therefore r maps the part of S over a Go–orbit in P to the conormal
of this orbit inR.We shall decompose r according to the Go–orbits on P .

5.6.1 Notation. a)We apply the notation 3.4 to the action of Go

on P . In order to avoid confusion with the notation O for Go–orbits on
N (g⊥o ) used previously, we shall denote Go–orbits on P by Oω where
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ω runs over some index set for Go\P , at times identified with Go\P
itself. We apply the notation introduced in 3.4 also to the indices ω; for
example ω′ < ω denotes the closure order of 3.4(a).
b)The part of R over Oω , denoted Rω, is the conormal bundle of Oω.
Write Rω,ε for the connected components of the smooth part of R which
are contained in Rω.
c)For any 2n–chain Γ on S we denote by S(Γ) ⊂ Go\P the image of
supp(Γ) ⊂ S under the natural map S → B → P . We recall that the
leading orbits Oω in S(Γ) those which are not contained in the closure
of any other orbit in S(Γ); the same terminology applies to the indices
ω.
Any 2n–cycle Γ on S admits a decomposition

Γ =
∑
ω,ε

⊔
(y,η)∈Rω,ε

Γy × {η} (28)

where Γy is a 2–chain on the conormal variety Sy of the Gy,o– action on
By ≈ CP1. (Cf. Lemma 3.2; to interpret the fibre decomposition (28)
in accordance with (26) one may have to decompose the Sy further into
the connected components of its set of smooth points.)
By (19) we have

aλ(s)Γ =
∑
ω,ε

⊔
(y,η)∈Rω,ε

(ay,λ(s)Γy)× {η} (29)

This is an equation of chains on B∗, not of homology classes. In general
the Γy are not even cycles; but when ω is a leading element of S(Γ), then
Γy for y ∈ Oω is a cycle on Sy, cf. 3.10.

5.7The homology of the variety So. Recall that So = p−1
o (Oo)∩

S.

5.7.1 Lemma. a) Under the decomposition (25), one has

So =
⊔

(y,η)∈R
By × {η} (30)

where By is embedded as the zero–section in B∗
y .

b) The restriction r : So →R is surjective with fibres By ≈ CP1.

c) There is a natural isomorphism H2n−2(R) ≈→ H2n(So), γ → ∆, given
by

∆ =
⊔

(y,η)∈γ
∆y × {η} (31)
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where ∆y is the fundamental cycle of By.
d) The closure filtration on Go\P induces a filtration on H2n(So) whose
graded group is

grH2n(So) ≈ Q[Go\P ]. (32)

Proof. (a) Under the isomorphism B∗ ≈ U ×Us [B∗
s × (g/p)∗] in (5)

one has
p−1
o (Oo) ≈ U ×Us [Bs × (g/p)∗].

By formula (6),

po(u · [(xs, νs); η]) = u(us(xs)λo + νs + η). (33)

In this notation, the subset Oo ⊂ Ωo is given by νs = 0. The assertion
(a) follows.
b) This is clear.
c) This is a consequence of (b) and the Gysin sequence for So →R.
d) It follows from 3.11.2 that the hypotheses 3.5 hold for the Go–map
R → P . As in 4.2, this gives

grH2n(R) ≈ Q[Go\P ].

The assertion then follows from (c). �

5.7.2 The fibre decomposition (30) of So over R can also be writ-
ten as a fibre decomposition over P :

So =
⊔

y∈PBy×Ry

. (34)

This means that So = π∗
sR, the pull–back of R by πs : B → P . Over

each Go–orbit Oω the map So → P is a locally trivial fibration. The
assertion (d) of the lemma means that there is a basis {∆ω : ω ∈ Go\P}
for H2n{So} so that

∆ω =
⊔

y∈Oω

[By ×Ry] + · · · (35)

where the dots indicate a cycle over ∂Oω and [By × Ry] is the chain
defined by an orientation on By×Ry.We call any such basis compatible
with (32).
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5.8 Theorem.Let {∆ω : ω ∈ Go\P} be any basis for H2n(So)
compatible with (32). Then there are unique elements ∆̌ω ∈ H2n(S) :=
HomQ(H2n(S),Q) so that for any Γ ∈ H2n(S),

s · Γ = Γ +
∑

ω∈S(Γ)

〈Γ, ∆̌ω〉∆ω . (36)

They satisfy
〈∆ω, ∆̌ω′〉 = −2δωω′. (37)

In particular

s · Γ = −Γ if and only if Γ ∈ H2n(So). (38)

Furthermore, if ω is a leading element of S(Γ), then 〈Γ, ∆̌ω〉 is the in-
tersection index 〈Γy,∆y〉 for any y ∈ Oω . Here Γy is the 2–cycle on
B∗
y defined by (28), ∆y the fundamental cycle of of By ≈ CP1, and the
intersection index is taken as cycles on B∗

y.

