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1. Introduction.

According to a basic result of Harish-Chandra [1965], the invariant eigendistributions on a semisimple
complex Lie algebra go are locally integrable functions, which for a regular infinitesimal character λ, are
given by the formula

θ(x) =
1

π(x)

∑
yεW

mye
λ(y·x) (1)

for certain coefficients my (notation explained below). There is a remarkable relation between these
distributions on go and homology classes of top dimension on the conormal variety of the Go-action on
the flag-manifold of g. Namely each such distribution θ may be expressed as a contour integral over such
a homology class Γ :

θ(x) = 1
(2π)nn!

∫
pλΓ

eξ(x)σλ
n(dξ). (2)

(pλ is a map to the orbit of λ in the compexification g∗ of go
∗ and σλ is the canonical holomorphic

two-form on this orbit.) The coefficients my have a curious interpretation: every homology class Γ is a
linear combination of the fundamental cycles of the conormals of the Go-orbits on the flag manifold and
for these conormals my is —up to a sign— the Euler number at a point on a Schubert variety. This is
the content of the Integral Formula referred to in the title (Theorem 2.1).

What interest there may be in this integral formula should not be sought in another explicit
representation of the invariant eigendistributions: one can hardly ask for anything more explicit than
Harish-Chandra’s formula (1). It is rather the relation to the homology of the conormal variety itself
which seems of interest to me: it reveals a structure inherent in the simple exponential expressions (1)
which is hardly apparent at first sight. For example, the formula (2) leads to an explicit isomorphism
between the representation of W on the homology classes Γ constructed by Springer and Kazhdan-Lusztig
[1980] and the representation on the θ permuting the my; it explains the relation between the asymptotic
behaviour of the θ at 0, nilpotent orbits, and harmonic polynomials discovered by Barbasch and Vogan
[1983], the relation between characters and characteristic varieties, and other things, which I shall discuss
in the second part of this paper. (See also [Rossmann 1985]).

1 Supported by a grant from NSERC Canada



AN INTEGRAL FORMULA 2

Apart from Harish-Chandra’s basic regularity theorem quoted above, the proof of the integral
formula (2) uses a method I learned from Berline and Vergne [1983], explained below.

Theorems, lemmas, and formulas are numbered independently in each section; a citation (3.2)
refers to formula (2) of section 3.

2. Statement of the integral formula.

Even though we shall exclusively be concerned with complex groups, it is notationally and con-
ceptually simpler to start with the real case. For ease of reference we introduce notation in a
list:

go = a semisimple real Lie algebra.
g = the complexification of go.
Go = the adjoint group of go.
G = the adjoint group of g .
B = the flag manifold of G, realized as the variety of Borel subalgebras b of g.
B∗ = {(b, ν) : b ∈ B, ν ∈ b⊥ ⊂ g∗}.
S = {(b, ν) : b ∈ B, ν ∈ b⊥ ∩ igo

∗} ⊂ B∗.

We note that g/b can be identified with the tangent space to B at b, b⊥ = (g/b)∗ ⊂ g∗ with the cotangent
space. The real pairing of g/b and (g/b)∗ is taken as (v, ν) = Re ν(v). go/go ∩ b is then identified
with the tangent space to Go · b at b, b⊥ ∩ igo

∗ with the conormal of go/go ∩ b ⊂ g/b in (g/b)∗ = b⊥.
Correspondingly, B∗ is identified with the cotangent bundle of B as real manifold, S with the conormal
variety of the Go-action on B, i.e. the union of the conormal bundles of the Go-orbits in B. This variety S
will play a fundamental role. It is a real-algebraic subvariety of B∗ (not a complex subvariety). The part
of S over any Go-orbit in B, i.e. the conormal of the orbit, is a smooth vector bundle of fibre-dimension
equal to the codimension of the orbit, but S has singularities along the intersections of the closures of
these vector bundles. These closures we call the components of S. We record dimensions. Put dimCB = n;
then

dimCB∗ = dimRS = 2n.

When go itself admits a complex structure there is a bijection between the conormal variety S of the
Go-action on B and the conormal variety Z of the K-action (as will be explained presently). Under this
bijection, the components of S correspond to the components of the complex algebraic variety Z. This
variety was studied by Steinberg [1976] and reappeared in the work of Kazhdan and Lusztig [1979, 1980].
We continue with notation:

θ = a Cartan involution of go, extended C-linearly to g.
ko = θ-fixed subalgebra in go, k in g.
σ = conjugation in g with respect to go.
τ = σθ.
u = τ -fixed subalgebra in g.
ho = θ-stable Cartan subalgebra in go, h in g.
Ko,K, U,Ho, H the corresponding groups.
s1 = a fixed Borel subalgebra of g containing h (base point for B).
Ωλ = G · λ, the G-orbit in g∗ of a regular element λ of h∗ = [h, g]⊥ ⊂ g∗.
σλ = the canonical holomorphic 2-form on Ωλ.
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Thus U is a compact form in G, Ko a maximal compact subgroup of Go. The form σλ is defined by
σλ(u · ξ, v · ξ) = ξ([u, v]), the dot denoting the coadjoint action of g on g∗.

There is a map

pλ : B∗ → Ωλ, u · (s1, ν) → u · (λ + ν)

for u ∈ U, ν ∈ s1
⊥. This map is well-defined, and for regular λ (as stipulated) it is bijective. It turns the

affine bundle Ωλ → B∗, g · λ → g · s1, into the vector bundle B∗ → B by means of the cross section U · λ
of Ωλ → B. It is real-analytic, but not holomorphic. It does not respect the action of G, nor even of Go,
only the action of U.

We shall be interested in integrals of the form
∫

pλΓ

eξ(x)σλ
n(dξ)

where Γ is a 2n-cycle on S ⊂ B∗ with arbitrary support. Since 2n = dimRS, this simply means that Γ
is a formal linear combination with integer coefficients of oriented components of S, without boundary in
the sense of homology. These integals are to be understood as distributions on the real Lie algebra go, x
being the variable in go. In this sense they converge, i.e.

