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1. Introduction.

This second part contains applications of the Integral Formula, as promised in the introduction to the
first part. The main results I consider to be Theorems (5.1) and (7.1) , even though neither is hard to
prove. Apart of being of some interest in themselves, they imply a number of results which are generally
considered hard, if I am not mistaken, and certainly occupy considerable space in the literature. Among
the results that follow from these theorems one might mention a formula for the global character of a
(go, Ko)-module with regular integral infinitesismal character as an integral over the characteristic cycle
of the corresponding (D,K)-module (for go complex); a formula for the harmonic polynomials studied by
Jantzen [1977], Joseph [1980], King [1979], Vogan [1978], and others through an interpretation of these
polynomials as cohomology classes on the flag manifold; a proof of a conjecture of Joseph [1984]; and
various other things.

The core of the paper is logically self-contained, except for reference to the Integral Formula and
some basic facts about flag manifolds and conormal varieties, but factually indebted to many sources, as
I shall point out where appropriate. Some peripheral results, however, rely on theorems not proved here
(and beyond what might reasonably be called “basic facts”). In section 6, for example, I use a theorem of
Kashiwara and of Tanisaki [1984, 1985], and in section 11 I quote a result of Hotta [1984]. On the whole,
I have made some effort to keep the paper as elementary and self-contained as possible without becoming
repetitious.

As mentioned, some of the results presented here among the applications of the Integral Formula
are known; I included them when I felt that the present approach sheds some additional light thereon.
An example is the Kazhdan-Lusztig [1980] completeness theorem for the Weyl group representation on
the top homology of the conormal variety, which here appears in a very simple and explicit form as a
consequence of Theorem 5.1. Another example is a formula for measures on nilpotent orbits proved by
Barbasch and Vogan [1982, 1983] for special orbits and by Hotta and Kashiwara [1984] in general. Here
this formula falls out as a byproduct of Theorem 7.1. I am indebted to Michèle Vergne for correcting a
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mistake in my proof of that theorem. The table of contents may serve as a further guide to the topics
treated.

Some related papers, which have appeared or come to my attention since this paper was written, are cited in the supple-

mentary references. In particular, the recent work of Joseph [1989] and Vergne [1989] provides an interesting alternative

approach to some of the questions discussed in sections 7 and 10.

2. Construction of Weyl group representations

We keep the notation introduced in part I, except that (until further notice) g can be any complex,
semisimple Lie algebra (not necessarily ≈ go × go), b1 any Borel subalgebra of g containing the Cartan
subalgebra h. For any (not necessarily regular) λ ∈ h∗ we set

Ωλ = {ξ ∈ g∗ : p(ξ) = p(λ) for all G-invariant polynomials p on g∗}.

The map

pλ = pb1,λ : B∗ → Ωλ, u · (b1, ν) → u · (λ+ ν).

with u ∈ U (compact form of G), ν ∈ b1
⊥ is then well-defined and surjective for all λ ∈ h∗.

Assume now λ regular. Then pλ is bijective and for any w ∈ W we may define a transformation
aλ(w) = ab1,λ(w) of B∗ by

aλ(w) = pwλ
−1 ◦ pλ : B∗ → B∗.

It is evident that

aλ(wy) = ayλ(w)aλ(y). (1)

If one could set λ = 0 in this equation, one would get an action of W on B∗, which would leave the
map po : B∗ → Ω0 invariant, so that W would permute the fibers of this map. This is of course only
trivially possible, as the fibers are generically single points: the map p0 is the Springer map, which is a
desingularization π : B∗ → N of the nilpotent cone Ωo = N in g∗ [Steinberg 1976]. Borrowing an idea
of Kazhdan and Lusztig [1980] we look for what one might call a (proper) homotopy action of W on B∗,
meaning a homomorphism of W into the group of proper homotopy equivalences of B∗, rather than a
genuine action. But we shall not use the Kazhdan-Lusztig construction (which in fact they could not
prove to give a homotopy action); instead we use the aλ(w). (We shall prove in an appendix that our
construction agrees with Kazhdan-Lusztig’s, proving incidentally that their construction gives a homotopy
action after all. Of course, what we are ultimately interested in is a representation of W in homology, and
that they did obtain -at least for the top-dimensional homology. Several other constructions of (variants
of) this representation of W are known, first of all Springer’s original construction [Springer 1976,1978],
another construction of Lusztig [1981], and others.)

We write out explicitly the definition of aλ(w) :

aλ(w)(u · (b1, ν)) = u′ · (b1, ν′) where u′ · (wλ + ν′) = u(λ+ ν).

Thus

u′ · ν′ − u · ν = −u′ · wλ+ u · λ
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hence

|u′ · ν′ − u · ν| ≤ const.|λ|.

Thus for λ close to 0 (but regular) the transformations aλ(w) leave the Springer map π : B∗ → N
approximately invariant in the sense that

|π(aλ(w)(b, ν)) − π(b, ν))| ≤ const.|λ|. (2)

For any subset V of N let

B∗(V ) = {(b, ν) ∈ B∗ : ν ∈ V },

the inverse image of V in B∗. We wish to constuct a proper homotopy action of W on B∗(V ). This
requires a regularity condition on V. Namely, for fixed ε > 0, let U the be the ε-neighbourhood of V in N ,

U = {ν ∈ N : |ν − ν′| < ε for some ν′ ∈ V },

and

B∗(U) = {(b, ν) ∈ B∗ : |ν − ν′| < ε for some ν′ ∈ V } (3)

its inverse image in B∗. We require that
for sufficiently small ε > 0, the inclusion i : B∗(V ) → B∗(U) should admit a proper homotopy
inverse p : B∗(U) → B∗(V ), i.e.

p ◦ i ∼ 1 on B∗(V ), and i ◦ p ∼ 1 on B∗(U) (4)
with “∼” meaning “properly homotopic”.

We observe that this condition is satisfied in either the following two cases:

(a) V is a finite subpolyhedron of a triangulation of N , (5)
(b) V is a constructible subset of N , stable under scalar multiplications. (6)

The first condition may be explained as follows. Let ḡ∗ = P (g∗ ⊕C) be the projective completion of g∗,
N̄ the closure of N in ḡ∗, B̄∗ the closure of B∗ ⊂ B ×N in B × N̄ . As a projective algebraic variety, N̄
admits a triangulation [Hironaka 1975], hence (5) makes sense.

That (5) implies (4) is seen as follows. Assume (5). Then B∗(V ) is also a finite subpolyhedron of a
triangulation of B∗. It is an elementary fact that a finite subpolyhedron has a retractable neighbourhood
[Alexandroff-Hopf, 1935, sections 6.1-2]. In particular B∗(V ) has a retractible neighbourhood W in B∗.
Since π is a proper map, there is a neighbourhood U of V in N so that π−1(U) ⊂W , which gives (4).

That the condition (6) also implies (4) is seen as follows. One may suppose that V excludes 0, as
a neighbourhood of 0 may be treated separately. Because of the assumption that V is stable under scalar
multiplications and excludes 0, one may then replace V by V ∩ {|ν| = 1} in order to prove (4). Since V
is also constructible, one may apply (5).

From now on we shall assume that all sets V under consideration satisfy either (5) or (6), so that
(4) applies. (This may well be unnecessarily restrictive, but is sufficient for the applications we have in
mind.) It is clear from (2) and (3) that

aλ(w)B∗(V ) ⊂ B∗(U)

for λ ∈ h∗ sufficiently close to 0. Thus the transformation

aλ,V (w) = p ◦ aλ(w) ◦ i (7)
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of B∗(V ) is defined for all regular λ in a small ball about 0 in h∗. Since these λ form a connected set, the
proper homotopy class aV (w) of aλ,V (w) is independent of λ, and the equation (1) implies that

aV (wy) = aV (w)aV (y)

so that the aV (w) give a proper homotopy action of W on B∗(V ).

As a consequence we have a representation ofW in the homology with integral coefficients, denoted
H∗(B∗(V ),Z). As in Kazhdan-Lusztig [1980], “homology” may here be understood either as “Borel-Moore
homology” or as relative homology H∗(B̄∗(V ), ∂B∗(V );Z) of the finite polyhedron B̄∗(V ) with respect to
its finite subpolyhedron ∂B∗(V ) (see the explanations in connection with (5)). The coefficient ring Z will
be omitted from the notation when understood or unimportant.

For the further analysis of the representations ofW in these H∗(B∗(V )) we follow Kazhdan-Lusztig
[1980]. Suppose X ⊂ Y are closed subvarieties of N , and put U = Y −X . There is a long exact sequence

· · · → Hi+1(B∗(U)) → Hi(B∗(X))→ Hi(B∗(Y ))→ Hi(B∗(U))→ Hi−1(B∗(X)) → · · · (8)

In top degree, when i = 2m, m = dimCB∗(Y ), H2m+1(B∗(U)) = 0, trivially, and the boundary map
H2m(B∗(U)) → H2m−1(B∗(X)) is = 0 because the topological boundary of a complex variety has real
codimension at least 2. So (8) leads to the short exact sequence

0→ H2m(B∗(X))→ H2m(B∗(Y )) → H2m(B∗(U))→ 0 (9)

The maps (7) and (9) are W -maps.

