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Introduction. Let gR be a semisimple real Lie algebra, GR = Ad(gR), hR

a real Cartan subalgebra. For λ ∈ h∗
R
, let µλ denote the canonical invariant

measure on the GR-orbit of λ in g∗
R
. A well-known theorem of Harish-Chandra

[8] says that

lim
λ→0

�λµλ = κµ0, � :=
∏
αε∆+

∂α;

the limit is taken through regular λ, and κ is a constant, which is non-zero if
and only if hR is fundamental. The differential operator � transforms according
to sgn under the Weyl group W of (g,h). This is the irreducible character
associated to {0} under Springer’s correspondence between nilpotent orbits in
g∗ and irreducible characters of W .

This paper deals with the problem of finding an analogous formula for arbitrary
nilpotent GR-orbits. The problem is solved in theorem 5.3 only under an
additional hypothesis. The correspondence between real nilpotent orbits and
certain representations of W is given in theorem 3.3, based on the theory
for complex groups developed in [16], which is recalled in §2. The general
framework for the study of Fourier transforms of orbital contour-integrals is
given in §1.
Barbasch and Vogan [3] solved the problem for complex orbits in the classical
groups and formulated the result as a conjecture for complex orbits in general
[4]. Their conjecture was proved in [10] and in [16]. For GR =U(p, q) the
solution was given by Barbasch and Vogan in [5].
I thank Michèle Vergne for correcting a mistake in the proof theorem 4.1.

1. Coherent families of contours and invariant eigendistributions

Let g be a complex semisimple Lie algebra, gR a real form of g. Let G := Ad(g),
GR := Ad(gR). Fix a Cartan subalgebra h of g and let W be the Weyl group
of (g,h).
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We recall some definitions and results from [15], [16]. We shall be interested in
integrals of the form

1
(−2πi)nn!

∫
Γ(λ)

ϕσnλ (1)

where λ ∈ h∗reg is a regular element in the dual of the complex Cartan subalgebra
h,

Γ(λ) ⊂ Ωλ := G · λ ⊂ g∗

is an 2n-cycle with 2n = dimC Ωλ, σnλ is the n-th exterior power of the canonical
holomorphic 2-form on Ωλ,

σλ(x · ξ, y · ξ) := ξ([x, y]), ξ ∈ G · λ, x, y ∈ g,

and

ϕ(ξ) :=
∫

gR

f(x)eξ(x)dx, f ∈ C∞
c (gR)

is the Fourier transform of a compactly supported C∞-function on gR. We note
that ϕ is an entire holomorphic function on g∗ satisfying for all N an estimate
of the form

|ϕ(ξ)| | ≤ AeB||Re ξ||

1 + ‖ξ‖N
. (2)

The cycles Γ(λ) must be restricted so that (2) guarantees the convergence of
(1): one considers locally finite sums of singularm-simplices on Ωλ, γ =

∑
ckσk,

ck ∈ Z,which satisfy

(a)‖Reσk‖ ≤ C for all k, (b)
∑

| ck| | max 1
1 + ‖σk‖N

< ∞ for some N ;

∂γ is required to have the same properties. Using such m-chains γ one defines
a homology group ′Hm(Ωλ) as usual. An oriented, closed, m-dimensional, real
submanifold of Ωλ which admits a triangulation satisfying (a) and (b) defines an
element of ′Hm(Ωλ) independent of the triangulation. The integral (1) depends
only on the class of Γ(λ) in ′H2n(Ωλ) so that we shall take Γ(λ) ∈′ H2n(Ωλ).Let
B := {Borel subalgebras b of g} be the flag manifold of g,

B∗ := {(b, ν) | b ∈ B, ν ∈ b⊥ ⊂ g∗},

the cotangent bundle of B, and

S := {(b, ν) | b ∈ B, ν ∈ ib⊥
R
:= b⊥ ∩ ig∗

R
}
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the conormal variety (union of conormal bundles) of the GR-orbits on B. For
λ ∈ h∗reg, define a map

pλ : B∗ → Ωλ, pλ(u · (b1, ν)) := u · (λ+ ν), u ∈ U, ν ∈ b⊥1 . (3)

b1 ∈ B is a fixed base-point so that b1 ⊃ h; U ⊂ G is a compact real form for
which h ∩ u is a maximal torus in the Lie algebra u of U . The map pλ is a
U -equivariant, real-analytic bijection. By [15], this map induces an isomorphism

pλ : H2n(S)
≈→ ′H2n(Ωλ) (4)

H2n(S) is the (Borel-Moore) homology with arbitrary supports.

The image of a contour Γ(λ) on Ωλ under the inverse map p−1
λ : Ωλ → B∗

does generally not lie in S. Rather it lies in a homology group ′H2n(B∗)
defined by the same conditions (a), (b) above, with ‖Re(b, ν)‖ := ‖Reν‖and
‖(b, ν)‖ := ‖ν‖ for (b, ν) ∈ B∗. H2n(S) is free of rank equal to the number
of GR-orbits in B [15]. The isomorphism (4) asserts that a class in ′H2n(B∗)
has a representative in S, which defines a class in H2n(S). S is the union of
the conormal bundles on the GR-orbits on B, which are smooth (but not closed)
real analytic submanifolds of B∗ of dimension

dimR S = dimC B∗ = 2dimC B = 2n.