∫
pλΓ

{ ∫
go

f(x)eξ(x)dx

}
σλ

n(dξ)

converges for all f ∈ C∞
c (go).

To see the convergence of the integral, write ξ = Re ξ + iIm ξ according to g = go
∗ + igo

∗. Then
Re ξ is bounded along the image pλ(S) of S in Ωλ : if ξ ∈ pλ(S), say ξ = u · (λ + ν) with u · (s1, ν) ∈ S,
then u · ν ∈ go

∗ by the definition of S, so Re ξ = Re u · λ. This gives |Re ξ| < C with C depending only
on λ; | · | is a Euclidean norm on g∗ .

On the other hand, for f ∈ C∞
c (go) the Fourier transform

ϕ(ξ) =
∫

go

f(x)eξ(x)dx

is an entire analytic function on g∗, which for each N = 0, 1, 2, . . . satisfies an estimate of the form

|ϕ(ξ)| < AeB|Reξ|

1 + |ξ|N .

The convergence of the above integrals as distributions on go amounts to the convergence of the integrals
∫

Γ

ϕσλ
n

for all such f. This is clear from the above observations: the estimate for ϕ(ξ) implies that for each
N = 0, 1, 2, . . . there is a constant C so that

|ϕ(pλ(b, ν))| < C

1 + |ν|N if (b, ν) ∈ S.

Hence the differential form pλ
∗(ϕσλ

n) on B∗ is rapidly decreasing along the fibres of S → B.
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Note that the integrand ϕσλ
n is a closed form on Ωλ, being a holomorphic form of top degree

2n = dimCΩλ. For this reason the integral depends only on the homology class of the 2n-cycle pλΓ on
Ωλ (or of Γ on B∗), provided one defines a homology on these noncompact manifolds which respects the
growth properties of the ϕ(ξ). Such 2n-cycles and their homology classes
will be called contours on Ωλ or on B∗. This is the point of view taken in [Rossmann 1984]. Of course
if the cycles Γ are required to lie on the subvariety S of B∗ as here, no special homology is required; the
convergence of the integrals is built into the definition of S as we just noted.

From now on we assume that the Lie algebra go itself admits a complex structure. To make our
definitions explicit we write out what they amount to in this case, although we shall continue to use them
in the form given above.

go = a complex Lie algebra.
g = go × go with go embedded as {(x, x̄)}, x → x̄ a conjugation in go with respect to a compact
form ko.
g∗ = go

∗ × go
∗ with ((ξ, ξ′), (x, x′)) = ξ(x) + ξ′(x′).

G = Go ×Go with Go = {(a, ā)}.
Ko = the compact form of Go with Lie algebra ko.
K = diagonal {(a, a)} in Go ×Go.
U = Ko ×Ko.
B = Bo × Bo, Bo the flag manifold of go.
B∗ = Bo

∗ × Bo
∗ = {(b, b′; ν, ν′) : b, b′ ∈ Bo

∗, ν ∈ b⊥, ν′ ∈ b′⊥}.
S = {(b, b̄; ν, ν′) ∈ B∗ : ν′ = −ν̄}, the conormal variety of the Go- action .
Z = {(b, b, ; ν, ν′) ∈ B∗ : ν′ = −ν}, the conormal variety of the K-action.
h = ho × ho. We assume h̄o = ho.
Wo = the Weyl group of go, ho.
W = the Weyl group of g, h = Wo ×Wo with Wo = {(w,w)}.
s1 = bo × b̄o, bo a Borel subalgebra of go, b̄o = wobo, the opposite Borel subalgebra.
sw = w−1 · s1 (w ∈ W ), base-points for the Go-action.
Sw = Go · sw (w ∈ W/Wo) the Go-orbit of sw

Sw = the conormal of Sw.
z1 = bo × bo,
zw = w−1z1 (w ∈ W ), base points for the K-action.
Zw = K · zw(w ∈ W/Wo).
Zw = the conormal of Zw.

One may of course identify W/Wo = Wo, but we shall generally not do so. The automorphism ι :
(x, y) → (x, ȳ) of g (as real Lie algebra) maps go = {(x, x̄)} to k = {(x, x)}. The (U -equivariant) induced
map ι : B → B, (b, b′) → (b, b̄′), sends the Go-orbit Sw to the K-orbit Zw(w ∈ W ). Its cotangent
map (under the real pairing) is ι : B∗ → B∗, (b, b′; ν, ν′) → (b, b̄′; ν, ν̄′) and sends the conormal variety
S = {(b, b′; ν,−ν̄) : ν ∈ b⊥∩ b̄′⊥} of the Go-action to the conormal variety Z = {(b, b′; ν,−ν) : ν ∈ b⊥∩b′⊥}
of theK-action, sending Sw to Zw. Z is the complex subvariety of B∗ referred to above. We shall give
S the complex structure so that the map ι : S → Z becomes biholomorphic. This amounts to twisting
the complex structure on B by ι and considering S as a complex subvariety of the holomorphic cotangent
bundle of the twisted B. In the same way the Go-orbits Sw are considered complex submanifolds of the
twisted B and their closures are closures complex submanifolds.

We return to the integral

∫
pλΓ

eξ(x)σn
λ(dξ).
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Here n = dimCB as before, but now n = 2no with no = dimoBo. Except for a factor (−1)n/(2πi)nn!
this integral may be written as

1
(2πi)n

∫
pλΓ

eξλ−σλ

where xλ is the function xλ(ξ) = ξ(x) on Ωλ and the exponential is taken in the exterior algebra. (The
integral over a k-chain of an inhomogeneous differetial form is the integral of its component of degree k.)
The 2n-cycle Γ on S is a linear combination of the fundamental cycles of the components of the complex
variety S , i.e. of the closures of the conormals Sw; their fundamental cycles will also be denoted Sw . (In
contrast to the real case, the components of a complex variety are always without boundary in the sense
of homology.) Thus

Γ =
∑
w

mwSw

for certain coefficients mw, the sum running over w ∈ W/Wo. (We shall take the homology coefficients
mw to be complex.) It therefore suffices to consider Γ = Sw. For these we shall prove the following
Integral Formula

2.1 Theorem. Fix λ ∈ h∗, regular. For any Γ ∈ H2n(S). the distribution θ = θΓ(λ) on go

defined by

θΓ(λ) = 1
(2πi)n

∫
pλΓ

exλ−σλ

is Go-invariant and satisfies Dθ = χλ(D)θ for all Go-invariant constant coefficient operators D on go;
every Go-invariant distribution θ satisfying this equation is of the form θ = θΓ (λ) for a unique Γ ∈ H2n(S).
For Γ = Sw , the fundamental cycle of a component of S , the distribution θΓ (λ) is given by the formula

1
(2πi)n

∫
pλSw

exλ−σλ =
1

π(x)

∑
yεW

(−1)no+l(w)+l(y)Euy(Sw)ey−1λ(x) .