3. Specialization

In the above construction, choose V = {ν}, a single point. Then

B∗(ν) = {(b, ν)|ν ∈ b⊥},

which may be identified with

Bν = {b ∈ B|ν ∈ b⊥}.

This is the fixed point set of (the one parameter group generated by) ν, when g∗ is identified with g. We
thus have a representation of W in H∗(Bν).

The component group A(ν) of the stabilizer of ν in G acts on H∗(Bν). This action commutes with
the action of W, because the elements of A(ν) have representatives in U (the compact form of G) and the
operators aλ(w) = pwλ

−1 ◦ pλ commute with the action of U on B∗, the pλ being U -equivariant.

The Weyl group W acts on the flag-manifold B ≈ U/T by

a(w) · u · b1 = u · w−1b1(u ∈ U).

In the context of Springer’s construction, the analogue of the following lemma is the Specialization Theorem
of Hotta-Springer [1977].

3.1 Lemma. The inclusion Bν → B induces a W-map H∗(Bν) → H∗(B). This map factors
through the projection H∗(Bν)→ H∗(Bν)A(ν) onto the A(ν)-invariants.
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Proof. It suffices to show that the homotopy equivalence of Bν constuct above has a representative
Bν → Bν , denoted aν(w), so that the inclusion i : Bν → B satisfies

i ◦ aν(w) ∼ a(w) ◦ i.

Choose a neighbourhood V of Bν for which the inclusion k : Bν → V has a homotopy inverse q : V → Bν :

q ◦ k ∼ 1 on Bν, k ◦ q ∼ 1 on V.

Let U = {(b, ν′) : b ∈ V, |ν′| ≤ R} for some fixed R > |ν|. Define maps

j : Bν → U, j(b) = (k(b), ν) = (b, ν), p : V → Bν, p(b, ν′) = q(b).

We show that

p ◦ j ∼ 1 on Bν, j ◦ p ∼ 1 on U. (1)

The first relation is clear since

p ◦ j(b) = q ◦ k(b) and q ◦ k ∼ 1 on Bν.

To see the second relation, use k ◦ q ∼ 1 to choose a homotopy qs : V → V, 0 ≤ s ≤ 1, from q0 = 1V to
q1 = k ◦ q. Perform successively the following homotopies of maps U → U :

(1) (b, ν′)→ (b, sν′), s going from 1 to 0,
(2) (b, ν′)→ (qs(b), 0), s going from 0 to 1,
(3) (b, ν′)→ (k ◦ q(b), sν), s going from 0 to 1.

This gives a homotopy from the identity 1U : (b, ν′) → (b, ν′) to p ◦ j : (b, ν′) → (k ◦ q(b), ν) as required.

For λ close to 0, aλ(w)j(Bν) stays in the neighbourhood U of j(Bν). The relation (1) shows that the
p, j can take the place of the p, i in the definition (2.7) of aν(w). For such λ the map p◦aλ(w)◦j : Bν → Bν

therefore represents the homotopy class aν(w):

aν(w) ∼ p ◦ aλ(w) ◦ j : Bν → Bν. (2)

For 0 ≤ s ≤ 1, define of maps

js : Bν → U, js(b) = (b, sν), ps : U → V, ps(b, ν′) = qs(b)

with qs as above. Consider the homotopy of maps

ps ◦ aλ(w) ◦ js : Bν → V, 0 ≤ s ≤ 1. (3)

For s = 0 we get

po ◦ aλ(w) ◦ jo(b) = qo ◦ aλ(w)(b, 0) = a(w)b

because aλ(w) and a(w) coincide on B considered as the zero section in B∗: this is clear from the definition
of aλ(w). So for s = 0, (3) reduces to a(w) ◦ i. On the other hand, for s = 1 we get

p1 ◦ aλ(w) ◦ j1(b) = p ◦ aλ(w)(b, ν)) = p ◦ aλ(w) ◦ j(b)) = aν(b)b

by (2). So for s = 1, (3) reduces to aν(w)◦ i. Hence (3) provides the desired homotopy i◦aν(w) ∼ a(w)◦ i.
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To see the second assertion of the lemma one only has to note that the action of the stabilizer of
ν in U, which induces the action of A(ν) in H∗(Bν), becomes trivial in H∗(B) as U is connected. This
proves the lemma.

3.2 Corollary. In top dimension the W -map

H2e(ν)(Bν)A(ν) → H2e(ν)(B), e(ν) = dimCBν,

is an isomorphism onto its image.

Proof. This is because the representation of W on H2e(ν)(Bν)A(ν) is irreducible, as we shall see in (4.1).

4. Springer Theory

We shall now apply the above construction with Go replaced by G ≈ Go × Go. B will again denote the
flag manifold of g, Bo that of Go, so that B = Bo×Bo. N = No ×No is the nilpotent cone in g∗, No that
in g∗o . We again set z1 = bo × bo and zw = w−1z1. For V we now take

N ∩ k⊥ = {(ν,−ν)|ν ∈ No} ≈ No.

Then B∗(V ) becomes

Z = {(b, b′; ν,−ν)|ν ∈ b⊥ ∩ b′⊥}

the conormal variety of the K-orbits on B. Our construction therefore gives a representation of W ≈
Wo ×Wo on H∗(Z,Z).

We may identify No with the subset N ∩k⊥ of N . For a subset V of No we write Z(V ) for B∗(V ).
When V is a closed subvariety of N , then H2n(Z(V )) is naturally a W -submodule of H2n(Z), by (2.9).
When V is only constuctible then H2n(Z(V )) is naturally a W -subquotient:

H2n(Z(V )) ≈ H2n(Z(V̄ ))/H2n(Z(∂V ))

where V̄ is the closure of V and ∂V is the topological boundary of V.

The decomposition ofNo intoGo-orbitsO (equivalently: the decomposition ofN∩k⊥ intoK-orbits)
leads to a filtration of H2n(Z) according to the closure relations among the orbits :

O′ ⊂ Ō implies H2n(Z(Ō)) ⊂ H2n(Z(Ō′)).

The subquotients of this filtration are

H2n(Z(O)) = H2n(Z(Ō))/
∑

O′<O
H2n(Z(Ō′)).

Where O′ < O means Ō′ ⊂
�=
Ō. The associated graded group is

grH2n(Z) ≈ ⊕H2n(Z(O)), (1)

sum over all Go-orbits on No. (1) is a W -decomposition; but one shoud keep in mind that the H2n(Z(O))
are naturally W -subquotients of H2n(Z ), not W -submodules. This in spite of the fact that H2n(Z(O))
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may naturally be realized as a subgroup of H2n(Z): it has as a basis the fundamental cycles of the
components of Z(O) and is therefore isomorphic to the subgroup of H2n(Z) spanned by the fundamental
cycles of the closures in Z of these components. But the latter subgroup of H2n(Z) is generally not
W -stable. It should also be noted that according to Steinberg [1976] each Z(O) has uniform dimension
= dimZ = n, so its components are certain Zw’s. More precisely, the components of Z(O) are dense
parts of those Z̄w for which O intersects the fibre Zw ∩ k⊥ of Z → B over Zw densely. We denote them
Zw(O) := Z(O) ∩ Z̄w.

From the fibration Z(O) → O one gets that

H2n(Z(O)) ≈ H2e(ν)(Bν)Ao(ν) (2)

where ν ∈ O, e(ν) = dimCBν = 2eo(ν), eo(ν) = dimCBoν , and Ao(ν) is the component group of the sta-
bilizer of ν in Go, a quotient of the fundamental group of O. H2e(ν)(Bν)Ao(ν) denotes the Ao(ν)-invariants
in H2e(ν)(Bν).

The isomorphism (1) is explicitly seen as follows. As just mentioned, H2n(Z(O)) has a basis
consisting of the fundamental cycles of those Zw of Z which make up Z(O). On such a Zw the fibration
Z(O) → O restricts to a fibration Zw(O) → O whose fibre over ν is exactly an Ao(ν)-orbit of components
of Bν = Boν × Boν (according to Steinberg [1976]); and these Ao(ν)-orbits of components of Bν form a
basis of H4e(ν)(Bν)Ao(ν).

The action of the component group A(ν) = Ao(ν)×Ao(ν) of the G−stabilizer of ν on H2e(ν)(Bν) =
H2eo(ν)(Boν)⊗H2eo(ν)(Boν) commutes with the action of W = Wo ×Wo, as we know, and the invariants
of the diagonal Ao(ν) in Ao(ν) ×Ao(ν) decompose as∑

φ

χν,φ̄ ⊗ χν,φ

where φ runs over the irreducible characters of Ao(ν) which occur in H2eo(ν)(Boν) and χν,φ is the character
ofWo on the subspace ofH2eo(ν)(Boν) which transforms according to φ. (A priori one might have to extend
scalars to C for this decomposition, but it follows from the known structure of the Ao(ν) that it suffices
to work over Q.) If one knew that

the representation of W = Wo ×Wo on H2n(Z,C) is the
biregular representation on C[W/Wo] = C[Wo],

(3)

which is the main result of the Kazhdan-Lusztig [1980] paper, this argument (which they attribute to
Springer) would prove

4.1 Springer’s Theorem. The χν,φ, are exactly the irreducible characters of Wo.

In the present context the missing link (3) will be supplied by the Integral Formula, as we shall now show.