This means that a class inH2n(S) is represented by a finite Z-linear combination
of the chains defined by a triangulation of these submanifolds. It should be
noted however that arbitrary chains constructed in this way are generally not
closed in the sense of homology. In particular, the chains constructed from the
conormal bundles themselves in this way are generally not cycles.

An element Γ(λ) ∈ ′H2n(Ωλ) will be referred to as a contour on Ωλ; a coherent
family of contours is a family of the form

Γ(λ) = pλΓ, Γ ∈ H2n(S) fixed.

Γ(λ) is considered a function of λ ∈ h∗reg. For fixed Γ(λ) ∈ H2n(Ωλ), the integral
(1), considered as a function of f∈C∞

c (g∗
R
), defines a distribution θ on gR, which

is easily seen to be an invariant eigendistribution [16]. When Γ(λ) =pλΓ, then
θ = θ(Γ,λ) is called a coherent family of invariant eigendistributions on g∗

R
;

these form a Z-module denoted CH(gR), isomorphic with H2n(S) by the map
H2n(S) → CH(gR), Γ �→ θ(Γ) defined by the integral (1). Write this as

θ(Γ, λ) =
1

(−2πi)nn!
∫
ξ∈pλΓ

pξσnλ (5)

the integral being understood in the distribution sense as explained above. We
set CH(gR,C) := CH(gR)⊗ C. We introduce the following notation.

∆ := the root system of (g,h),
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∆+ := a system of positive roots for ∆,
W := the Weyl group of (g,h),
π :=

∏
α∈∆+ α,

The subscipt “c“ in the following symbols indicates conjugation by an element
c ∈ G: hc := c · h, bc := c · b1, ∆c, ∆+

c , Wc, πc, λc. If hc,R := hc ∩ gR is a real
Cartan subalgebra of gR we let

Wc,R :=NormGR
(hc,R)/CentGR

(hc,R),
∆c,R, ∆c,I :=real, imaginary roots in ∆c,
W (∆c,R) :=the Weyl group of ∆c,R,
εc,R := sgn

∏
αε∆+

c,R
α.

Note that w · (εc,Rπc) := sgnc,I(w)(εc,Rπc) for w ∈ Wc,R where sgnc,I(w) = ±1
may be defined by this equation.

A real Cartan subalgebra decomposes as hc = tc+ac so that the roots of hc are
imaginary on tc,R and real on ac,R. Introduce a partial order on the (conjugacy
classes of) real Cartan subalgebras by stipulating that hc < hc′ if tc ⊂ tc′

strictly, after suitable conjugation by GR. When µ ∈ h∗reg and µc ∈ig∗
R
, then

the real orbit GR ·µc defines a contour [GR ·µc] ∈ ′H2n(Ωµ): the orientation on
GR ·µc is specified by the form (−iσµ)n, which is real-valued and non-vanishing
on GR · µc.
1.1 Lemma. Let µ ∈ h∗reg , c ∈ G, µc ∈ig∗R. For w ∈ W (∆c,R)

p−1
wµ ◦ pµ[GR · µc] = [GR · µc].

Proof. Let M =CentG(a), p = m+ b1. Then

GR · µc = (U ∩GR) · (Mc,R · µc + ip⊥c,R).

On GR · µc the map p−1
wµ ◦ pµ is given by k · (uM · (µc + νM ) + νN ) �→ k · (uM ·

(wcµc + νM ) + νN ). Here k ∈ U ∩ GR, uM ∈ U ∩M , νM ∈ b⊥1 ∩ m, νN ∈ip⊥c,R,
and uM · (µc + νM ) = mc · µc with mc ∈ Mc,R. Since Mc fixes wcµc − µc,
uM · (µc + νM ) = mc · µc gives uM · (wcµc + νN ) = mcwc · µM . Thus on
GR · µc the map p−1

wµ ◦ pµ is given by k · (mc · µc + νN ) �→ k · (mcwc · µc + νN ).
This transformation maps GR · µc = GRwcµc into itself. The map Mc,R · µc →
Mc,Rwcµc preserves the orientations induced by the restrictions of iσµ (because
sgnI(w) = 1), hence the transformation p−1

wµ ◦ pµ of GRµc preserves orientation
as well. Q.E.D.

1.2 Remark. It may be shown that for any w ∈ Wc,R

p−1
wµ ◦ p[µ[GR · µc] = sgnI(w)[GR · µc] + · · ·

where the dots indicate a Z-linear combination of contours [GR ·µc ′ ] with hc ′ <
hc.
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The contours [GR · µc] fit into coherent families as follows.
1.3 Theorem. (a) Let S be a GR-orbit on B. There is a unique coherent
family Γ(S, ·) so that Γ(S, µ) = [GR ·µc] whenever c ∈ G and µ ∈ h∗reg satisfying
the following conditions:

(1) µc ∈ig∗R, (2) bc ∈ S, (3) µc(Hαc) > 0 if αc is an imaginary root of
hc on bc.
(b)The coherent families of eigendistributions θ(S, ·) corresponding to the Γ(S, ·),
S running over the GR-orbits on B, form a Z-basis for the Z-module CH (gR).
(c) Let (hc)R, c ∈ G, be a real Cartan subalgebra of gR. Let S be a GR-orbit
on B so that bc ∈ S. Then

θ(S, λ) ≡ 1
εc,Rπc

∑
wεWc,R

sgnc,I (w)e
w−1λc (6)

on (hc)R and vanishes on a real Cartan subalgebra (hc′)R unless hc′ ≤ hc.