Explanation: According to a basic theorem of Harish-Chandra [1965], an invariant eigendistribution of the
Go-invariant constant coefficient operators on go is a locally integrable function. The formula gives the
values of this function on a regular element x of the Cartan subalgebra ho of go. (Without appealing to
Harish-Chandra’s theorem our argument will only show that the formula holds on the regular set in go).
cλ(D) is the value of D on λ when D is considered a polynomial on g∗. On the right, π =

∏
αε∆+

α, ∆+the
roots of h in s1. On the left, 2πi is of course a complex number. l(w) is the length of w ∈ W/Wo (≈ Wo),
so l(w) = dimCSw + no. Euy(Sw) is the Euler number of the point sy on the closure of Sw. We shall use
the following of the many equivalent definitions of the (local) Euler number (or Euler obstruction) at a
point on a complex variety (referring to [MacPherson 1974], [Gonzales-Sprinberg 1981] [Sabbah 1985] for
other definitions). The notion of Euler number is local, so we may assume we are dealing with a uniformly
d-dimensional algebraic subvariety V of Cn, the point in question being the origin. Let V ⊂ Cn × (Cn)∗

be the conormal variety (= closure of the conormal bundle of the regular set of) V in Cn. Then

Eu0(V ) = (−1)n−d lim
ε → 0

1
ε2n

∫
V∩Bε

[ 1
2πi (dq̄ · dq − dp̄ · dp)]n (1)

where q = (q1, . . . , qn) in Cn, p = (p1, . . . , pn) in (Cn)∗, dq̄ · dq =
∑

j dq̄jdqj , and Bε = {|q|2 + |p|2 ≤ ε2}.
We shall verify in an appendix that the above definition of Eu0(V ) agrees with the definitions found in
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the literature. In particular, these Euler numbers are integers, Eup(V ) = 1 if V is smooth at p, and
Eup(V ) = 0 if p �∈ V.

3. Proof of the integral formula.

Fix λ ∈ h∗, regular. For Γ ∈ H2n(S) the distribution θΓ (λ) on go is Go-invariant: Go being connected,
the 2n-cycle pλΓ on Ωλ is homotopic to a · pλΓ for any a ∈ Go by a homotopy a(t) · pλΓ, 0 ≤ t ≤ 1; the
integral defining θΓ(λ) is independent of t, since the homotopy respects the condition “|Re(ξ)| ≤ const.”
required for the convergence of the integral defining θΓ(λ) and Γ is a cycle (not just a chain). That θΓ (λ)
satisfies the differential equation

Dθ = χλ(D)θ

follows from the fact that the Go-invariant polynomials on g∗ are constant on Ωλ.

On the other hand, on the regular elements of ho any solution θ of this differential equation is
given by a formula

θ =
1
π

∑
y∈W

mye
y−1λ

with my = myz for z ∈ Wo. (See [Varadarajan 1977] section I.4.6, equation (17).) So it suffices to show
that the θΓ (λ) corresponding to the Sw are given by such a formula on ho and form a basis for such
functions on the regular set in ho. This will follow from the integral formula, because the matrix [EuySw]
is unipotent-triangular with respect to the Bruhat order on W/Wo(≈ Wo).

The proof of the integral formula uses a method which goes back to Bott [1967]. Berline and Vergne
[1983] showed that the method can be used for the evaluation of the type of integral under consideration
when the contour pλΓ is replaced by an elliptic orbit of the real group Go in go

∗; our proof ows much to
their paper. We summarize the method in Lemma 1 below with the modifications needed for the case
at hand, when integration goes over possibly singular varieties or generally over homology-chains rather
than over smooth manifolds.

Let M be a real C∞ manifold, X a C∞ vector field on M. Introduce the equivariant exterior
derivative operator on (generally inhomogeneous) C∞ differential forms ω by the formula

dXω = dω + i(X)ω

where i(X) is inner multiplication by X . It satisfies dX
2 = di(X) + i(X)d = LX , the Lie derivative, and

dX(αβ) = dX(α)β + (−1)aα(dXβ) if α is homogeneous of degree a. (All products of differential forms are
exterior products.) There is an equivariant Stokes’s theorem: if Γ is a piecewise C∞, finite m-chain on
M which is tangential to X, then

∫
Γ

dXω =
∫

∂Γ

ω

for every C∞ form ω. This is because along Γ the second summand of dXω = dω + i(X)ω vanishes in
degree m = dimΓ in view of the tangential condition. (By definition, the integral over an m-chain of a
inhomogenous form is the integral of its component of degree m.) We shall also impose a mild regularity
condition on the m-chain Γ : we assume that for every C∞ form ψ

lim
ε → 0

1
εk

∫
Γ ∩Bε(p)

ψ = 0 for k < m = dimΓ.
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Here Bε(p) denotes the ε-ball in a coordinate system about the point p of M. The intersection with the
chain Γ may be defined using a subdivision of Γ and amounts to the set-intersection if Γ is taken to be
a chain carried by an oriented variety (which is the only case we will need). The condition is always
satisfied, for example, when Γ is a subanalytic chain on a real analytic manifold, as one can see from
[Federer 1969] sections 4.3.18–19 and [Hardt 1975]. It is in particular satisfied for fundamental cycles of
complex analytic varieties, as is indeed clear from the usual proof of local integrability over such cycles,
see [Griffiths-Harris 1978, page 32, for example]. We shall assume the condition satisfied by all chains Γ
without special mention.