5. Coherent families of eigendistributions.

To bring in the Integral Formula we need to pass from the conormal variety Z of the K-action to the
conormal variety S of the Go-action by means of the involution ι : (x, y) → (x, ȳ) of g = go × go which
interchanges go = {(x, x̄)} and k = {(x, x)}. Use this automorphism ι to transfer the represention ofW on
H∗(Z) constructed above from Z to S. It is still induced by the transformations aλ(w) = pwλ(w)−1 ◦ pλ
with pλ : B∗ → Ωλ, u · (b1, ν) → u · (λ + ν), except that for S we need to take b1 = s1 = bo × b̄o as
base-point in the definition of pλ (because ιab1,λ(w)ι = aιb1,ιλ(w) ∼ aιb1,λ(w)).
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Recall the Integral Formula: for Γ ∈ H2n(S,C), and regular λ ∈ h∗,

1
(2πi)n

∫
pλΓ

exλ−σλ =
1

π(x)

∑
y∈W

mye
y−1λ. (1)

We also know that for Γ = Sw, my is up to a sign the local Euler number of Sw at sy :

my = (−1)no+l(w)−l(y)Euy(Sw) = (−1)no+l(w)−l(y)Euy(Zw) (for Γ = Sw).

(1) is interpreted as an invariant eigendistribution on go, which we denoted θΓ (λ) :

θΓ (λ) = 1
(2πi)n

∫
pλΓ

exλ−σλ

The right side of (1) may be written as

θΓ (λ) =
1
π

∑
y∈W/Wo

myϕy(λ)

where

ϕy(λ) =
1
π

∑
w∈Wo

e(yw)−1λ. (2)

Any family θ(λ) of Go-invariant eigendistributions depending on λ ∈ h∗ which for regular λ is given by a
formula

θ(λ) =
1
π

∑
y∈W

mye
y−1λ. (3)

with myz = my for z ∈Wo, or equivalently

θ(λ) =
1
π

∑
y∈W/Wo

myϕy(λ) (4)

will be referred to as a coherent family of invariant eigendistributions on go∗. Is is evident that a coherent
family θ is determined by its value θ(λ) at a single regular λ. Furthermore, any θ(λ) given by (3) or (4)
for a single regular λ extends uniquely to a coherent family: to see this it suffices to know that the ϕy(λ)
extend, and that will become clear shortly. We shall denote the space of coherent families of invariant
eigendistributions on go by CH(go,C) or CH(go,Z) depending on whether we use complex or integral
coefficients my in (3) or (4). The C or Z will be omitted when understood or unimportant.

The Weyl group W = Wo ×Wo operates on the θ in the obvious way:

(w · θ)(λ) = θ(w−1λ)

and the resulting representation ofW on CH(go,C) is evidently the biregular representation on Z[W/Wo] ≈
Z[Wo], with the ϕw, w ∈ W/Wo, corresponding to the basis elements wWo of Z[W/Wo]. On the other
hand, we have the representation of W on H2n(S,Z) constructed above.
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5.1 Theorem. The map

H2n(S,Z)→ CH(go,Z), Γ→ θΓ ,

given by the Integral Formula is a W − isomorphism.

More precisely, the homology classes w·S1, w∈W/Wo, form a basis for H2n(S,Z). They correspond
to the basis (−1)noϕw, w ∈W/Wo, of CH(go,Z) under the bijection Γ→ θΓ .

Proof. That the map H2n(S) → CH(go) is a bijection we know from the Integral Formula : its matrix
(−1)no+l(w)−l(y)Euy(Sw) with respect to the bases Sw of H2n(S) and ϕw of CH(go), is integral and
unipotent-triangular with respect to the Bruhat order on W/Wo.

It suffices to prove the second assertion which says explicitly that for regular λ ∈ h∗,

1
(2πi)n

∫
pλwS1

exλ−σλ =
(−1)no

π(x)

∑
y∈Wo

e(wy)
−1λ(x). (5)

For w = 1 this is a special case of the Integral Formula : theK-orbit Z1 = K ·z1 is smooth, so Euy(Z1) = 1
or 0, according as y ∈Wo or not. To see that (5) holds for all w ∈W we only need to identify the pλwS1.
The cycle pλS1 is the image under the map

pλ : B∗ → Ωλ, u · (b1, ν) → u · (λ + ν)

of the conormal bundle of the closed Go-orbit Go · s1, where s1 = bo × b̄o . That conormal bundle is

Go · {(s1, ν)|ν ∈ s1
⊥ ∩ igo

⊥}

Since Go = KoBo and bo ⊂ s1 this conormal is also

= Ko · {(b1, ν)|ν ∈ ibo
⊥}.

where bo⊥ ⊂ go
∗ is the orthogonal of bo in go

∗ (not in g∗). Its image under pλ becomes Ko · {λ+ ibo
⊥}.

From the definition of the action of W on H2n(S) one finds that the cycle pλw · S1 on Ωλ which
figures in (5) is properly homotopic to Ko · {w−1λ+ ibo

⊥}:

pλw · S1 ∼ Ko · {w−1λ+ ibo
⊥} on Ωλ.

taken with the appropriate orientation. So (5) says

1
(2πi)n

∫
Ko·{w−1λ+ibo

⊥}
exλ−σλ =

(−1)no

π(x)

∑
y∈Wo

e(wy)
−1λ(x). (6)

We know that this formula holds for w = 1 (and regular λ). Replacing λ by wλ one sees that it holds for
all w ∈ W . Furthermore, writing the integral (6) as a double integral, first over bo⊥, then over Ko, one
sees that (6) exists for all λ ∈ h∗ (regular or not). This means that

ϕw(λ) is entire analytic in λ ∈ h∗

as promised above. This finishes the proof of the theorem. We record explicitly the special case when
Γ = Sw :
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5.2 Corollary.

Sw =
∑

y∈W/Wo

(−1)l(w)−l(y)Euy(Sw)y · S1.

or equivalently

Zw =
∑

y∈W/Wo

(−1)l(w)−l(y)Euy(Zw)y · Z1.

6. Characters and characteristic cycles.

As a first and immediate application of Theorem 5.1 we derive a formula for the global character of a
(g,K)-module as a contour integral over the characteristic cycle of the corresponding (D,K)-module.

We start with some general remarks about global characters. A (g,K)-moduleM with infinitesimal
character λ ∈ h is the Harish-Chandra module of an admissible representation of Go, whose global
character is an invariant eigendistribution Θ = ch(M) on Go. It follows from results of Harish-Chandra
[1965] that one has an identity of distributions in a neighbourhood of 0 in go :

Θ(expx) = j(x)−1θ(x) (1)

where θ is an invariant eigendistribution on go with infinitesimal character λ and

j(x) = det1/2(
eadx/2 − e−adx/2

adx
) =

∆(x)
π(x)

on ho.

Here π =
∏

α∈∆+
α as before, and

∆ =
∏

α∈∆+

(eα/2 − e−α/2)

is the Weyl denominator. The products are over the roots α of ho in bo
⊥. If λ ∈ h∗ is regular, as we shall

now assume, the Integral Formula allows us to write θ = θΓ (λ) for a unique Γ ∈ H2n(S). We shall call
this homology class Γ, or any 2n-cycle representing it, the character contour of the (g,K)-module M,
and denote it C(M). It should be noted that C(M) depends on the choice of the element λ in the W -orbit
in h∗ determined by the infinitesimal character of M and on the Borel subalgebra s1 used to define the
map pλ.

Recall the Beilinson-Bernstein [1981] correspondence between (g,K)-modules and (D,K)-modules.
We consider only the case of regular integral infinitesimal character; one may as well assume (as we now
do) that the infinitesimal character is represented by −ρ where ρ = (ρo, ρo) is half the sum of the roots
of h in z1 = bo × bo.

The Beilinson-Bernstein correspondence based on the data (z1,−ρ) associates to each (g,K)-module
M with infinitesimal character -ρ the (D,K)-moduleM = D⊗M . (D is the sheaf of differential operators
on B as in [Beilinson-Bernstein]; the tensor product is over U(g) as explained there.) This correspondence
is an equivalence of categories.

For each K-orbit Zy = K ·y−1z1 there is an induced D-module which we shall denote Iy. Write Iy
for the corresponding (g,K)-module. It is known that Iy is an induced (principal series) (g,K)-module.
The corresponding representation of Go has global character
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1
∆

∑
w∈W

e−(yw)−1ρ.

(Thisisaspecialcaseoftherelationbetweentwoofthethreeclassificationsof(

g,K)-modules, ofHecht−Miličić− Schmid−Wolf [1986].)

Under the correspondence (1) between invariant eigendistributions on Go and on go the global
character corresponds to the distribution

1
π

∑
w∈W

e−(yw)−1ρ. (2)

In analogy with the data (z1,−ρ) for the Beilinson-Bernstein correspondence it seems natural to base
the character contours on the data (s1,−σ) which correspond to (z1,−ρ) under the automorphism ι

interchanging k and go : s1 = bo × b̄o and σ = (ρo,−ρo). We therefore write (2) as

1
π

∑
w∈W

e−(wιyw)−1σ = ϕw1y(−σ) (3)

where wι ∈ W is the Weyl group element with wιρ = σ.