Proof. (a) Fix S and a pair (c, µ) with the indicated properties. Let Γ =
Γ(c, µ, S) ∈ ′H2n(B∗) be defined by

Γ = pλ ◦ p−1
µ [GR · cµ]. (7)

We show that Γis independent of (c, µ). Let (c′, µ′) be another such pair. In
view of (2) we may assume that bc = bc′ =: bS . In view of (1), hc and hc′

are both conjugation-stable Cartan subalgebras in bS. It is well-known that
such Cartan subalgebras are GR-conjugate. We may therefore assume that
hc = hc′ =: hS . Thus c = c′h for some h ∈CentG(h). We may as well assume
c = c′. Observe: there is w∈ W (∆c,R) so that

c · µ and wc · µ′ lie in the same connected component of (hS,R)∗reg. (8)

Reason: such a connected component is a chamber cut out by the real and
imaginary roots of hS ; in view of (3), only reflections in real roots are needed
to transform the chamber containing c ·µ into the chamber containing cµ′. Fix
w∈ W (∆c,R) so that c · µ and wc · µ′ lie in the same connected component of
(hS,R)∗reg. There is a continuous curve µ(t), 0≤ t ≤ 1, in h∗ so that µ(0) = µ,
µ(1) = c−1wcµ′, c · µ(w) ∈ (hS,R)∗reg, 0≤ t ≤ 1. Consider the following one-
parameter family of cycles on B∗: p−1

µ(t)[GR ·cµ(t)], 0 ≤ t ≤ 1.This is a homotopy,
which satisfies the conditions (a) and (b) defining ′H2n(B∗) uniformly in t, hence
represents the same class in ′H2n(B∗). Thus p−1

µ [GR·cµ] = pc−1wcµ′ [GR·cµ′]. By
Lemma 1.2, p−1

c−1wcµ′ [GR · cµ′] = pµ′ [GR · cµ′].This proves that Γ is independent
of (c,µ). As remarked in 1.1, the class Γ ∈ ′H2n(B∗) has a representative which
lies on S and defines an element ΓS ∈ H2n(S). Let Γ(S, λ) = pλΓS . This is
the required coherent family.
(b) Let S be a GR-orbit on B, SS the part of S over S, i.e.SS := {(b, ν) ∈ S |
b ∈ S}, (the conormal bundle of the GR-orbit S). The element ΓS ∈ H2n(S)
corresponding to Γ(S, ·) is of the form ΓS = [SS ] + · · · where [SS ] is the
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2n-chain on S defined by an orientation on SS and the dots indicate a Z-linear
combination of [SS′ ]’s with S′ ⊂ ∂S := S̄ − S ([15]). This implies that the ΓS
form a Z-basis for H2n(S), hence (b).
(c) For (hc)R of compact type, this follows from [13]. The general case is
proved by a familiar reduction thereto using parabolic subalgebras. ([22], Part
I, §3.7. The positive constant in Theorem 32 of [22] becomes c = 1 with the
normalization of forms used here. This may be seen as in §2 of [15].) Q.E.D.

1.4 Remarks. We mention some supplementary facts about coherent families.
(a) By a well-known result of Harish-Chandra, any invariant eigendistribution
θ with regular infinitesimal character λ ∈ h∗reg is given by a locally L1-function,
whose restriction to a real Cartan subalgebra hc,R is given by a formula

θ ≡ 1
εc,Rπc

∑
yεWc

mc,ye
y−1λc on (hc)R,

where the mc,y are C-valued, locally constant functions on hR,reg. A family
θ(·) of the above type is coherent (i.e. ∈ CH(gR,C)) if and only if the mc,y

are independent of λ. (Compare the definition of “coherent familiy of invariant
eigendistributions“ given in [17].) In particular, a coherent family θ(·) extends
to a holomorphic function on all of h∗ with values in the space of distributions
on gR, reg.
(b) A family Γ(λ) ∈ ′H2n(Ωλ) of contours parametrized by λ ∈ h∗reg is coherent
in the sense defined above if and only if the integral (1) is a holomorphic function
of λ ∈ h∗reg (for arbitrary ϕ).
(c) For any λo ∈ h∗reg the map θ(·) �→ θ(λo) induces a linear isomorphism
from CH(gR,C) to the space of invariant eigendistributions with infinitesimal
character λo.