3.1 Lemma. Assume:
(1) X has only isolated zeros.
(2) Γ is an m-chain on M tangential to X without zeros of X on its boundary.
(3) ω is a C∞ form satisfying dXω = 0.
(4) ϕ is an X-invariant, C∞ one-form on a neighbourhood of Γ which satisfies

ϕ(X) =
∑

j

xj
2 + o(

∑
j

xj
2)

on Γ in some coordinate {xj} system on M around each zero p of X. Then:

∫
Γ

ω = (−1)n
∑

p

ω0(p) lim
ε → 0

1
ε2n

∫
Γ∩Bε(p)

(dϕ)n +
∫

∂Γ

ϕ(dϕ)n−1

ϕ(X)n
ω

if m = 2n is even and = 0 otherwise.

Explanation. ω0(p) is the value at p of the degree-zero component of ω. Bε(p) = {∑
xj

2 ≤ ε2} in the
coordinate system referred to. Observe that for small ε the boundary ∂[Γ∩Bε(p)] is a cycle on the sphere
Sε(p) = {∑

xj
2 = ε2}. A form ϕ as in (4) always exists when X leaves invariant a Riemann metric g and

has only nondegenerate zeros in the sense that in a coordinate system around p :

X =
∑

aijxi
∂

∂xj
+ higher terms in x, with det(aij) �= 0,

as one can then take ϕ(Y ) = g(X,Y ). Alternatively, a suitable ϕ may be constructed locally around each
zero of X and patched together with an X-invariant partition of unity, which always exists when X leaves
a Riemann metric invariant. Note that the condition on the behaviour of ϕ(X) around a zero p of X
concerns only its restriction to Γ.

Proof of Lemma 3.1. Let θ = ϕ/ϕ(X). The assumptions imply that dXθ = 1+dθ. This form is invertible
on {X �= 0}:

(1 + dθ)−1 =
∑

j

(−1)j(dθ)j .

For any C∞ form ω on {X �= 0} satisfying dXω = 0 one has

ω = dX(θ(dXθ)−1ω).
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Therefore ∫
Γ

ω = lim
ε → 0

∑
p

∫
Γ−Γ∩Bε(p)

dX(θdXθ)−1ω)

= lim
ε → 0

∑
p

−
∫

∂[Γ∩Bε(p)]

θ(dXθ)−1ω +
∫

∂Γ

θ(dXθ)−1ω

We claim that

lim
ε → 0

∫
∂[Γ∩Bε(p)]

θ(dθ)j−1ω = 0 for 2j < m

or equivalently

lim
ε → 0

∫
∂[Γ∩Bε(p)]

ϕ(dϕ)j−1

ϕ(X)j
ω = 0 for 2j < m.

For by assumption we may choose coordinates around p so that

ϕ(X) =
∑

j

xj
2 + o(

∑
j

xj
2) on Γ.

Since Bε(p) is the ε-ball in this coordinate system we may therefore replace ϕ(X) by ε2 on Sε(p) =
{∑

xj
2 = ε2} when taking the limit. We may also assume ω = dx1dx2 · · · dxk in coordinates around p,

and in particular dω = 0. This allows us to rewrite the integral using Stokes’s theorem as

lim
ε → 0

1
ε2j

∫
Γ∩Bε(p)

(dϕ)jω;

and this is indeed = 0 for 2j < m by the regularity assumption on Γ. On the other hand, when 2j = m
we get the formula of the lemma.

Return to the proof of the integral formula for

1
(2πi)n

∫
pλSw

exλ−σλ .

Use the same letter x for the vector field induced by x on Ωλ through the coadjoint action, dx = d+ i(x)
for the equivariant derivative. The form xλ − σλ on Ωλ satisfies dx(xλ − σλ) = 0, hence so does exλ−σλ .
When x ∈ ko the same is true of the form pλ

∗ exλ−σλ on B∗ when x is considered a vector field on B∗,
because pλ : B∗ → Ωλ respects the action of Ko. However, Lemma 1 does not apply directly, because the
integral is taken in the distribution sense as

∫
pλΓ

{ ∫
go

f(x)eξ(x)dx

}
σλ

n(dξ)

(suppressing the normalizing factor) with f ∈ C∞
c (go). We first show that this distribution can be

restricted to ko, meaning (here):

3.2 Lemma. ∫
pλSw

{ ∫
ko

f(x)eξ(x)dx

}
σλ

n(dξ)
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converges for f ∈ C∞
c (ko) and defines a distribution on ko.

Proof of Lemma 3.2. Take f ∈ C∞
c (ko) and put

ϕ(ξ) =
∫

ko

eξ(x)f(x)dx,

an entire analytic function on g∗. We have for each N = 0, 1, 2 . . . an estimate

|ϕ(ξ)| ≤ AeB|Reξk|

1 + |ξk|N (1)

where ξk ∈ ko
∗ is the restriction of ξ to ko, | · | is a norm on g∗, and ξ = Re ξ + iImξ according to

g∗ = go
∗ + igo

∗, as earlier.

Recall that |Re ξ| ≤ const. on pλS, hence also |Re ξk| ≤ const. on pλS. It therefore suffices to show
that on pλS one has

|ξ|2 ≤ a|ξk|2 + b (2)

(with a > 0, necessarily); for this will guarantee that on S the function ϕ ◦ pλ on B∗ is rapidly decreasing
along the fibres of S → B.

To see (2), identify g = g∗ by the Killing form (·, ·) and write ξ = ξk + ξk⊥ according to g = k+k⊥,
and ξ = ξR + iξI according to g = go + igo. We specify the norm on g by setting |ξ|2 = −(ξ, τξ), τ the
conjugation in g with respect to the compact form u introduced earlier. Observe that the involution θ of
g is given by θξ = ξk − ξk⊥ . We have

(ξ, ξ) = (ξk, ξk) + (ξk⊥ , ξk⊥) = −(ξ, θξ) + 2(ξk, ξk).

or

(ξ, θξ) = −(ξ, ξ) + 2(ξk, ξk). (3)

On the other hand

(ξ, θξ) = (ξR, θξR) − (ξI , θξI) + 2i(ξR, θξI),

or

(ξ, θξ) = |ξR|2 − |ξI |2 + 2i(ξR, θξI). (4)

From (3),

Re(ξ, θξ) = −Re(ξ, ξ) + 2Re(ξk, ξk)

while from (4)

Re(ξ, θξ) = −|ξR|2 + |ξI |2.