It follows from Theorem 5.1 that the character contour of the (g,K)-module Iy (based on the data
(s1,−σ) is

C(Iy) = wιy · S1 (4)

On the other hand, to a (D,K)-module M one can associate a characteristic cycle; this is an algebraic
cycle of complex dimension n on B∗ which is known to lie on the conormal variety Z of the K-action
on B for these modules M. It determines therefore a homology class in H2n(Z), denoted Ch(M). By a
result of Tanisaki [1985] (or by the corresponding result of Kasihwara-Tanisaki [1984] for (D, B)-modules,
which amounts to essentially the same thing when go itself is complex, as here) the characteristic cycle of
the induced D-module Iy is

Ch(Iy) = y · Z1. (5)

Since the Iy and Iy form bases for the respective K-groups one finds by comparing (4) and (5) :

6.1 Theorem. The character contour C(M) of a (g,K)-module M and the characteristic variety
Ch(M) of the corresponding D-module M are related by:

Ch(M) = wι · ιC(M). (6)

In this equation ι denotes the map from the conormal variety of K-action of B to the conormal variety of
the Go-action induced by the involutionι of g which interchanges k and go and induces theW -isomorphism
of the homology groups of the conormal varieties. It is further understood that the data (z1,−ρ) entering
into the Beilinson-Bernstein correspondence and the data (s1,−σ) entering into the definition of character
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contours are related by this automorphism ι. Explicitly, (6) says that the global character ch(M) of M is
given by the formula

ch(M)(expx) = j(x)−1

∫
p−σιwι

−1Ch(M)

exσ−σσ .

7. Asymptotics at zero

Recall the W -filtration of Z by the inverse images Z(O) of nilpotent K-orbits O on N ∩ k⊥, which gave
rise to the decomposition (4.1) of grH∗(Z). Passing from Z to S, the analogous filtration of S by the
inverse images S(O) of Go-orbits on N ∩ igo

∗ gives a filtration of H2n(S) by the subgroups H2n(S(Ō))
according to the closure relation among the O’s leading to the decomposition

grH2n(S) ≈
∑
O

H2n(S(O)). (1)

As in (4.2),

H2n(S(O)) ≈ H2e(ν)(Bν)Ao(ν) (2)

and the inclusion Bν⊂→B induces a W -injection

H2e(ν)(Bν)A(ν)⊂→H2e(ν)(B) (3)

(Note that there is Ao(ν) in (2), A(ν) = Ao(ν) × Ao(ν) in (3).) We choose the same base point b1 = s1

to define the W -action on H2e(ν)(Bν)A(ν) and on H2e(ν)(B).)

We recall Borel’s description of the cohomology ring of B [Borel 1953]. For λ ∈ h∗ denote τλ the
U -invariant 2-from on B which at the base point s1 is given by

τλ(x · s1, y · s1) = λ([x, y]) for x, y ∈ u (4)

Set

ωλ = − 1
2πiτλ

The map λ→ ωλ extends to a map f → ωf from the ring C[h] of polynomial functions on h to the algebra
of differential forms on B. It annihilates the W -invariants with zero constant term in C[h], denoted I+,

and induces an isomorphism

C[h]/I+≈→H∗(B), [f ]→ [ωf ], (5)

where [f ] is the class of f, [ωf ] the class of ωf (in de Rahm cohomology). The transpose of (5) is an
isomorphism

H∗(B,C)≈→H(h∗), γ → cγ (6)
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where H(h∗) consists of the W -harmonic polynomials on h∗, i.e. the polynomials annihilated by the
W -invariant constant coefficient operators without constant term. Explicitly, the isomorphism (6) is
defined by ∫

γ

ωf = 〈cγ , f〉. (7)

The right side is the natural pairing 〈xi, λj〉/j! = 〈x, λ〉jδij . cγ may also be defined directly by the
equation

cγ(λ) =
∫
γ

eωλ (8)

as one sees by taking f = eλ in (7) using 〈c, eλ〉 = c(λ). Composing (3) and (6) gives a map

H2e(ν)(Bν)A(ν) → He(ν)(h∗) (9)

where He(ν)(h∗) denotes the homogeneous polynomials of degree e(ν) in H(h∗). Using further (2) we get
a map

H2n(S(Ō)) → He(ν)(h∗), Γ→ cΓ , (10)

This last map (10) is of course not an isomorphism: it factors through the projection of H2n(S(Ō)) onto
H2n(S(O)) as well as through the projection of H2e(ν)(Bν)Ao(ν) onto H2e(ν)(Bν)A(ν).

7.1 Theorem. For any nilpotent Go-orbit O in igo
∗ and any 2n-cycle Γ ∈ H2n(S(Ō)) over Ō,

1
(2πi)n

∫
pλΓ

exλ−σλ = cΓ (λ) 1
(2πi)d

∫
O
exO−σO + o(|λ|e) (11)

Explanation and remarks. d = d(O) = dimCO, e = e(O) = dimCBν(ν ∈ O); xO is x considered as a
function on O; σO is the canonical 2-form on O:

σO(x · ν, y · ν) = 〈ν, [x, y]〉.

The equation (11) is understood as an identity of distributions on go, as usual. It will be abbreviated to

θΓ (λ) = cΓ (λ)θO + o(|λ|e). (12)

with

θΓ (λ) = 1
(2πi)n

∫
pλΓ

exλ−σλ ,

θO = 1
(2πi)d

∫
O
exO−σO .

The equation (11) can also be written as an asymptotic relation as x→ 0 in go in the sense of Barbasch
and Vogan [1980]:

θΓ (λ) ∼ cΓ (λ)θO as x→ 0 in go. (13)
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This means that cΓ (λ)θO is the leading term in the asymptotic expansion of θΓ (λ) at x = 0 described in
Theorem 1.3 of [Barbasch-Vogan 1980].

Proof of the theorem. Fix the Go-orbit O on N ∩ igo
∗ and Γ ∈ H2n(S(Ō)). For f ∈ C∞

c (g), set

ϕ(ξ) =
∫
g

eξ(x)f(x)dx.

The theorem says that for all such f

(−1)n

(2πi)nn!

∫
pλΓ

ϕσλ
n = cΓ (λ)

(−1)d

(2πi)dd!

∫
O
ϕσOd + o(|λ|e).

To determine the asymptotic behaviour of the integral on the left we need some general remarks on
symplectic structure. Let Q be an orbit of the complex group G on the nilpotent cone N in g∗. As before,
put

B∗(Q) = {(b, ν)|ν ∈ Q}

Then there are injections

B∗(Q) ⊂→ B ×Q (15)

B∗(Q) ⊂→ Ωλ (16)

the first map being the natural inclusion, the second one the restriction of the bijection

pλ : B∗ → Ωλ, u · (s1, ν) → u · (λ+ ν)

(u ∈ U, ν ∈ s1
⊥). In view (15) and (16) we can restrict to B∗(Q) the 2-form τλ + σQ on B × Q and the

2-form σλ on Ωλ.

7.2 Lemma. The 2-forms τλ + σQ and σλ agree on B∗(Q).

Proof of the lemma. Because of U -invariance it suffices to show that the forms agree at a point (s1, ν)
with ν ⊂ s1

⊥ ∩ Q. Let

u(t) · (s1, v(t) · ν) (17)

be a smooth curve on B∗(Q) with u(t) ∈ U, v(t) ∈ G, v(t) · ν ∈ s1
⊥, u(0) = 1, v(0) = 1. Its tangent

vector at t = 0 is

(u′ · s1, (u′ + v′) · ν) (18)
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u′, v′ ∈ g being the tangent vectors of u(t) and v(t) at t = 0. The 2-form τλ + σQ assigns to two such
tangent vectors at (s1, ν) the value

〈λ, [u′, u′′]〉+ 〈ν, [u′, u′′]〉+ 〈ν, [u′, v′′]〉+ 〈ν, [v′, u′′]〉+ 〈ν, [v′, v′′]〉. (19)

The curve on Ωλ corresponding to (17) under the injection (16) is

u(t) · λ+ u(t)v(t) · ν

and its tangent vector at λ+ ν, corresponding to the vector (18) at (s1, ν), is

u′ · (λ+ ν) + v′ · ν.

The 2-form σλ assigns to two such tangent vectors at λ+ ν the value

〈λ, [u′, u′′]〉+ 〈ν, [u′, u′′]〉+ 〈ν, [u′, v′′]〉+ 〈ν, [v′, u′′]〉+ 〈λ+ ν, [v′, v′′]〉. (20)

The last term of (20) = 0, as λ+ s1
⊥ ⊂ Ωλ is an isotropic (in fact Lagrangian) submanifold of Ωλ, which

is clear. The same is true of the last term of (19), but this is less clear: it is known that, for any b, b⊥ ∩Q
is a co-isotropic subvariety of Q [Joseph 1984, Lemmas 7.5 and 9.6(i)] of dimension = 1/2 = dimQ (as
follows from [Spaltenstein 1977] and [Steinberg 1976, section 4]), hence in fact Lagrangian. Thus (19)
agrees with (20), proving the lemma.