2. Representations of Weyl groups

We require some constructions from [16]. Recall the bijection pλ : B∗ → Ωλ,
λ ∈ h∗reg, defined in (3). For any w ∈ W , define a transformation aλ(w) of B∗

by

aλ(w) := p−1
wλ ◦ pλ: B∗ → B∗. (9)

Let N be the nilpotent cone in g∗ and p: B∗ → N , (b, ν) �→ ν, the Springer
map. For any subset V of N , let B∗(V ) := p−1(V ) ⊂ B∗. Choose ε > 0 and
let U = {ν ∈ N | ‖ν − ν′‖ < ε for some ν′ ∈ V }. Assume that for sufficiently
small ε > 0 the inclusion i : B∗(V ) → B∗(U) admits a proper homotopy inverse
in the sense that there is a continuous map j: B∗(U) → B∗(V ) so that j ◦ i ∼ 1
on B∗(V ), i ◦ j ∼ 1 on B∗(U)with “∼“ meaning “properly homotopic”. Then
for λ ∈ h∗reg in some ball around 0, the map a(w) := j ◦ aλ(w) ◦ i induces
a transformation of B∗(V ) whose proper homotopy class is independent of λ.
This gives a representation of W on H*(B∗(V )). Applied to V = {ν}, ν ∈ N ,
the construction produces a representation of W on the homology of B∗(ν);
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B∗(ν) may be identified with Bν := {b ∈ B | ν ∈ b⊥}. The component group
Aν := Gν/(Gν)o of the stabilizer Gν of ν in G acts naturally on H*(Bν) by
W -automorphisms, so that one has a representation of W × Aν thereon. In
highest degree 2e := 2 dimC Bν, this representation decomposes as

H2e(Bν) ≈
∑
ϕεΦν

χν,ϕ ⊗ ϕ

where Φν is a set of irreducible characters of Aν and χν,ϕ an irreducible character
ofW . Every irreducible character ofW is of this form χν,ϕ, and two pairs (ν, ϕ),
(ν′, ϕ′) correspond to the same character if and only if they are conjugate by
G. These results are due to Springer [19], [20] with a different construction of
the representations. The construction outlined here is given in [16].

3. Decomposition of the coherent continuation representation

We apply the construction of representations of W outlined in §2 with V =
NR := N∩ig∗

R
. (As explained in [16], it follows from general facts in algebraic

topology that V = NR satisfies the conditions required for the construction.)
Note that for V = NR, B∗(V ) = S, so that we get a representation of W on
H*(S). In top degree 2n = dimR S, we get a representation of W on on H2n(S).
Essentially by definition:

3.1 Lemma. The isomorphism H2n(S) → CH(gR), Γ → θ(Γ), satisfies θ(wΓ,λ) :=
θ(Γ, w−1λ).

Proof. Let Γ ∈ H2n(S). By definition (9) of the action of W on H2n(S),
w · Γ ∼ p−1

wλ ◦ pλ(Γ) for any λ ∈ h∗reg in some ball around 0. Here “∼“ means
“properly homotopic”. Thus pwλwΓ ∼ pλΓ which gives θ(wΓ, w) = θ(Γ,λ) as
required. Q.E.D.

Thus under the isomorphism H2n(S) → CH(gR), Γ → θ(Γ,·), the representation
of W on H2n(S) becomes the coherent continuation representation of W on the
Z-module CH(gR) of coherent families θ(·) of invariant eigendistribution given
by (w · θ)(λ) = θ(w−1 · λ).
3.2 Corollary. As representation of W ,

H2n(S) ≈
∑
c

IndWWc,R
sgnc,I (10)

where c ∈ G is chosen so that hc, R runs over a complete set of representatives for
the GR-conjugacy classes of Cartan subalgebras of gR, and Wc,R is considered
as a subgroup of W via c.

Proof. This follows from the lemma and theorem 1.4(c). Q.E.D.
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3.3 Theorem. The representation of W on H2n(S) decomposes as

H2n(S) ≈
∑
ν,ϕ

m(ν,ϕ)χν,ϕ

where ν runs over a set of representatives for the nilpotent GR-orbits, ϕ over
the set of irreducible representations of Aν in Φν which contain a vector fixed
by Aν,R, and m(ν,ϕ) is the dimension of the space of these vectors.

The proof of theorem 3.3 requires some preliminary lemmas. Consider the
Springer map p: S → NR. Let NR =

⋃
O O be the decomposition into GR-

orbits, and correspondingly S =
⋃
O S(O)

with S(O) := p−1(O).

3.4 Lemma. For all O, dimR S(O) = 2n. Furthermore, the restriction of
S → NR to S(O) is a GR-equivariant fibration with fibreBν over ν ∈ O:

Bν ↪→ S(O) → O. (11)

Proof. The second assertion is evident. The first is a consequence of results
of Spaltenstein and Steinberg, as follows. According to [18], the irreducible
components of the complex variety Bν have the same dimension, say dimC Bν =
e. According to [21], the components of Bν × Bνare the intersections of the
components of the variety Z := {(b, b′) | ν ∈ b⊥ ∩ (b′)⊥} with the fibre Bν ×Bν

of the map Z → N . Furthermore, the components of Z all have the same
C-dimension, namely 2n, because they are the closures of the conormal bundles
of the G-orbits on B × B (under the diagonal action). From the fibration
Bν × Bν ↪→ Z(O) → O induced by Z → N over a fixed G-orbit O = G · ν,
one sees that dimC O + 2dimC Bν = 2n. For a GR-orbit O = GR · ν, ν ∈ NR,
the fibration Bν ↪→ S(O) → O mentioned above now gives dimR S(O) =
dimR O + dimR Bν = dimC OC + 2dimC Bν = 2n as required. Q.E.D.

For ν ∈ NR set Aν,R := Gν,R/Gν,R ∩ (Gν)o a subgroup of Aν := Gν/(Gν)o.

3.5 Lemma. For any GR-orbit O = GR · ν on NR,

H2n(S(O)) ≈ H2e(Bν)Aν,R ,

where e = dimC Bν and the right side denotes the Aν,R-invariants under the
natural action of Aν on H2e(Bν).