So

|ξI |2 = |ξR|2 − Re(ξ, ξ) + 2Re(ξk, ξk)
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On pλS, |ξR|2 ≤ const. (as noted earlier) and (ξ, ξ) = (λ, λ). Thus on pλS

|ξ|2 ≤ c(|ξR|2 + |ξI |2) ≤ a|ξk|2 + b.

This proves (2) and thereby Lemma 2.

Because of Lemma 2 it suffices to show that the integral formula holds on ko, i.e. that

1
(2πi)n

∫
pλSw

exλ−σλ

interpreted as a distribution on ko in accordance with Lemma 2 coincides on the regular set with the
Ko-invariant function whose values on the regular elements of ho ∩ ko is given by the right side of the
integral formula. (This is seen as in [Duflo-Heckman-Vergne], A.6.(3)–(4).) Choose a Ko-invariant,
positive-definite real-bilinear inner product g(·, ·) on g∗. For f ∈ C∞

c (ko),
∫

pλSw

{ ∫
ko

f(x)exλ−σλdx

}
= lim

r → ∞
∫

pλSw∩{g(ξ,ξ)≤r}

{ ∫
ko

f(x)exλ−σλdx

}

= lim
r → ∞

∫
ko

f(x)
{ ∫

pλSw∩{g(ξ,ξ)≤r}
exλ−σλ

}
dx

Assume the support of f consists of regular elements. The inner integral is now of the form to which
Lemma 1 applies: When x ∈ ko is regular, then the vector field ξ → x · ξ induced by the coadjoint action
has finitely many non-degenerate zeros on Ωλ, namely the wλ,w ∈ W , if x ∈ ho, and leaves invariant the
metric g(ξ, η) = −(ξ, τη). The 2n-cycle pλSw on Ωλ is tangential to this vector field, since Sw is Ko-stable
(being a component of S) and pλ is Ko-equivariant. According to the remark after Lemma 1 the form
ϕ = ϕx on Ωλ may be taken to be

ϕx,ξ(η) = g(x · ξ, η)

when η ∈ g∗ is a tangent vector to Ωλ at ξ ∈ Ωλ. Actually it will ultimately be convenient to make a
different choice for ϕx individually around each zero of the vector field, but we do assume ϕx to be given
by this formula at least for g(ξ, ξ) sufficiently large. This is possible as the different local choices of ϕx

may be put together with a Ko-invariant partition of unity, as was already noted after Lemma 1. That
lemma now gives for sufficiently large r :

1
(2πi)n

∫
pλSw∩{g(ξ,ξ)≤r}

exλ−σλ =
(−1)n

(2πi)n

∑
w∈W

eλ(yx) lim
ε → 0

1
ε2n

∫
Sw∩Bε(sy)

(ϕx)n

+
1

(2πi)n

∫
Σw(r)

ψxe
xλ−σλ . (5)

In the first integral on the right the integration has been transferred from Ωλ to B∗ by the map pλ so that
the form ϕx is here a form on B∗ with the requisite properties. In the second integral

Σw(r) = ∂[pλSw ∩ {g(ξ, ξ) ≤ r}] = pλSw ∩ {g(ξ, ξ) = r}

and the form ψx is

ψx =
ϕx(dϕx)n−1

ϕx(x · ξ)n
=

g(x · ξ, –)g(x · –, –)n−1

g(x · ξ, x · ξ)n
. (6)

Here g(x · ξ, –) is the one-form ϕx,ξ on Ωλ introduced above, g(x · –, –) is its exterior derivative dϕx.
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We show that the second term on the right side of (5) = 0 as distribution on the regular set in ko :

3.3 Lemma. For f ∈ C∞
c (ko) with support on the regular set,

lim
r → ∞

∫
Σw(r)

{ ∫
ko

f(x)ψxe
xλ−σλdx

}
= 0.

Proof of Lemma 3.3. One sees from (6) that as function of x ∈ g and ξ ∈ g∗, ψx,ξ and all of its partials
with respect to x (in a linear coordinate system) are bounded on |x · ξ| > ε (any ε > 0), by homogeneity
in x and ξ. We may assume this inequality holds for x in the support of f and |ξ| > R (R large). This is
because the finitely many points ξ on Ωλ satisfying x · ξ = 0 remain in a bounded subset of Ωλ as x varies
over the support of f. Thus

∣∣∣∣
∫

ko

f(x)ψx,ξe
ξ(x)dx

∣∣∣∣ ≤ AeB|Reξ|

An integration by parts gives
∣∣∣∣ξj

∫
ko

f(x)ψx,ξe
ξ(x)dx

∣∣∣∣ =
∣∣∣∣
∫

ko

∂

∂xj
[f(x)ψx,ξ]eξ(x)dx

∣∣∣∣ ≤ A′eB′|Reξ|

Continuing this way we get for each N = 0, 1, 2, . . . an estimate

∣∣∣∣
∫

ko

f(x)ψx,ξe
ξ(x)dx

∣∣∣∣ ≤ AeB|Reξ|

|ξ|N

Since |Re ξ| is bounded on pλS the lemma follows.

From formula (5) and Lemma 3 we get:

1
(2πi)n

∫
pλSw

exλ−σλ = 1
(2πi)n

∑
y∈W

eλ(yx) lim
ε → 0

1
ε2n

∫
Sw∩Bε(sy)

(dϕx)n. (7)

We now have to evaluate the limits in this formula. It is here that the singularities of the variety Sw come
in.

We start by constucting the form ϕx entering into formula (7). For that purpose we shall make
use of the complex structure on S. We do so by transferring the integral (7) from S to Z by the map
ι : B∗ → B∗ and replacing pλ by qλ = pλ ◦ ι. The x-equivariance conditions required for (7) remain
satisfied as x ∈ ko and ι is Ko-equivariant (in fact U -equivariant). As a consequence, we shall now deal
with Z instead of S.