Remark. The fact that b⊥ ∩Q is Lagrangian on Q is mentioned in [Ginsburg 1986, Proposition 4.3]. The
proof indicated there uses general facts from symplectic geometry. [NB(2003). These facts (moment maps
preserving Poisson brackets) imply also that the form σQ is the canonical 2-form on B∗ over the open
orbit Q, where B∗ → {N is regular.]

We return to the proof of the theorem. Apply the above lemma to the G-orbit Q containing the Go-orbit
O. The fibration

Bν⊂→B∗(Q) → Q (21)

restricts to

Bν⊂→S(O) → O. (22)

For Γ it suffices to take a component of S(O). As explained for Z(O) in connection with (4.2), a component
of S(O) is a dense part of an Sw , denoted Sw(O). The fibration (22) restricts to a fibration

Bν
w
⊂→Sw(O) → O. (23)

According to Steinberg [1976] the fibre Bν
w = Sw(O)∩Bν over ν ∈ O in (23) is a single orbit of components

of Bν under the component group Ao(ν) of the stabilizer of ν in Go. These components all have the same
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dimension e = e(O) = dimCBν , by a result of Spaltenstein [1977]. The fundamental class of such a
component in H2e(B) is independent of ν in O, as O is connected. Note, incidentally, that

d+ e = n

because of the fibration (14). Now calculate:

(−1)n

(2πi)nn!

∫
pλSw(O)

ϕσλ
n = (−1)n

(2πi)nn!

∫
Sw(O)

(ϕ ◦ pλ)(τλ + σO)n

= (−1)n

(2πi)nd!e!

∫
O

{ ∫
Bν

w

ϕ(pλ(b, ν))τλe(db)
}
σOd(dν) + o(|λ|e) (24)

where we used the fibration (22) and Lemma 7.2 to write the integral over Sw(O) as an integral over the
fibre Bν

w followed by an integral over the base O.

In the integral (24) write (b, ν) = u · (s1, ν1) with u ∈ U and ν1 ∈ s1
⊥. Then the integrand becomes

ϕ(pλ(b, ν)) = ϕ(u · (λ+ ν1))

= ϕ(u · ν1) + o(|λ|)

= ϕ(ν) + o(|λ|)

Thus

(24) = (−1)n

(2πi)nd!e!

∫
O
ϕ(ν)

{ ∫
Bν

w

τλ
e(db)

}
σOd(dν) + o(|λ|e)

= (−1)d

(2πi)dd!

∫
O
ϕ(ν)〈c, eλ〉σOd(dν) + o(|λ|e)

= (−1)d

(2πi)dd!
c(λ)

∫
O
ϕ(ν)σOd(dν) + +o(|λ|e) (25)

where c = cνw ∈ He(h∗) is the harmonic polynomial on h∗ representing the fundamental class of Bν
w in

H∗(B) under Borel’s isomorphism (6). As in (7), 〈c, f〉 is the natural pairing of polynomials on h∗ and
formal power series on h , so that 〈c, eλ〉 = c(λ). This proves the theorem.

8. Harmonic polynomials

We study in some more detail the harmonic polynomials cΓ ∈ He(h∗) associated to a 2n-cycle Γ ∈
H2n(S(Ō)) over Ō by the relation

θΓ (λ) = cΓ (λ)θO + o(|λ|e). (1)

These polynomials, or variants thereof, have a history. When θΓ represents a coherent family of virtual
characters of Harish-Chandra modules, then cΓ is the character polynomial studied by King [1979] using
results of Joseph [1980], except that in King’s definition the polynomials are not canonically normalized:
there they are defined up to a constant factor which depends on an arbitrary regular element in the
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Cartan ho. King shows that these polynomials are essentially the same as the polynomials introduced by
Jantzen [1977], Joseph [1980], and Vogan [1978]. The approach taken here is logically independent of (but
strongly inspired by) these developments; it opens up some (from the previous point of view) surprising
perspectives, among them the relation of the cΓ to the homology of the flag variety, and a formula for the
cΓ in terms of Euler numbers.

Write

Γ =
∑

y∈W/Wo

myy · S1. (2)

Then

θΓ (λ) =
1
π

∑
y∈W

mye
y−1λ. (3)

Expanding the exponential gives

θΓ (λ) =
∞∑
k=0

1
k!

1
π

∑
y∈W

myy
−1λk. (4)

Comparing (1) and (4) one finds that

∑
y∈W

myy
−1λk = 0 for k < e (5)

and ∑
y∈W

myy
−1λe = cΓ (λ)pO (6)

where

pO = e!πθO. (7)

From equation (7) it appears that pO is a Go-invariant distribution on go (the Wo-invariant polynomial
π on ho extends to a Go-invariant polynomial on go), but from (6) one sees that on ho

pO is a Wo-invariant polynomial on h, homogeneous of degree e = e(O). (8)

(In this interpretation we used implicitly Harish-Chandra’s regularity theorem, which guarantees that θO
is a locally integrable function on go.)

The relation (6) is an amazingly powerful tool for analyzing the polynomials cΓ . First of all we get
from (6) a fromula for the cΓ for arbitrary Γ ∈ H2n(S(Ō)):

If Γ =
∑

y∈W/Wo

myy · S1 , then cΓ =
1

pO(x)

∑
y∈W

myy · xe (9)
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For any x ∈ h with pO(x) �= 0. In particular, for Γ = Sw (any w ∈ W/Wo) we take for O = O(w) the
unique nilpotent Go-orbit in igo

∗ which intersects s1⊥ ∩ igo
∗ densely (which amounts to O intersecting

bo
⊥ ∩ w−1bo

⊥ densely if we think of O as a Go-orbit on go
∗ and represent w ∈ W/Wo as (1, w)); then

Sw ∈ H2n(S(Ō(w))) and according to Corollary 5.2

Sw =
∑

y∈W/Wo

(−1)l(w)−l(y)Euy(Sw)y · S1. (10))

Γ = Sw ∈ H2n(S(Ō)) corresponds to the fundamental cycle [Bν
w] ∈ H2e(B) of the component Bν

w of Bν

under the map

H2n(S(Ō)) → H2n(S(O)) ≈ H2e(Bν)Ao(ν) → H2e(B).

From the definition of cΓ the corresponding cΓ = cw is explicitly given by the formula

cw(λ) =
∫
Bν

w

eωλ . (11)

On the other hand, the formula (9) says that

cw =
1

pO(x)

∑
y∈W

(−1)l(w)−l(y)Euy(Sw)y · xe (12)

for any x ∈ h with pO(x) �= 0. Comparing (11) and (12) leads to the curious integral formula

∫
Bν

w

eωλ =
1

pO(x)

∑
y∈W

(−1)l(w)−l(y)Euy(Sw)〈λ, y · x〉e (12)

for any x ∈ h with pO(x) �= 0

The polynomials cΓ have some positiviy and integrality properties which should be mentioned.
When λ ∈ h∗ is the s1-heighest weight of a finite-dimensional representation Vλ of G, the integral on the
left of (13) can be thought of as follows.

Embed the flag-manifold B of G into the projective space PVλ of Vλ by

iλ : B → PVλ, b→ [b-highest weight vector]. (14)

Then

ωλ = iλ
∗ωPVλ

where ωPVλ
is the Kähler 2-form of the Fubini-Study metric on PVλ. Thus for a complex subvariety V of

B,
∫
V

eωλ = volλ(V ) =
1

(dimV )!
degλ(V ) (15)
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where volλ(V) is the volume of V with respect to the metric on B coming from the embedding (14) and
degλ(V ) is the degree of the projective variety iλ(V ) in PVλ. (See [Griffith-Harris 1978], p. 171, for
example.) The formula (11) says that for λ regular, s1-positive, integral

cw(λ) = volλ(Bν
w) =

1
e!
degλ(Bν

w). (16)

Thus

e!cw(λ) is positive integral for regular, s1-positive, integral λ. (17)

We want a more explicit formula for the Wo-invariant polynomial pO. For that purpose we make a
particular choice for Γ ∈ H2n(S(Ō)) as follows.

We know that the W -quotient H2n(S(O)) of H2n(S(Ō)) is ≈ H2e(Bν)Ao(ν) and contains the
A(ν)-invariants He(Bν)A(ν) as an irreducible subrepresentation (isomorphic with the space He(h∗) of
W -harmonic polynomials on h∗). Let

χO = character of Wo on H2e(Boν)Ao(ν).

(Note that we passed from the irreducible representation H2eo(Bν)A(ν) of W = Wo × Wo to the cor-
responding irreducible representation H2e(Boν)Ao(ν) of Wo.) It follows from these remarks that we can
choose Γ = ΓO in H2n(S(Ō)) so that

my =
eo
|W |χO(y) (18)

where

eo = degχO = dimBoν

and we identify W/Wo = Wo via (y1, y2) → y1y2
−1 to think of χO as a function on W/Wo (or as a

Wo-bi-invariant function on W ). Explicitly:

χO(y) = χO(y1y2
−1)

when we write y ∈ W =Wo ×Wo as y = (y1, y2). With this choice of my the element

∑
y∈W

myy
−1 =

eo
|W |

∑
y∈W

χO(y)y−1 (19)

of the group ring of W operates as the projection on the Wo-invariants of type χO ⊗ χO, which have
dimension = 1 in the irreducible W -module of this type.