Proof. We first consider the restriction of the transformation aλ(s)
to So. From (19) and (30) we get that

aλ(s)|So =
⊔

(y,η)∈Rω

(ay,λ(s)|By)× {η}.

By 2.6.5, the transformation ay,λ(s) maps By into itself, reversing the
orientation. It follows from (31) that

aλ(s)∆ = −∆ (39)

for any 2n–cycle ∆ ∈ H2n(So).
Now let Γ ∈ H2n(S) be an arbitrary 2n–cycle on S, represented as a
fibre union as in (28), so that the formula (29) applies. If ω is a leading
element in S(Γ), then Γy is a 2–cycle on Sy and the Picard–Lefschetz
theorem (1), applied to the coadjoint quotient of gy/(centre) ≈ sl(2,C)
gives

ay,λ(s)Γy = Γy + 〈Γy,∆y〉∆y + ∂Cy (40)

for some boundary ∂Cy. One finds that

aλ(s)Γ =
∑
ω,ε

⊔
(y,η)∈Rω,ε

(Γy + 〈Γy,∆y〉∆y + ∂Cy)× {η}+ C′ (41)

with the sum extending over the leading ω in S(Γ) only, and C a chain
over ∂S(Γ). In view of (27), there is a homology

∑
ω,ε

⊔
(y,η)∈Rω,ε

∂Cy ∼ C′′
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where C′′ is another chain over ∂S(Γ). Thus

aλ(s)Γ ∼
∑
ω,ε

⊔
(y,η)∈Rω,ε

(Γy + 〈Γy,∆y〉∆y) + · · · . (42)

where the dots indicate a chain over ∂S(Γ). Modulo such chains, the
unions of the terms involving the ∆y may be completed to cycles on So
and then expressed in terms of the basis {∆ω}. Thus (42) can be written
in the form

aλ(s)Γ ∼ Γ +
∑
ω

〈Γ, ∆̌ω〉∆ω + Γ′ (43)

where ω runs over the leading terms in S(Γ), and Γ′ is a chain, necessarily
a cycle, with S(Γ′) ⊂ ∂S(Γ); we have set 〈Γ, ∆̌ω〉 = 〈Γy, ∆y〉 for any
y ∈ Oω .
From (43) it follows first of all that sΓ �= −Γ in H2n(S) unless Γ ∈
H2n(So). ThusH2n(So) is precisely the (−1)–eigenspace of the involution
s on H2n(S), i.e.

(s− 1)H2n(S) = H2n(So).
Hence the cycle Γ′ in (43) must be a linear combination of basis elements
∆ω′ with ω′ ∈ ∂S(Γ), so that one can write

aλ(s)Γ = Γ +
∑
ω

〈Γ, ∆̌ω〉∆ω

where the sum is now extended over all ω ∈ S(Γ) and the coefficients
〈Γ, ∆̌ω 〉 are integers depending linearly on Γ. This gives the formula
(36). The relation (37) is a consequence of (38), which was established
during the proof, together with the rest. �
It is sometimes convenient to have a description of So directly in terms

of the Go–orbits on B.We denote these by Ov with v running over some
index set for Go\B, and use the conventions of 5.6.1(a) for these as well.

5.8.1 Lemma. So is the closure of the union of the conormal
bundles of the Go–orbits Ov on B satisfying

Ov is open in π−1
s πs(Ov). (44)

Proof. The part of So over Ov is⊔
y∈πs(Ov)

(By ∩Ov)×Ry

This has dimension 2n if and only if By ∩ Ov has dimension 2, i.e.
π−1
s (y) ∩ Ov is open in π−1

s (y). This happens if and only if Ov is open
in π−1

s πs(Ov). �
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5.9 Examples. a) We take go = b, as in 2.6.4 and again write
Ow = Bwxo (w ∈ W ) for this B–orbit on B, Cw for the conormal
bundle of Ow, and [Cw] for the corresponding cycle. These form a basis
for H2n(S). Let s ∈ W be a simple reflection as above. Then Ow is
open in π−1

s πs(Ow) if and only if BwB is open in (BwB)(BsB). It
follows from 5.8.1 and well–known facts about the Bruhat order that So
is the union of the Cw satisfying ws < w. One can then take the cycles
{[Cw] : ws < w} for the basis {∆ω} in the theorem. On the other hand,
if ws > w, then the ∆ω corresponding to the (unique) leading orbit
Oω = πs(Ow) in S([Cw ]) is ∆ω = [Cws]. The relevant Picard–Lefschetz
formula (40) for gy ≈ sl(2,C) + (centre) reads

sy · [Cw]y ∼ [Cw]y + [Cws]y.