ϕx should then be a C∞ one-form on a neighbourhood of Z in B∗, invariant under the vector field
on B∗ induced by the infinitesimal action of a regular element x in ho ∩ ko and satisfying

ϕx(x) =
∑

j

xj
2 + o(

∑
j

xj
2) on Z

in a suitable coordinate system {xj} on B∗ around each point zy = (zy, 0). As mentioned, this may be
done locally around each point zy separately. We first introduce coordinates in a neighbourhood of zy

on B as follows. Write g = ny
- + zy, h-stable decomposition. Choose a basis vα, α ∈ −y−1∆+, of root
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vectors for ny
- (∆+ the roots of h in z1). Write a general v ∈ ny

- as v =
∑

α qαvα with qα ∈ C. (Here
and elsewhere the sum runs over α ∈ −y−1∆+.)

The map ny
- → B, v → exp(v)zy is biholomorphic to a neighbourhood of zy in B, so that we can

introduce coordinates qα around zy by writing b = exp (
∑

α qαvα) · zy. The coordinates qα on B extend
to canonical coordinates qα, pα on its holomorphic cotangent bundle B∗: pα = ∂/∂qα as function on B∗.
In these coordinates qα, pα the action of exp x, x ∈ h is given by

expx : (qα, pα) → (eαqα, e
−αpα),

where α = α(x).

The canonical one-form on the cotangent bundle B∗ is
∑
α

pαdqα.

From the definition of Z as the union of the conormals of the K orbits on B it is clear that this one-form
vanishes on vectors tangential to Z:

∑
α

pα(t)qα
′(t) = 0

for any differentiable curve (qα(t), pα(t)) which lies on Z ,i.e.

∑
α

pαdqα = 0 on Z.

Define a map f : B∗ → B in these coordinates on a neighbourhood of the point (zy, 0) by the formula

f(q, p) = q + p̄ i.e. fα(q, p) = qα + p̄α

the bar denoting complex conjugation. Observe that the map f is Ho ∩ Ko -equivariant. Since Z is a
union of conormals, the following lemma should be geometrically plausible.

3.4 Lemma. On Z,

|q + p̄|2 = |q|2 + |p|2 + o(|q|2 + |p|2)

Proof of Lemma 3.4. Write

|q + p̄|2 = |q|2 + |p|2 + q · p + q̄ · p̄.

It suffices to show that

|q · p|
|q|2 + |p|2 → 0 as (q, p) → (0, 0) on Z.

So assume (qk, pk) → (0, 0) on Z, (qk, pk) �= (0, 0). To show :

lim supk

|qk · pk|
|qk|2 + |pk|2 = 0.
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Put

λk =
1√|qk|2 + |pk|2

.

Pass to subsequence of (qk, pk) for which λk
2|qk · pk| converges to the lim sup and then to a further

subsequence for which (λkqk, λkpk) converges as well, say to (v, w), so that the lim sup = v · w. The
coordinate vector (v, w) lies on the tangent cone to the closure of Z at zy = (0, 0) as an analytic subvariety
of the (q, p)-coordinate space. According to a result of Whitney [1965], the vectors on the tangent cone
may also be realized as tangent vectors of differentiable arcs on the closure of Z. So we can write

(v, w) = (q′(0), p′(0))

where (q(t), p(t)) is a differentiable arc on Z with (q(0), p(0)) = (0, 0). Since p(t) · q′(t) ≡ 0 on Z we get
by differentiation at t = 0 that p′(0) · q′(0) = 0, i.e. v · w = 0. This proves the lemma.

For the form ϕx in formula (7) we take around zy :

ϕx =
∑
α

1
α f̄αdfα

where α = α(x) for the fixed regular element x ∈ ho ∩ ko and fα = qα + p̄α as before. ϕ is C∞, invariant

under Ho ∩ Ko, and ϕx(x) =
∑

α

–
fαfα = |q + p̄|2 = |q|2 + |p|2 + o(|q|2 + |p|2) on Z. So ϕx satisfies all

requirements. The ε-ball Bε(zy) in formula (7) is Bε(zy) = {|q|2+ |p|2 ≤ ε2}, and the limit to be calculated
is:

lim
ε → 0

1
ε2n

∫
Zw∩Bε(zy)

(dϕx)n. (8)

The relation ϕx =
∑

α
1
α f̄αdfα gives dϕx =

∑
α

1
αdf̄αdfα and

(dϕx)n = (
∑
α

1
αdf̄αdfα)n

= n!
∏
α

( 1
αdf̄αdfα)

=
1
π
n!

∏
α

(df̄αdfα)

=
1
π

(
∑
α

df̄αdfα)n

=
(−1)l(y)

π
(dϕo)n

where

π =
∏

αε∆+

α, (9)

and

ϕo =
∑
α

f̄αdfα =
∑
α

(q̄α + pα)(dqα + dp̄α).
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Since
∑

α pαdqα = 0 on Z one finds that

dϕo =
∑
α

dq̄αdqα − dp̄αdpα on Z.

Therefore

lim
ε → 0

1
ε2n

∫
Zw∩Bε(zy)

(dϕx)n

=
(2πi)n(−1)l(y)

π
lim

ε → 0

∫
Zw∩Bε

(
1

2πi

∑
α

dq̄αdqα − dp̄αdpα)n

=
(2πi)n(−1)l(w)+l(y)

π
EuzyZw.

In this formula one can again replace Z by S and zy by sy.

Substituting then into (7) and replacing the product of the roots in z1
⊥ as in (9) by the product

of the roots in s1
⊥ (which introduces a factor (−1)no) completes the proof of the integral formula.

4. Euler numbers on G/P and some examples.

In this section we collect some simple observations concerning the Euler numbers which enter into the
integral formula.