Write out the equation (6) with my given by (18):

cO(λ)pO(x) =
eo
|W |

∑
y∈W

χO(y)〈λ, y · x〉e. (20)
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If one identifies h and h∗ by a W -invariant, C-bilinear, symmetric, inner product, then the right side of
(20) is symmetric in λ and x, since χO(y) = χO(y−1) as function of W. As a consequence,

cO = const.pO (21)

for some constant depending only on O. In particular, pO belongs to He(h∗), and consequently:

pO = eo

cO(λ)|W |
∑
y∈W

χO(y)y−1 · λe (22)

is the (up to a constant factor) unique Wo-invariant, harmonic polynomial on ho which transforms under
W by χO ⊗ χO. In (22) we can take any λ for which cO(λ) �= 0. For the same values (18) of mw the
relations (5) and (6) imply:

The W -representation of type χO ⊗ χO occurs with multiplicity one in degree e = e(O) in C[h∗]
and not at all in lower degree.

This follows from (5), (6), and (22), since the λk span the homogeneous polynomials of degree k on h∗

and each irreducible subspace of type C[h∗] contains exactly one Wo-invariant (up to scalar multiples).
On the other hand, C[h∗] ≈ C[ho∗]⊗C[ho∗] as W = Wo ×Wo module, so we can pass from W to Wo to
get the following result of Borho-Macpherson [1981]:

8.1 Lemma. The Wo-representation of type χO occurs with multiplicity one in degree eo = eo(O)
in C[ho∗] and not at all in lower degree.

To make use of the formula (22) for pO one needs to know when cO(λ) �= 0. This happens exactly when
the linear functional

Ce[h∗]→ C, c→ c(λ)

has a nonzero value on the Wo-invariant therein. That functional is the restriction of the natural pairing
of polynomials on h∗ with the formal power series eλ on h. Hence :

cO(λ) �= 0 iff λe has a non-zero component along the Wo-invariant in Ce[h∗].

A simple sufficient condition is:

cO(λ) �= 0 whenever λ is regular in h∗.

To see this , recall that for regular λ the map

H(h∗) → C[W ], c→
∑
w

c(w · λ)w

is a W -isomorphism. Under this isomorphism the linear functional c → c(λ) corresponds to evaluation
at 1 in the regular representation of W, hence has the non-zero component deg χ along each irreducible
character χ of Wo (considered as a Wo-bi-invariant function on W ). We summarize what has transpired
in a theorem.
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8.2 Theorem. Let Γ ∈ H2n(S(Ō)) be a 2n− cycle Γ over Ō on the conormal variety S of the
Go-orbits on B, cΓ ∈ He(h∗) the associated harmonic polynomial on h∗ :

θΓ (λ) = cΓ (λ)θO + o(|λ|e).

If Γ =
∑

y∈W/Wo
myy ·S1, then cΓ = 1

pO(x)

∑
y∈W myy ·xe. Here pO is the (up to a constant factor) unique

Wo-invariant, harmonic polynomial on h which transforms under W by χO ⊗ χO; χO is the (irreducible)

character of Wo on H2e(Boν)Ao(ν); x ∈ h is arbitary subject to pO(x) �= 0, which is the case whenever x
is regular. The Wo-representation of type χO occurs with multiplicity one in degree eo = eo(O) in C[ho∗]
and not at all in lower degree. In particular, if Γ = Sw, the fundamental cycle to the conormal of the
Go-orbit Sw, then cΓ = cw is given by

cw =
1

pO(x)

∑
y∈W

(−1)l(w)−l(y)Euy(Sw)y · xe.

9. Univalence

If one uses explicitly the identification h = ho × ho and ho
∗ = ho one can get a formula for cΓ (λ) which

does not involve the arbitrary regular x ∈ h and an analogous formula for pO. To see this we can place
ourselves momentarily in the following general situation envisaged by Lusztig and Spaltenstein [1979].

Until further notice, let ho denote any finite dimensional complex vector space, Wo any finite group
of linear transformations of ho. C[ho] denotes the complex polynomial functions on ho, C[Wo] the group
algebra of Wo. We shall assume that ho∗ ≈ ho as Wo-module so that we can identify the two whenever
convenient. (Nevertheless we generally distinguish ho

∗ fom ho in notation. The assumption ho
∗ ≈ ho

could be avoided at the expense of some complications irrelevant here.) Call an irreducible representation
σ of Wo univalent if it occurs with multiplicity one in the homogeneous polynomials of degree eo on ho
and does not occur in lower degree (some eo defined by this condition). Fix such a univalent representation
σ of Wo and write χσ for its character. Denote by Cσ[Wo] the subspace of C[Wo] transforming by σ ⊗ σ

under the biregular representation of Wo ×Wo. For any a =
∑

a(w)w in Cσ[Wo] define functions ϕa and
fa on ho

∗ × ho by

ϕa(λ, x) =
∑
y∈Wo

a(y)e〈λ,y·x〉 (1)

fa(λ, x) =
1
eo!

∑
y∈Wo

a(y)〈λ, y · x〉eo (2)

fa(λ, x) is evidently a polynomial on ho
∗ × ho, homogeneous of degree eo in either variable separately.

Write Ceo,eo [ho∗ × ho] for the space of all such polynomials, and indicate by a subscript “σ” the part
thereof transforming by σ ⊗ σ under Wo ×Wo.

9.1 Lemma. The map

Cσ[Wo]→ Cσ
eo,eo

[ho∗ × ho], a→ fa,

is a Wo ×Wo − isomorphism. One has

ϕa(λ, x) = fa(λ, x) + o(|λ|eo , |x|eo )
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with o(|λ|eo , |x|eo) indicating a power series in λ and x whose terms are of degree > eo both in λ and in x.

Proof. This is obvious from the univalence property of σ.

Write h = ho × ho and W = Wo ×Wo with Wo embedded as the diagonal in W. An element a ∈ Cσ[Wo]
may be considered as an element of C[W ] via

a(w1, w2) = a(w1w2
−1)

As element of C[W ], a is right Wo-invariant and transforms by σ ⊗ σ by W on the left. We denote the
subspace of these a in C[W ] by Cσ[W/Wo]. For such an a define functions Φ and F on h∗ × h by

Φa(λ, x) =
∑
y∈W

a(y)e〈λ,y·x〉 (3)

Fa(λ, x) =
1
e!

∑
y∈W

a(y)〈λ, y · x〉e (4)

where we put e = 2eo. Φa(λ, x) and Fa(λ, x) transform according to σ ⊗ σ in λ and are Wo-invariant in
x. F (λ, x) is also polynomial, homogeneous of degee e in λ and x separately.

9.2 Lemma.

Φa(λ, x) = Fa(λ, x) + o(|λ|e, |x|e).

Furthermore,

Fa(λ, x) = fa(λ1, λ2)fσ(x1, x2)

where λ = (λ1, λ2), x = (x1, x2) and ho
∗ is identified with ho; fa is defined as in (2) :

fa(λ1, λ2) =
1
eo!

∑
y∈Wo

a(y)〈λ1, y · λ2〉eo

and fσ is defined by

fσ(x1, x2) =
1
eo!

∑
y∈Wo

χσ(y)〈x1, y · x2〉eo (5)

Proof. A typical term in the expansion of Φa(λ, x) looks like

1
k1!k2!

∑
y∈W

a(y)〈λ1, y1 · x1〉k1〈λ2, y2 · x2〉k2

where y = (y1, y2). By univalence, this = 0 if either k1 or k2 < eo. For the same reason

Fa(λ, x) =
1

eo!eo!

∑
y∈W

a(y)〈λ1, y1 · x1〉eo〈λ2, y2 · x2〉eo (6)
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The assumption that a ∈ C[W ] transforms by σ⊗σ on the left and is invariant by Wo on the right allows
one to write for w ∈W

a(y) =
degσ
|W |

∑
w∈W

χσ(y−1w)a(w)

where χσ(y) = χσ(y1y2
−1) if y = (y1, y2) in W = Wo ×Wo. In terms of the pairing 〈a, b〉 =

∑
a(w)b(w)

on C[W ] this may be written as

a(y) =
degσ
|W | 〈y · χσ, a〉.

Also, in terms of the pairing 〈λi, xj〉/i! = 〈λ, x〉iδij on polynomials on ho and ho
∗, one checks that

〈λ1, y1 · x1〉eo〈λ2, y2 · x2〉eo =
1

eo!eo!
〈(λ1 ⊗ λ2)eo , y · (x1 ⊗ x2)eo 〉.

Thus (6) can be written as

Fa(λ, x) =
1

eo!eo!
degσ
|W |

∑
y∈W

〈y · χσ, a〉〈(λ1 ⊗ λ2)eo , y · (x1 ⊗ x2)eo〉.

In this equation (λ1⊗λ2)eo and (x1⊗x2)eo may be replaced by their components (λ1⊗λ2)eo
σ and (x1⊗x2)eo

σ

which transform by σ ⊗ σ under W, by Schur’s relations for irreducible matrix coefficients, which give
further that

Fa(λ, x) =
1

eo!eo!
〈(λ1 ⊗ λ2)σ

eo , a〉〈χσ, (x1 ⊗ x2)σ
eo〉 (7)

where the pointed brackets denote a W -invariant, nondegenerate, bilinear form on Cσ[W ]×C σ
eo,eo

[h].
Lemma 9.1 says that under the identification h = ho × ho such a form is given by

〈(x1 ⊗ x2)σ
eo , a〉 =

∑
y∈Wo

a(y)〈x1, y · x2〉eo .