Hence the theorem gives in this case the relations

s · [Cw] = −[Cw], if ws < w (45)
= [Cw] + [Cws]+

+
∑

w′<w,w′s<sw

mww′[Cw′ ], if ws > w (46)

for certain coefficients mww′ , which may depend on s.
We remark that similar formulas hold whenever go is a complex subalge-
bra of g, always under the assumption that Go has finitely many orbits
Ov on B, which can then replace the Ow above. This holds in particular
when go is a complex symmetric subalgebra of g (the kC–case of 2.2.7).
For such go, the closure order on Go\B, which enters into (45)–(46), is
studied in [Richardson– Springer, 1989, 1992].
b) The formula (36) has implications for the action of s in the represen-
tation of W on H2e(Bν) inside of which the irreducible representation
H2e(Bν)φ of W is realized (cf. 4.5).
To avoid confusion with the conormal variety S of the diag(G)–action
on B × B, used in the proof of 4.5, we now denote by C the conormal
variety of the B–action on B :

C = {(x, ν) ∈ B∗ : x ∈ B, ν ∈ (g/b)∗}.

We observe that C is embedded in S as the fibre over xo in the projection
S → B × B → B on the second factor. For any G–stable subset A
of N we write CA for the preimage of A ∩ b⊥ under the natural map
C → b⊥ = (g/b)∗. Under the embedding C ⊂ S, we have

CA = SA ∩ C

where SA is the inverse image of diag(A) under the natural map S →
diag(N ). Now fix ν ∈ N and set O = G·ν. As a consequence of Theorem
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4.3, one has W–isomorphisms (for the restricted monodromy represen-
tations)

H2e(Bν) ≈ H2n(CŌ)/H2n(C∂O) ≈ H2n(CO). (47)

The space in the middle gives a realization ofH2e(Bν) as a subquotient of
H2n(C), to which the formulas (45)–(46) apply, as we shall now explain.
First we describe the isomorphisms (47) more explicitly. The closure of
CO in C is the union of the closures of conormals Cw of certain B–orbits
Ow on B, namely of those for which Cw has an open intersection with
CO. These Cw then cut out the irreducible components of the variety
Bν , which in turn give a basis for H2e(Bν).
Now fix a simple reflection s as earlier. The fundamental cycles of the
conormals just mentioned form part of the basis {[Cw ]} of H2n(C) which
figures in (45)– (46). Write simply {[C]} for the corresponding basis of
H2e(Bν); the C’s are then just the components of Bν . Now consider only
the part of the formulas (45)–(46) which involves these Cw’s and replace
the condition “ws < w” by the condition

C is open in π−1
s πs(C) (48)

which is equivalent, by (44). One arrives at the following result.

s · [C] = −[C], if (48) holds (49)

= [C] +
∑
C′

mCC′ [C′], otherwise (50)

for certain coefficients mCC′ , which may depend on s. The sum in (50)
goes over components C′ of Bν with πs(C′) ⊂ πs(C) and for which (48)
holds with C replaced by C′.

5.9.1 Remarks. a)The formulas (49)–(50) are those of [Hotta,
1983], where a geometric description of the coefficients mCC′ is given.
In the present context a description of the mCC′ can be given in terms of
the corresponding cycles Cw , Cw′ on S as follows. The coefficient mCC′

is the multiplicity with which the chain aλ(s)Cw contains the chain the
chain Cw′ when retracted to S as in the proof of 2.6.1. It may described
as the degree of a local transversal projection onto C′ or, equivalently, as
an intersection number with a local transversal. (In the simplicial model
H.(K − L2;L1) mentioned in 2.5.1, this is a consequence of [Lefschetz,
1965], Theorem III, p.178, for example, provided the triangulation is
chosen compatibly with the representation 2.6.3(14) of the cycles Γ.)
Unfortunately, this does not give an explicit algorithm.
b)The formulas (45)–(46) give somewhat more information than stated
in (49)–(50) when combined with a description of those w’s in the former
which correspond to the C’s in the latter. In type An, such a description
is available through the Robinson–Schensted algorithm ([Spaltenstein,
1982] p.142). A generalization of this algorithm to the other classical
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groups can be found in [Barbasch and Vogan, 1982]; it should give the
correspondence w → C at least when ν is special (as defined there) and
the C’s are replaced by Aν–orbits of components.
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perflächen. Manuscripta Math. 2 (1970), 103–161.

D. Collingwood and W. McGovern, Nilpotent Orbits in Semisimple Lie
Algebras. Van Nostrand Reinhold, New York, 1993.

C. De Concini, G. Lusztig, and C. Procesi, Homology of the zero–set
of a nilpotent vector field on a flag manifold. J. of the Amer.
Math. Soc. 1 (1988), 15–34.
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