We now denote the fixed Borel subgroup of Go by B and realize B as Go/B × Go/B. The orbits of
the diagonal K ⊂ Go × Go on Go/B × Go/B are in obvious closure-preserving one-to-one correspondence
with the orbits of B on Go/B (Schubert cells): K · (wB, 1B) ↔ B · wB, w ∈ Wo. The Euler number
at (yB, 1B) on the closure of K · (wB, 1B) equals the Euler number at yB on the closure of B · wB (
Schubert variety). We agree that “Euler number on . . .” means “Euler number on the closure of . . .”, as
before.

Notation:
P ⊃ B = a parabolic subgroup of Go,
∆+ = {roots of ho in b }.
∆P

+ = {α ∈ ∆+ : −α a root in p} =positive roots for the reductive part of P.
WP = the Weyl group of the reductive part of P.
[Wo/WP ] = {w ∈ Wo : w · ∆P

+ ⊂ −∆+}, a system of coset representatives for Wo/WP .
N− opposite to the unipotent radical N of B.
N−(P ) = N− ∩ wPN−wP , where
wP ∈ WP , wP · ∆P

+ ⊂ −∆P
+.

Then N− = N−(P )(N− ∩ P ). The following lemma is well known and easy to prove.

4.1 Lemma. For w, y ∈ [Wo/WP ], ByP < BwP iff ByB < BwB. If so,

(BwP ) ∩ (yN−P ) =
(
N ∩ yN−(P )y−1

)
·
(
BwB) ∩ (N−yw ∩ ywN−)

)
· P.

(direct decompositon).
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Explanation. ByP < BwP means ByP ⊂ BwP The lemma may be viewed as saying that in the affine
neighbourhood yN− · P of the point yP in Go/P the image of the second factor provides a cross section
to the Schubert cell B · yP (represented by the first factor) in the Schubert variety B · wP . Such
transversals are familiar from the work of Kazhdan-Lusztig [1980].

4.2 Corollary. For y, w ∈ [Wo/WP ] with y < w

EuyP (B · wP ) = EuyB(B · wB) = Euy[(BwB) ∩ (N−yw ∩ wyN−)]

Proof of Corollary 4.2. It is clear from the lemma that the Euler number of the Schubert variety B · wP ⊂
Go/P at yP is the same as the Euler number of the Bruhat variety BwP in Go at y. Compare:

(1) (BwP ) ∩ (yN−P ) = (N ∩ yN−(P )y−1) · [(BwB) ∩ (N−y ∩ yN−)] · P
(2) (BwB) ∩ (yN−P ) = (N ∩ yN−(P )y−1) · [(BwB) ∩ (N−y ∩ yN−)] · P.

The first factors on the right, being affine spaces, may be omitted in calculating Euler numbers, hence
the corollary.

4.3 Example. We calculate some Euler numbers for Go of type A in rank < 3. It will be convenient to
work with Go = GL(n,C) rather than with PGL(n,C).

For n = 2, 3 the Euler numbers Euy BwB are = 1 or = 0 depending on whether y ≤ w or not, as
the Schubert varieties are all smooth in this case.

For n = 4 the Euler numbers are again = 1 or = 0 as above with the these exceptions:
w = (3412) and y = 1, or (2134);
w = (4231) and y = 1, (2134), (1243), or (2143)

in which case the Euler numbers = 2. The elements w, y of Wo = S4 are here written as permutations of
(1234). As sample we take n = 4, w = (4231), y = (2143), y, w ∈ Wo = S4. That Euy BwB = 2 may be
seen as follows.

In GL(n,C) with B = {upper triangular }the Bruhat variety BwB consists of all invertible n×n
matrices [aij ] satisfying for all 1 ≤ k ≤ m ≤ n:

rank [aij : wm(k) + 1 ≤ i ≤ n, 1 ≤ j ≤ m] ≤ m− k

Here wm(1) ≤ wm(2) ≤ . . . ≤ wm(m) is the increasing rearrangement of the first m terms of the permu-
tation w = (w(1), w(2), . . . , w(n)) in Wo = Sn. On the other hand, the affine space yN− ∩N−y may be
described thus: it consists of all n×n matrices with entries = 1 as in the permutation matrix y ∈ Wo = Sm

(i.e. in the places ij, i = y(j)) and 0’s above and to the right of these 1’s. The remaining entries are
arbitrary. If one applies this recipe to the w and y above one finds that in this case (yN− ∩N−y)∩BwB
consists of matrices of the form




0 1 0 0
1 0 0 0
∗ ∗ 0 1
∗ ∗ 0 0




for which the 2×2 submatrix of ∗’s has det = 0. Thus V = {z =
[
z11 z12

z21 z22

]
}. Its conormal variety is

V = closure of {(z, w) ∈ C4 × C4|0 �= z ∈ V,w ∈ Cz′}
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where

z′ =
[

z22 −z21

−z12 z11

]

The bi-projective tangent cone of V at (0,0) is

Z = {([z], [z′]) ∈ PC3 × PC3|z ∈ C}

where C ⊂ PC3 is the projective tangent cone of V at 0. One finds

Eu0(V ) = (−1)d+1

∫
Z

(1 + ω)−1(1 − ω′)−1

Since both ω and ω′ pull back to ω under PC3 → PC3 × PC3, [z] → ([z], [z′]), we get

Eu0(V ) =
( 2∑

j=0

(−1)j

) ∫
C

ω2 =
∫

C

ω2 = deg(C) = 2.

5. Appendix: Euler numbers.

Recall the definition of Euler number given at the end of section 1. We may assume we are dealing
with a uniformly d-dimensional algebraic subvariety V of Cn, the point in question being the origin. Let
V ⊂ Cn × (Cn)∗ be the conormal variety (= the closure of the conormal bundle of the regular set of) V
in Cn. Then

Eu0(V ) = (−1)n−d lim
ε → 0

1
ε2n

∫
V∩Bε

[ 1
2πi (dq̄ · dq − dp̄ · dp)]n (1)

where q = (q1, · · · , qn) in Cn, p = (p1, · · · , pn) in (Cn)∗, dq̄ · dq =
∑

j dq̄jdqj and Bε = {|q|2 + |p|2 ≤ ε2}.