Thus (7) becomes

Fa(λ, x) = fa(λ1, λ2)fσ(x1, x2)

with fa and fσ as specified. This is just the assertion of the lemma.

Returning now to the situation of section 8, we have :

9.3 Addendum to theorem 8.2. The polynomials cΓ and pO are given by

cΓ (λ) = kO
∑
y∈Wo

my〈λ1, y · λ2〉eo (8)

pO(x) =
1

e!kO

∑
y∈Wo

χσ(y)〈x1, y · x2〉eo (9)
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for some constant kO depending only on O.

(Note that in these equations my = m(y,1) in accordance with the identification W/Wo = Wo.)

Proof. This follows by comparing the relation (8.6):

∑
y∈W

my〈λ, y · x〉e = cΓ (λ)pO(x)

with the relation

1
e!

∑
y∈W

my〈λ, y · x〉e = fa(λ1, λ2)fσ(x1, x2)

from Lemma 9.2 when we take χσ = χO and a = the component of m which transforms by χO ⊗ χO on
the left. In the formula

fa(λ1, λ2) =
∑
y∈Wo

a(y)〈λ1, y · λ2〉eo

we may then again replace a(y) by my, because the component of m of type χO is the only one which
contributes in degree eo in this sum, as follows from

Γ ∈ H2n(S(Ō)) ≈ H2n(S(O)) +
∑

O′<O
H2n(S(O′)).

10. Nilpotent orbital integrals

For each Go-orbit O in igo
∗ let µO be the distribution on go

∗ defined by

〈µO, f〉 = 1
(2πi)d

∫
O
fe−σO (1)

with d = dimCO. µO is a tempered distribution on igo
∗. (Of course, we use igo∗ rather than go

∗ or go
only to conform with the definition of the distributions θΓ , which will simplify the notation.) We denote
by µ̂O the Fourier transform of µO, a tempered distribution on go, given by a locally integrable function.
In this sense :

µ̂O(ξ) = 1
(2πi)d

∫
Oλ

exO−σO .

For regular λ ∈ ih∗ we set Oλ = Go · λ and µλ = µOλ
. Since Go · λ = K · (λ + ibo

⊥) = pλS1 for such λ

we find that its Fourier transform is

µ̂λ =
1

(2πi)n

∫
Oλ

eλ−σλ =
1
π

∑
y∈Wo

ey
−1λ (2)

as tempered distributions on go.
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Now take forO a nilpotentGo-orbit in igo∗. From (8.7) we know that its Fourier transform µ̂O = θO
is

µ̂O =
1
e!
pO
π

(3)

where pO is the distribution on go which on ho is given by the up to scalars uniqueWo-invariant polynomial
of degree e = e(O) on h transforming according to the irreducible character χO⊗χO underW = Wo×Wo.
Using (8.20) we have for any regular λ ∈ h∗ a formula

µ̂O = const.
1
π

∑
y∈W

cO(y)y−1 · λe (4)

for a constant depending on O and λ, namely

const. =
eo

e!cO(λ)|W |

in the notation of section 8. Alternatively, using (9.9):

µ̂O(x) = const.
∑
y∈Wo

χσ(y)〈x1, y · x2〉eo (5)

where this time the constant depends only on O , namely

const. =
1

kOe!
.

(4) is a rather explicit formula for the invariant eigendistributions µ̂O on go, which have infinitesimal
character 0. Compare this with Harish-Chandra’s formula for eigendistributions with regular infinitesimal
character λ :

θ =
1
π

∑
y∈W

mye
y−1λ. (6)

(Of course, (6) is part of the genesis of (4).)

Formula (3) quickly leads to a formula for µO itself as follows. Let ∂O be the constant coefficient
operator on h∗ corresponding to the polynomial pO on h. It satisfies

∂O,λe
〈λ,x〉|λ=0 = pO(x).

where the subscript λ on ∂O,λ means “differentiation with respect to λ”.
Differentiating equation (2) with respect to λ and evaluating at λ = 0 one gets

lim
λ→ 0

∂O,λµ̂λ(x) = lim
λ→ 0

∂O,λ

{
1
π

∑
y∈Wo

e〈λ,y·x〉
}
=
|Wo|
π

pO(x) = e!|Wo|µ̂O(x).

Inverting the Fourier transforms we arrive at
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10.1 Theorem. Let O be a nilpotent Go-orbit in igo
∗. Then

µO = e!|Wo| lim
λ→ 0

∂O,λµλ (7)

and

µ̂O(x) = const.(λ,O)


π

∑
y∈W

χO(y)〈λ, y · x〉e (8)

= const.(O)


π

∑
y∈Wo

χσ(y)〈x, y · x〉eo (9)

The formula (7) has some history. For O = {0}, χO = sign representation of Wo, pO = const.π, and (7)
becomes Harish-Chandra’s Limit Formula

µO = const. lim
λ→ 0

∂π,λµλ(x).

For special orbits Formula (7) was proved by Barbasch-Vogan [1982, 1983] by case by case computations
and conjectured to hold in general. This conjecture was then proved by Hotta-Kashiwara [1984] (using
the theory of holonomic systems).

11. A conjecture of Joseph

The asymptotic relation

θΓ (λ) = cΓ (λ)θO + o(|λ|e) (1)

may be used to prove a conjecture of Joseph [1984, Conjecture 9.8]. The conjecture may be explained as
follows. Let

T = {(b, ν)|b ∈ Bo, ν ∈ b⊥ ∩ bo⊥}. (2)

This is the conormal variety of the action of the fixed Borel subgroup Bo of Go on the flag manifold Bo
of Go. (The complexification of Go does not enter into the picture here.) T is also the inverse image

Bo∗(bo⊥) of bo⊥ under the Springer map Bo∗ → No. Its dimension is no = dimCBo∗ and our general
construction gives a representation of Wo on H∗(T ). In top degree, H2no(T ) has as basis the fundamental
cycles of the components of T . These components are the closures of the conormal bundles Tw of the
Bo-orbits Bo · w−1bo:

Tw = {Bo · (w−1bo, ν)|ν ∈ bo
⊥ ∩w−1bo). (3)

For each w ∈Wo there is a unique Go-orbit O = O(w) on No which intersects bo⊥∩w−1bo densely; and for

each O the components of O∩ bo⊥ are the closures in O∩ bo⊥ of the dense parts of the Bo · (bo⊥ ∩w−1bo)

cut out by O when O(w) = O. For a given O these components V(w) of O ∩ bo
⊥ all have the same

dimension = 1
2dimO. (For these results see Steinberg [1976] and Joseph [1984].) To each such subvariety

V(w) of No Joseph associates a polynomial pV(w) on h∗o, homogeneous of degree no− 1
2dimO. This degree

= eo = dimBoν for ν ∈ O. Joseph’s conjecture says that if one writes

Zw =
∑
y∈Wo

A(w, (y, 1))(y, 1) · Z1 (4)
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in the homology H2n(Z) of the conormal variety Z , then

pV(w) = const.
∑
y∈Wo

A(w, (y, 1))y · ρoeo , (5)

and the exponent eo = dimBoν in this relation is the least for which the right side is non-zero. ρo

denotes half the sum of the roots of ho in bo
⊥, which must here be thought of as an element of ho by

meansof a Wo-invariant bilinear form (Joseph identifies ho and ho
∗); in (5) we take (y, 1) as element of

W = Wo ×Wo and use the W -action on the homology of Z defined earlier (which by section 12 is also
the action constructed by Kazhdan-Lusztig [1980], to which Joseph refers. Joseph writes this action of
Wo ×Wo as a Wo–Wo bimodule.)

To prove the conjecture we consider the projection B∗ = Bo∗ × Bo∗ → Bo through the second
factor. It restricts to a fibration

T ⊂→Z → Bo (6)

with T as in (2) as fibre over bo. The components Zw of Z meet the fibre T in the components Tw of T .
For any ν ∈ bo

⊥ there is a diagram

Boν ⊂→ T → bo
⊥

∩ ∩ ∩
Boν ⊂→ Z → N

(7)

For a given Go-orbit O on No and ν ∈ O∩bo⊥, Zw meets the fibre Bν of Z → N in a single Ao(ν)-orbit of

components; Tw meets the fibre Boν of T → bo
⊥ in a union of components which lie in a single Ao(ν)-orbit

and determine an element ofH2eo (boν)Ao(ν). (For these facts see Spaltenstein [1977].) According to a result

of Hotta [1984], the map which sends pV(w) to this element ofH2eo (Boν)Ao(ν) extends to aWo-isomorphism

of the space spanned by the pV(w) , O(w) = O, onto H2eo(Boν)Ao(ν).

On the other hand, the inclusion Boν
⊂→Bo gives a Wo-injection H2eo(Boν)Ao(ν) → H2eo(Bo) ≈

H(ho), as we know from sections 3 and 7. Hence the element of H2eo(Boν)Ao(ν) mentioned above gives
rise to another (harmonic) polynomial on ho

∗, homogeneous of degree eo. Because of Lemma 8.1, this
polynomial must be pV(w) up to a (non-zero) factor depending only on O.