Proof. The fibration (11), Bν ↪→ S(O) → O, leads to an isomorphism

H2n(S(O)) ≈ H2e(Bν)π1(O,ν), (12)

which may be described as follows. A continuous path from ν to ν′ in O
gives an isomorphism H*(Bν) → H*(Bν′

) by trivialization of the fibration
(11) along the path. On the invariants of the monodromy action of π1(O, ν)
in H*(Bν), this isomorphism is independent of the path. An element Γ ∈
H2n(S(O)) decomposes into its fibres Γν ∈ H2e(Bν)π1(O,ν) under S(O) → O :
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Γν ↪→ Γ → O. The Γν and Γν′ belonging to ν and ν′ are related by the
isomorphism mentioned. Γ ↔ Γν gives the isomorphism (12). An element [γ]
of π1(O, ν) may be realized in the form γ(t) = g(t) · ν, where g(t) (0 ≤t≤ 1) is
a continuous path in GR with g(0) = 1, g(1) ∈ Gν,R. The monodromy action
of [γ] on H*(Bν) coincides with the natural action of g(1). If g(1) ∈ (Gν)o,
then g(1) acts trivially, hence the action of π1(O, ν) on H*(Bν) factors though
the homomorphism π1(O, ν) → Aν,R, [γ]→ [g(1)]. Q.E.D.

Fix a GR-orbit O = GR · ν on NR. Let Ō be its closure, ∂O := Ō − O its
topological boundary.

3.6 Lemma. The natural maps
0 → H2n(S(∂O)) → H2n(S(Ō)) → H2n(S(O)) → 0

form an exact sequence of W -modules.

Proof. The couple ∂O ⊂ Ō of closed R-subvarietes of NR gives a long-exact
sequence of W -modules

· · · → Hi+1(S(O)) → Hi(S(∂O)) → Hi(S(Ō)) →
→ Hi(S(O)) → Hi−1(S(∂O)) → · · · .

In top degree i = 2n this gives

0 → H2n(S(∂O)) → H2n(S(Ō)) → H2n(S(O)).

The surjectivity of the map on the right follows from the fact that Ō and ∂O ad-
mit compatible CW -decompositions [7] and standard facts about the homology
of CW -complexes ([12], Theorem 4.1). Q.E.D.

Proof of theorem 3.1. The map H2n(S(Ō)) → H2n(S) is injective, as one
sees from the exact sequence associated to the inclusion S(Ō) ⊂ S. H2n(S(Ō))
may therefore be considered a W -submodule of H2n(S), and H2n(S(O)) a W -
subquotient of H2n(S):

H2n(S(O)) ≈ H2n(S(Ō))/
∑
O′<O

H2n(S(O))

where O′ < O means O′ ⊂ ∂O. The filtration of NR according to the di-
mension of the GR-orbits, Ni,R :=

⋃
dimR O≤iO induces a filtration of S,Si :=⋃

dimR O≤i S(O), and hence of H2n(S):

H2n(Si) =
∑

dimR O≤i

H2n(S(Ō)).

The corresponding graded group is then

grH2n(S) =
∑
O

H2n(S(O)) (13)
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From Lemma 3.5

H2n(S(O)) ≈ H2e(Bν)Aν(R) (14)

and from Springer’s theory (§2)
H2e(Bν) ≈

∑
ϕεΦν

χν,ϕ ⊗ ϕ

as representation of W × Aν . Putting these pieces together one gets the de-
composition of theorem 3.3, since grH2n(S) ≈ H2n(S) as representations of W .
Q.E.D.

We point out the following consequence of theorem 3.3 and corollary 3.2.

3.7 Corollary. Let ν ∈ NR and G · ν∩igR = GR · ν1 ∪ · · · ∪GR · νm
the decomposition of G · ν∩igR into distinct GR-orbits. Then

m =
∑
c

[IndWWc,R
sgnc,I : χν,1].

Proof. By Theorem 3.3, m = [H2n(S):χν,1];by cCrollary 3.2
[H2n(S):χν,1] =

∑
c[Ind

W
Wc,R

sgnc,I : χν,1].
Q.E.D.

3.1 Remark. For GR = U(p, q), Barbasch and Vogan [5] prove the decomposi-
tion of the coherent continuation representation (defined in terms of characters)
according to nilpotent GR-orbits by direct verification based on (10). (In that
case Aν is trivial for all ν ∈ N .)

4. Nilpotent orbital integrals

We return to the integral (5), θ(Γ, λ) = 1
(−2πi)nn!