The above limit in (1) can be written as an integral over the bi-projective tangent cone Z of V
at (0,0) as follows. The tangent cone V0 of V at (0,0) is a subvariety of Cn × (Cn)∗ stable under scalar
multiplications in either factor. Z is the corresponding subvariety of Cn−1 × (PCn−1)∗ and

Eu0(V ) = (−1)d+1

∫
Z

(1 + ω)−1(1 − ω′)−1 (2)

where

ω = 1
2πi ∂̄∂log|q|2 and ω′ = 1

2πi ∂̄∂log|p|2

are the Kähler 2-forms of the Fubini-Study metrics on PCn and (PCn−1)∗.

From [Griffith-Harris 1978, p. 391, Thie 1967] one sees first of all that

lim
ε → 0

1
ε2n

∫
V∩Bε

[ 1
2πi (dq̄ · dq − dp̄ · dp)]n =

∫
V0∩B1

[ 1
2πi(dq̄ · dq − dp̄ · dp)]n

= 1
(2πi)n

∑
j+k=n

(−1)k n!
j!k!

∫
V0∩B1

(dq̄ · dq)j(dp̄ · dp)k



AN INTEGRAL FORMULA 17

It should be noted that the tangent cone V0 must here be counted with multiplicity, i.e. considered as
algebraic cycle associated to the tangent cone scheme (See [Whitney 1965] or [Mumford 1976] for more
details on tangent cones, [Fulton 1984] for algebraic cycles, [Thie 1967] for the reduction of limits of
integrals to the tangent cone.)

To evaluate the second integral in (3) we change coordinates as follows. Choose a holomorphic
section u : CPn−1 → Cn − {0} defined on an open subset of CPn−1. Put q = su with s ∈ C×. Then

dq̄ · dq = |s|2dū · du + |u|2ds̄ds− s̄dsdū · u + sds̄ū · du.

Here α · β =
∑

αjβj for vector valued forms α = (α1, · · ·), β = (β1. · · ·).
In the integral (3) we only need keep those terms in the expansion of (dq̄ · dq)jwhich involve ds

and ds̄ only in the factor ds̄ds. Indicating other terms by dots we have:

(dq̄ · dq)j = j|s|2(j−1)ds̄ds|u|2
{

(dū · du)j−1 − (j − 1)(dūdu)j−2 (dū · u)(ū · du)
|u|2

}
+ · · ·

= j|s|2(j−1)ds̄ds|u|2
{
dū · du− (dū · u)(ū · du)

|u|2
}j−1

+ · · ·

= j|s|2(j−1)ds̄ds|u|2{|u|2∂̄∂log|u|2}j−1 + · · ·
= j|su|2j ds̄ds

|s|2 {∂̄∂log|u|2}j−1 + · · ·

Write similarly p = tv and substitute into (3) to find

(3) =
∑

j+k=n

(−1)k n!
(j−1)!(k−1)!

∫
V0∩{|su|2+|tv|2<1}

|su|2j |tv|2k dt̄dt

|t|2
ds̄ds

|s|2 ωj−1ω′k−1

Integrate first over s and t, using the beta-integral

B(a, b) =
∫ 1

0

(1 − r)a−1rb−1dr =
Γ(a)Γ(b)
Γ(a + b)

;

the above expression becomes

(3) =
∑

j+k=n

(−1)k

∫
Z

ωj−1ω′k−1 = (−1)n+1

∫
Z

(1 + ω)−1(1 − ω′)−1

This gives the desired expression for the Euler number as an integral over the bi-projective tangent cone
Z.

In terms of the Chern classes of the tautological line bundles O(1) on PCn−1 and O′(−1) on
(CPn−1)′ we have

ω = −c1(O(−1)) = c1(O(−1)∗) = c1(O(1)), ω′ = −c1(O′(−1)).

Write c = 1 + c1 for the total Chern class. Then (2) becomes

Eu0(V ) = (−1)(d+1)

∫
Z

c(O(1))−1c(O′(−1))−1.
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This agrees with the formula for Eu0(V ) given by Sabbah [1985, Lemme (1.2.2)], except that the bi-
projective tangent cone Z of V at (0,0) is there replaced by the fundamental cycle of ζ−1(0) where ζ is
defined as follows.

Write PV ⊂ Cn × (CPn−1)∗ for the projective conormal variety of V ⊂ Cn with projection
τ : PV → V . Then ζ is the blow-up of PV along τ−1(0) composed with τ. This means that ζ−1(0) is the
bi-projective variety associated to the normal cone N of the fibre V(0) over 0 ∈ V in V . On the other
hand, Z is associated in the same way to the tangent cone V0 of V at (0,0). So to show that our definition
agrees with Sabbah’s it suffices to show that N = V0.

Let I ⊂ C[q, p] be the ideal of V ⊂ Cn × (Cn)∗. The ideal of V(0) in the coordinate ring C[q, p]/I
of V is then J = (q)/I where (q) is the ideal gererated by q1, . . . , qn in C[q, p]. By definition [Fulton
1984, Appendix B.5], the (affine) normal cone N of V(0) in V is Spec of the graded ring

R = ⊕k>0J
k/Jk+1

= ⊕k>0(q)k/I ∩ (q)k + (q)k+1

= ⊕k>0(q)k/Ik

where Ik consists of polynomials fk(q, p), homogeneous of degree k in q, which occur as q-leading terms
of polynomials f(q, p) in I :

f(q, p) ≡ fk(q, p) mod (q)k+1. (4)

Hence

R = C[q, p]/I∗

where I∗ =
∑

Ik in C[q, p] and the grading in R is according to degree in q.

On the other hand, the tangent cone V0 to V at (0,0) is Spec of the graded ring

R′ = C[q, p]/I∗.

where I∗ is generated by polynomials fk(q, p), homogeneous of degree k in (q, p), which occur as (q, p)-
leading terms of polynomials f(q, p) in I :

f(q, p) = fk(q, p) mod (q, p)k+1. (5)

The grading on R′ is by degree in (q, p). Since the ideal I of V is homogeneous in p, it suffices to take
polynomials f(q, p) which are homogeneous in p in (4) and (5), hence I∗ = I∗, and therefore N = V0 as
schemes.
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