To make use of the relation (1) note that the fibration (6) leads to a Wo × {1}-isomorphism
H2n(Z) → H2no(T ) which sends the fundamental cycle of Zw to the fundamental cycle of Tw. From
Theorem 5.1 we know that the relation

Zw =
∑
y∈Wo

A(w, (y, 1))(y, 1) · Z1 (4)

implies that

θSw = (−1)n

π

∑
y∈Wo

A(w, (y, 1))e(y
−1,1)λ. (8)

Of course, we also know that

A(w, y) = (−1)l(w)−l(y)Euy(Zw), (9)
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but this will not even be needed. Rather, we use the formula (9.8) to write

cw(λ) = kO
∑
y∈Wo

A(w, (y, 1))〈λ1, y · λ2〉eo . (10)

On the other hand, the polynomial cw represents the fundamental cycle of the component Bν
w of Bν in

H2e(B) ≈ H(h). Since Bν = Boν ×Boν that component must factor Bν
w = Cw × C′w as a product of a pair

of components of Boν depending on w. These two components correspond to two harmonic polynomials
pw , p′w on ho

∗ and the factorization Bν∗
w = Cw × C′w means that

cw(λ) = pw(λ1)p′w(λ2) (11)

if λ = (λ1, λ2) in h∗ = ho
∗ × ho

∗. From the discussion around diagram (7) it is clear that

pw = const.pV(w).

To prove Joseph’s conjecture we may therefore replace pV(w) by pw in (5). From (10) and (11) one finds

pw(λ1) =
kO

p′w(λ2)

∑
y∈Wo

A(w, (y, 1))〈λ1, y · λ2〉eo

provided p′w(λ2) �= 0, which know to be the case for regular λ2. Choosing λ2 = ρo we get the formula
conjectured by Joseph:

pV(w) = const.
∑
y∈Wo

A(w, (y, 1))y · ρoeo .

For the record we point out once more that we have actually proved the more precise formula

pV(w) = const.
∑

y∈W/Wo

(−1)l(w)−l(y)Euy(Zw)y · ρoeo . (12)

for a constant depending only on O.

12. Appendix. Comparison with the Kazhdan-Lusztig construction

For every simple reflection s of go, ho (“simple” with respect to the fixed Borel bo of go) Kazhdan and
Lusztig [1980] define a proper homotopy equivalence αs of the conormal variety Z of the K-action on
B = Bo × Bo:

Z = {(b, b′, ν, ν′)|b, b′ ∈ Bo, ν′ = −ν ∈ b⊥ ∩ b′⊥}.

Their procedure is equivalent to the following. Choose a neighbourhood U of Z in Bo × Bo × No × No

so that the inclusion i : Z → U has a proper homotopy inverse p : U → Z. Choose a complex valued

continuous function µ on bo⊥ so that (k exp (tν) s ·bo, k′ ·bo, k ·ν, k′ ·ν′) ∈ U for (k ·bo, k ·bo, k ·ν, k′ ·ν′) ∈ Z
and |t| > |µ(ν)|. Here k, k′ ∈ Ko, the fixed maximal compact subgroup of G and exp (ν) is defined for
ν ∈ b⊥ by thinking of ν as an element of the nilradical n of b. (One may take µ real, positive, as do
Kazhdan and Lusztig.) Define

as : Z → U , (k · bo, k′ · bo, k · ν, k′ · ν′)→ (k exp (µ(ν)ν)s · bo, k′ · bo, k · ν, k′ · ν′). (1)



REPRESENTATIONS OF WEYL GROUPS 29

Then αs is defined to be the proper homotopy class of

p ◦ as ◦ i : Z → Z. (2)

In our construction the proper homotopy equivalence a(s, 1) : Z → Z which gives the homotopy action
of (s, 1) ∈ W = Wo ×Wo on Z is defined by the same procedure, except that U is taken as a suitable

neighbourhood of Z in B∗ = {(b, b′, ν, ν′)|ν ∈ b⊥, ν′ ∈ b′⊥} and the map (1) is replaced by the map

a(λ,λ′)(s, 1) : Z → U , (k · bo, k′ · bo, k · ν, k′ · ν′) → (h · bo, h′ · bo, h · η, h′ · η′) (3)

where (λ, λ′) ∈ h∗ = ho
∗ × ho

∗ is chosen sufficiently close to (0,0), but regular, and k, k′, h, h′ ∈
Ko, ν, ν′, η, η′ ∈ bo

⊥ are related by

(k · (λ+ ν), k′ · (λ′ + ν′)) = (h · (sλ+ η), h′ · (λ′ + η′)).

(Of course here h′ = k′ and η′ = ν′ and k · ν = −k′ · ν′ on Z.) To prove that (1) and (3) give rise to the
same homotopy equivalence of Z by the construction (2) it suffices to show that if we take for U in (3)
the U in (1), then (1) and (2) are properly homotopic as maps Z → U .

We may assume that U consists of all points (b, b′, ν, ν′) of Bo × Bo ×No ×No satisfying

(ν, b⊥) < ε, dist (ν′, b′⊥) < ε, dist (ν, ν′) < ε (4)

where “dist” refers to a U -invariant Euclidean distance in g∗. The homotopy between these two maps will
take the form

Z → U , (k · bo, k′ · bo, k · ν, k′ · ν′)→ (k · bt, k′ · bo, k · νt, k′ · ν′); (5)

bt and νt will depend only on (t, ν) ∈ [0, 1]× bo
⊥; t ∈ [0, 1] is the homotopy parameter.

In order that (5) be a homotopy from (1) to (3) we need that

(bt, νt) =
{

(exp (µ(ν)ν)s · bo, ν) for t = 0,
(h · bo, h · η) for t = 1 (6)

where h ∈ Ko and ν, η ∈ bo
⊥ are related by

(λ+ ν) = h · (s · λ+ η). (7)

It will be convenient to write (5) in the equivalent form

Z → U , k · (bo, b, ν,−ν)→ k · (bt, b, νt,−ν). (5′)

We need to insure that the image of (5′) remains in the neighbourhood U of Z in Bo×Bo×No×No. For
this it suffices that

dist (νt, bt⊥) < ε and dist (νt, ν) < ε

or equivalently

dist (ν, bt⊥) < ε and dist (νt, ν) < ε. (8)
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Let ps = bo+s ·bo be the parabolic subalgebra of go associated to the simple root α. Both exp (µ(ν)ν)s ·bo
and h · bo in (6) depend only on ν mod the nilradical ps⊥ of ps. Furthermore, since

exp (− 1
λα

ν) · λ ≡ λ+ ν mod ps
⊥

with λα = 〈λ, α̌〉, α̌ the coroot of the simple root α belonging to s, we get from (7) that

h · (s · λ+ η) ≡ exp (− 1
λα

ν) · λ mod ps
⊥,

which may be written as

hbs · λ = exp (− 1
λα

ν) · λ

for some b ∈ Bo; hence

h · bo = exp (− 1
λα

ν)s · bo.

We shall verify presently:

For any ε > 0 there is a constant R so that for all ν ∈ bo
⊥

dist (ν, exp (tν)s · bo⊥) < ε for |t| > R. (9)

If one applies this with R = 1/|λα| (λ sufficiently close to 0), one sees that we may take

µ(ν) ≡ − 1
λα

const. (10)

in equation (1). With this choice of µ(ν) we can take

bt ≡ exp (− 1
λα

ν)s · bo = k · bo, (11)

independent of t, to satisfy the equations (6) in the b-component.

To insure that (6) also holds in the ν-component, choose νt continuous in (t, ν) ∈ [0, 1]×No with

νt =
{
ν for t = 0
h · η for t = 1

and so that

dist (νt, ν) < ε for all t ∈ [0, 1]. (12)

This is possible (for λ close to 0) because the given endpoints of the path νt satisfy

|h · ν − ν| ≤ const.|λ|

in view of (7). Then both inequalities in (8) are satisfied, as required.



REPRESENTATIONS OF WEYL GROUPS 31

It only remains to check the assertion (9). This assertion concerns only the subalgebra of g
generated by the root vectors for ±α, so that we may assume g = sl(2,C) in order to prove (9). With
this assumption, rewrite (9):

1
|t|dist (tν, exp (tν)s · bo

⊥) < ε for |t| > R.

Replacing tν by ν the condition (9) may be replaced by

dist (ν, exp (ν)s · bo⊥) < |t|ε for |t| > R.

which says simply that

dist (ν, exp (ν)s · bo⊥) < const. (13)

with “const.” independent of ν ∈ bo
⊥.

That (13) holds as long as |ν| remains bounded is obvious. On the other hand,

dist (ν, exp (ν)s · bo⊥)→ 0 as |ν| → ∞

because

exp (ν)s · bo → bo as |ν| → ∞. (14)

This last assertion says that on CP1 the point [0 : 1] approaches [1 : 0] under the right action of
[
1 0
c 1

]
as |c| → ∞ (as does every other point). —We mention this triviality only because utlimately the whole
construction of the αs and the a(s, 1) comes down to this.
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