∫
ξ∈pλΓ

eξσnλ with Γ ∈ H2n(S).
Recall the natural isomorphism (13), grH2n(S) ≈ ∑

OH2n(S(O)) and (14),
H2n(S(O)) ≈ H2e(Bν)Aν(R).The inclusion Bν ↪→ B induces a W -injection

H2e(Bν)Aν ↪→ H2e(B) (15)

([16], Lemma 3.1.) The character ofW on H2e(Bν)Aν is χν := χν,1. According
to Borel [6], the cohomology ring of B can be described as follows. For λ ∈ h∗,
let τλ denote the U -invariant 2-form on B which at the base point b1 is given by
τλ([x ·b1, y ·b1]) := λ([x, y]) for x, y ∈ u.Let I+ denote the ideal in the ring C[h]
of polynomial function on h generated by the W -invariants without constant
term. There is a unique isomorphism of rings

C[h]/I+ → H∗(B), [λ] �→ [
1

−2πiτλ]. (16)

The dual space of C[h]/I+ is the space H(h∗) of W -harmonic polynomials on
h∗, and the transpose of the isomorphism (16) is a W -isomorphism

H∗(B) → H(h∗), γ �→ cγ , cγ(λ) :=
1

(−2πi)e
∫
γ

τeλ (17)
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given by for γ ∈ H2e(B). For ν ∈ N , let Hν(h∗) denote the space ofW -harmonic
polynomials on h∗ which are homogeneous of degree e = dimC Bν and transform
according to the irreducible character χν ofW . From (13), (14), (15), and (17),
together with

H2n(S(O)) ≈ H2n(S(Ō))/
∑
O′<O

H2n(S(O)),

there results a mapH2n(S(Ō)) → Hν(h∗), Γ → cΓ.We introduce the following
notation.

O := GR · ν, a GR-orbit on NR ⊂ig∗
R
;

2d := dimR O = dimC G · ν;
e := dimC Bν;
σν :=the canonical holomorphic 2-form on G · ν;
µν :=the canonical measure on O, i.e. µν(ϕ) = 1

(−2πi)d

∫
ξ∈O ϕσdν ;

θν :=the Fourier transform of µν , i.e. θν(f) := µν(ϕ) where
ϕ(ξ) :=

∫
gR

f(x)eξ(x)dx.

With this notation:

4.1 Theorem. Let Γ ∈ H2n(S(Ō)), θ(Γ, ·) the corresponding coherent family
of invariant eigendistributions. Then

θ(Γ,λ) = cΓ(λ)θν + o(‖λ‖e). (18)

Proof. Let O = G · ν be the complex orbit containing O = GR · ν, B∗(O)
the inverse image of O under p : B∗ → N . Since B∗(O) ⊂ B × O, we may
consider τλ + σν as 2-form on B∗(O). By [16], this form agrees on B∗(O) with
the pull-back p∗λσλ of the form σλ on Ωλ by the map pλ: Ωλ → B∗. Note
that \ d+ e = n because of the fibration (11), Bν ↪→ S(O) → O, of Lemma 3.4.
Let Γ be a 2n-cycle on S(O). As noted in the proof of lemma 3.5, the fibration
(11) induces a fibre-decomposition

Γν ↪→ Γ → O, (19)

with Γν a 2e-cycle on Bν. Now compute the integral (1) of §1 as a repeated
integral according to (19):

1
(−2πi)nn!

∫
pλΓ

ϕσnλ =
1

(−2πi)nn!
∫

Γ

(ϕ ◦ pλ)(τλ + σν)n

=
1

(−2πi)nn!
∫

Γ

∑
r+s=n

(ϕ ◦ pλ) n!
r!s!

τrλσ
s
ν

=
1

(−2πi)ne!d!
∫
µ∈O

{∫
b∈Γµ

ϕ(pλ(b, µ))τeλ
}
σdν + o(‖λ‖e).
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Write (b, µ) = u · (b1, µ
′) with u ∈ U , and µ′ ∈ b⊥1 . Then

ϕ(pλ(b, µ)) = ϕ(u · (λ+ µ′))
= ϕ(u · µ′) + o(‖u · λ‖)
= ϕ(µ) + o(‖λ‖).

Thus the integral is

=
1

(−2πi)dd!
∫
µ∈O

ϕ(µ)
{ 1
(−2πi)ee!

∫
Γµ

τeλ

}
σdν + o(‖λ‖e).

The expression in parentheses is independent of µ and equals cΓ(λ). Thus the
integral is

= cΓ(λ)
1

(−2πi)dd!
∫
µ∈O

ϕ(µ)σdν + o(‖λ‖e),

which is the desired formula when Γ is a 2n-cycle on S(O). Since ∂Ō =
⋃
O′

with e′ > e, the same formula holds for Γ ∈ H2n(S(Ō)), with cΓ depending only
on the image of Γ under the map H2n(S(Ō)) → H2n(S(O)). Q.E.D.

5. A limit formula

We fix a real Cartan subalgebra of gR, which we may as well assume to be hR

for the previously fixed h. It will be convenient to use another parametization
of the Γ(S,·) with S containing a fixed-point of h, as follows. For y ∈ W , let
by := y·b1, Sy := GR ·by. Then Γ(Sy, ·) is the unique coherent family of contours
satisfying Γ(Sy, µ) = [GR · yµ] if yµ(Hα) > 0 for all α ∈ (y∆+) ∩ ∆I. Let
Cy := {µ ∈ h∗

R,reg | µ(Hα) > 0 for α ∈ (y∆+)∩∆I} so that Γ(Sy, ·) is the unique
coherent family satisfying Γ(Sy, y−1µ) = [GR · µ] if µ ∈ Cy.Define Γ(C, ·) :=
y−1Γ(Sy, ·) if C = Cy.Γ(C,·) is a coherent family depending only on the chamber
C for ∆I. As (C, y) runs over a set of representatives of the WR-orbits of
pairs satisfying Cy = C, the corresponding families y · Γ(C, ·) run through
{Γ(S, ·) | h ⊂ b for some b ∈S}. Write θ(C,·) for the coherent family of invariant
eigendistributions corresponding to Γ(C, ·). The chamber C for ∆I will remain
fixed from now on. LetNC :=

⋂
µ∈C

(
N ∩ GR · R×

+µ
)
. Let O = GR · ν be a

nilpotent orbit in ig∗
R
, O = G · ν the complex orbit containing O. We shall

repeatedly refer to the following hypothesis (O):

O = O ∩NC. (O)

5.1 Remarks. (a) It seems likely that N ∩ GR · R
×
+µ is in fact the same for

all µ ∈C.
(b) It follows from the theory of SL2-triples ([1] Proposition 3.1) that for any
nilpotent orbit O = GR · ν in ig∗

R
there is an elliptic (not necessarily regular)

element µ ∈ig∗
R
so that O ⊂ GR · R×

+µ.
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(c) It is known that the hypothesis (O) is satisfied for nilpotent orbits of di-
mension 2n with C a chamber in the fundamental Cartan subalgebra [14]. It
is trivally satisfied at the opposite extreme, O = {)}, and for all O when gR is
complex.

For any ξ ∈ig∗
R
, let µξ be the canonical measure on GR · ξ and θξ its Fourier

transform (defined as in §4 for ξ = ν). In particular θ(C, µ) = θµ if µ ∈ C.
A polynomial p ∈ C[h] on h may be considered a differential operator on h∗,
denoted p(∂) or p(∂λ) with λ indicating the variable of differentiation.

5.2 Lemma. Let p ∈ C[h], θ ∈CH(gR, h). Then limλ→0 p(∂λ)θ(λ) exits as a
distribution on gR,reg and defines a W -invariant pairing on C[h]⊗CH(gR, h).

Proof. This is clear, since θ(·) extends to a holomorphic function on all of h∗

with values in the space of distributions on gR,reg (1.4(a)). Q.E.D.

5.3 Theorem. Assume O satisfies hypothesis (O). Let p be any polynomial
on h, homogeneous of degree e and transforming according to χν by W . Then

lim
λ→0(C)

p(∂λ)µλ = κµν

for some constant κ = κ(C, p, ν). The constant κ �= 0 for some p if and only if
χν occurs in the W -module generated by θ(C,·).
Proof. Let θν(C, ·) be the component of θ(C, ·) transforming according to χν ,

θν(C, λ) =
degχν
|W |

∑
y∈W

χν(y)θ(C, y−1λ),

Γν(C) ∈ H2n(S) the element correspondig to θν(C, ·) ∈CH(gR). According to
Theorem 3.3, the subspace of H2n(S)ν of H2n(S) of type χν can be described
as follows. Let O := G · ν the complex orbit containing O = GR · ν, and write
O ∩NR =

⋃
O′ with O′ = GR · ν′. (We choose ν′ = ν for O′ = O.) Then

H2n(S)ν ≈
∑
ν′

H2n(S(O′))Aν′ ≈
∑
ν′

H2e(Bν′
)Aν′ . (20)

applied to Γν(C) ∈
∑

ν′ H2n(S(O′))A
′
, Theorem 4.1 gives

θν(C, λ) =
∑
ν′

cν′(λ)θν′ + o(‖λ‖e). (21)

We record that

cν′(·) ∈ H(h∗) represents the component of Γν(C)
in H2e(Bν′)Aν′ according to the decomposition (20). (22)

Suppose p ∈ C[h] is homogeneous of degee p and transforms by χν . Then (21)
and Lemma 5.2 give

lim
λ→0

p(∂λ)θ(C, λ) =
∑
ν′
(p, cν′)θν′ (23)
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where (p, c) := p(∂)c(0) is the natural pairing. Take the limit in (23) from
within C and apply the inverse Fourier transform to find that limλ→0(C) p(∂λ)µλ =∑

ν′(p,cν′)µν′ . The left side of this equation has support in N ∩GR · R
×
+λ for

any fixed λ ∈C, hence in NC. The hypothesis (O) implies that (p, cν′) = 0 for
ν′ �= ν. Since this holds for all p

cν′ = 0 for ν′ �= ν, (24)

i.e.

θν(C,λ) = cν(λ)θν + o(‖λ‖e). (25)

This gives the desired formulalimλ→0(C) p(∂λ)µλ = (p, cν)µν and it follows from
(22) and (24) that (p, cν) �= 0 for some p if and only if θν(C, ·) �= 0. Q.E.D.

It would be desirable to have for each O an explicit formula for a corresponding
polynomial p. Under an additional hypothesis, this can be done as follows.

5.4 Corollary. Assume O satisfies hypothesis (O) and assume the restriction
of χν to WR contains the character sgnI of WR with multiplicity one. Let pν be
the (up to scalars unique) W -harmonic polynomial on h which is homogeneous
of degee e = dimC Bν, transforms by χν under W , and transforms by sgnI

under WR. Then

lim
λ→0(C)

pν(∂λ)µλ = κµν

with κ �= 0.

Proof. As in Theorem 1.4 (c), write

θ(C, λ) ≡ 1
εRπ

∑
w∈WR

sgnI(w)e
w−1λ on hR.

(sgnI(w))w∈WR
can be considered as an element in IndWWR

sgnI; its component in
the the irreducible subspace of type χν is non-zero if and only if the restriction of
χν to WR contains the character sgnI of WR. This is the case, by assumption.
Let m = (m(w))w∈W be the (up to scalars unique) non-zero element of IndWWR

transforming according to χν under W and according to sgnI under WR. We
assume m normalized so that

∑
w∈W m(w)w−1 operates as the projection on

the space of such elements. Then

θν(C, λ) ≡ 1
εRπ

∑
w∈W

m(w)ew
−1λ on hR. (26)

By what has just been said, the expression on the right is non-zero. Expand
the exponentials in (26):

θν(C, λ) ≡
∞∑
k=0

1
k!

1
εRπ

∑
w∈W

m(w)w−1λk. (27)
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Compare (27) with (25):

θν(C,λ) = cν(λ)θν + o(‖λ‖e), cν(·) �= 0.

One finds that ∑
w∈W

m(w)w−1λk = 0 for k < e

1
εRπ

∑
w∈W

m(w)w−1λe ≡ cν(λ)θν .

Since m(yw) = sgnI(y)m(w) for y ∈ W , also cν(yλ) = sgnI(y) cν(y
−1λ). Hence

cν(·) is the (up to scalars unique)W -harmonic polynomial on h∗ which is homo-
geneous of degee e, transforms by χν under W , and transforms by sgnI under
WR. Hence (pν , cν) �= 0. Q.E.D.

The “multiplicity-one“ hypothesis, when it holds, may be verified with the help
of the following criterion.

5.5 Lemma. Let G be a locally compact group, σ an automorphism of G, H
a σ-stable, compact subgroup of G. Assume that for g in some set of H:H
double-coset representatives (and hence for all g ∈ G), gσ = hgg

−1kg with
hg, kg ∈ H . Let ρ: H → Cx be a one-dimensional representation of H so that
ρ(hσ) = ρ(h) for all h ∈ H and ρ(hg) = ρ(hg) for all g ∈ G. Then IndK

Hρ
decomposes with multiplicity one.

Proof. The algebra of continuous G-endomorphisms of IndGHρ contains as a
dense subalgebra the convolution algebra of compactly supported, continuous,
C-valued functions ϕ on G satisfying

ϕ(hgk) = ρ(h)ϕ(g)ρ(k)−1 (28)

for all g ∈ G, h, k ∈ H . If suffices to show that this convolution algebra is
abelian. Let gτ = (gσ)−1. If ϕ(g) satisfies (28), so does ϕτ (g) := ϕ(τ ). Since
τ is an anti-automorphism of G,

(ϕ*ψ)τ = ψτ*ϕτ . (29)

On the other hand, a function ϕ as in (28) satisfies ϕτ = ϕ:

ϕτ (g) = ρ(k−1
g )ϕ(g)ρ(hg) = ϕ(g).

Applied to the functions in (29), this gives ϕ*ψ = ψ*ϕ as required. Q.E.D.

5.6 Remark. This kind of argument goes back at least to Gelfand [11].
(See also [9] Ch.X, Theorem 4.1.) The following result is due to E. Neher
(unpublished).

5.7 Lemma. Assume hR is a Cartan subalgebra of compact type in gR. Then
any left (or right) coset of WR in W has a representative s ∈ W satisfying
s2 = 1.
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Proof. Any element of W is a product of reflections, say

· · · sαsβ · · · . (30)

Generally

sαsβ = sγsα, where γ = sαβ. (31)

If α is compact and β is non-compact, then sαβ is non-compact. So (31) may
be used to bring all the compact roots in (30) to the left (or to the right). The
coset representative may therefore be chosen of the form (30) with non-compact
roots only. It suffices to verify the following statement.

If α, β are non-orthogonal, non–compact roots, then sαβ is compact. (32)

Assuming this, any representative of the form (30) with a minimal number of
reflections must consist of non-compact orthogonal reflections: otherwise (32)
and (31) could be used to reduce the numbers of reflections without changing
the coset. –The statement (32) concerns only the subalgebra of g generated by
root-vectors for α, β and its real form obtained by intersection with gR. This
algebra has rank two and (32) may be verified by inspection of the rank-two
root systems. Q.E.D.

5.8 Corollary. Assume hR is a Cartan subalgebra of compact type in gR.
Then IndWWR

sgnI decomposes with multiplicity one.

Proof. One can take σ =identity in lemma 5.5. Q.E.D.

5.9 Example: Harish-Candra’s Limit Formula [8]. Take ν = 0. Then
χν = sgn. Let � =

∏
α∈∆+ ∂α, with ∂αϕ =dϕ(α) as operator on h∗. �

transforms according to χ0 = sgn. Theorem 5.3 becomes limλ→0 �λµλ = κµ0.
The constant κ is non-zero if and only if hR is fundamental.

The last assertion is seen as follows.

[sgn|WR
: sgnI] =

{
1 if h is fundamental
0 otherwise

It follows that χ = sgn occurs exactly once in H2n(S) ≈ ∑
cInd

W
Wc,R

sgnc,I
namely in the summand for which hc is fundamental. Hence χ = sgn occurs in
the W -module generated by θ(C,·) if only if C lies in the fundamental Cartan
subalgebra. (“If“ because of the formula for θ(C,·) in theorem 1.4 (c).)
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