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Abstract

We define the equivariant multiplicity of an isolated fixed-point of the action of an
algebraic torus on a complex variety and prove an integral formula for it which
generalizes the Lelong-number formula for the classical multiplicity of a singular
point on a complex variety. As an application we prove a Localization Formula in
equivariant cohomology for the fundamental cycles of (possibly singular) compact
subvarietes stable under the torus action. In the special case of Schuberty varieties
this formula leads to a geometric interpretation of certain polynomials arising from
the operators Aw used to describe the homology ring of the flag manifold.

0. Introduction. The purpose of this paper is to introduce the concept of
equivariant multiplicity of a non-degenerate fixed-point of an algebraic torus acting
on a complex analytic variety, to prove some its basic properties, and to give some
applications. As in the classical case, there is an algebraic and an analytic definition
of multiplicity; their equivalence is perhaps the main point here.
The concept of equivariant multiplicity is not abstruse. In its algebraic form it was
introduced by Joseph [9] and, in a special case, gave rise to the Joseph polynomials,
of importance for the representation theory semisimple Lie groups. In its analytic
form the concept is present, though unrecognized, in the localization formula of
equivariant cohomology, when this formula is extended to varieties (as will be done
here). The case of Schubert varieties is particularly noteworthy, because there the
equivariant multiplicity sheds some light on a construction of Bernstein-Gelfand-
Gelfand [3] through a result of Arabia [1]. These matters will be explained in more
detail below.

1. Multiplicities Of R,H-Modules. Let H = (Cx)r be an algebraic torus acting
algebraically on CN. We may assume that action is of the form

h·(z1, . . . , zN) = (hα1z1, . . . , αNzN)
for certain characters h → hαk of H. Generally we write characters eλ: H → Cx

as
eλ(h) = hλ = eλ(x) if h = exp x

with x ∈ h, the Lie algebra of H. The λ ∈ h* we call weights, a term also applied
to the eλ.
Let R = RN denote the graded ring of polynomials in z1, . . . , zN. H acts on R
through its action on z = (z1, . . . , zN):

(h·f)(z) = f(h-1·z) .
By an R,H-module we mean a graded R-module M which is also an H-module so
that

h·(fm) = (h·f)(h·m) .
In addition we require:

(i) M is finitely generated as an R-module.
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(ii) M is locally finite and holomorphic as H-module
The conditions imply that M has finitely many generators as R-module which may
be chosen to be weight vectors for H.

R,H-modules admit a character theory. To explain the construction we remark
that the most natural definition of chM as a formal Poincaré series

chM =
∑

λ (dim Mλ) eλ (1.1)
may not make sense, since the dimension of the weight spaces Mλ = { m ∈ M |
h·m = hλm } may well be infinite. We therefore proceed somewhat indirectly.

(1.1) Lemma. To every R,H-module one can associate a fractional virtual char-
acter chM of H, uniquely characterized by the following properties.
(i) If M is finite dimensional, then chM is the usual character of H.
(ii) Additive: If 0 → P → M → Q → 0 is exact, then chM = chP + chQ .
(iii) Multiplicative: If F is a finite-dimensional H-module, then chM⊗F =
chM chF .
Furthermore, chM is of the form

chM = f
D

where f =
∑

λcλeλ with cλ ∈ Z (finite sum) and D =
∏

k (1 − e-αk ).

Explanation. A fractional virtual character of H is by definition a quotient of
virtual characters∑

λ mλ eλ (finite sum, mλ ∈ Z) with denominator not identically zero. It may
be interpreted as formal object or as (densely defined) function on H. We shall
take the latter point of view.
The tensor product M ⊗ F (over C) of a finitely generated R-module M and a
finite-dimensional H-module F is an R,H-module in an obvious way.

Proof. Assuming a character theory with the stated properties exists, chM may be
calculated as follows. As mentioned, one may choose a finite set of generators for
M over R consisting of weight vectors for H to obtain a map

R ⊗ F1 → M → 0 .
Applying the same process to its kernel (which is also finitely generated, since R is
Noetherian) one constructs a resolution

· · · → R ⊗ F2 → R ⊗ F1 → M → 0 .
By Hilbert’s Syzygy Theorem (Zariski-Samuel [13], p.240) , this resolution breaks
off at the (N+1)-st step:

0 → R ⊗ FN+1 · · · → R ⊗ F2 → R ⊗ F1 → M → 0.
Because of the additive and multiplicative properties on ch,

chM =
∑N+1
k=1 (−1)k chR· chFk .

Each chFk is a genuine character. To find the character of R we momentarily
identify Rk = R/(zk+1, ... , zN) and consider the exact sequence

0 → zkRk → Rk → Rk-1 → 0 .
As R,H-module, zkRk is the tensor product of the R-module Rk and the one-
dimensional H-module of weight −αk. In view of the properties of ch,

chk-1 = (1 − e-αk)chk
where chk is the character of Rk. Thus ch0 =

(∏
k(1 − e-αk)

)
chN , i.e.

chR = 1
D , where D =

∏
k(1 − e-αk). There results the formula

chM = f
D (1.2)

where f =
∑

(−1)k chFk is of the required type.
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chM is therefore uniquely determined by the properties (i) − (iii) of the lemma.
Changing point of view, one may define chM by (1.2): standard arguments from
homological algebra show that ch is well-defined and has the required properties.

The weights of H on an R,H-module M are of the form λ = λj− (a sum of αk’s)
where the λj are the weights of some generators of M as R-module. Assume there
are elements x ∈ h so that Reαk(x) > 0 for all k. The multiplicites dimMλ are
then necessarily finite and for such x ∈ h the character chM(exp x) is given by the
convergent series

chM(exp x) =
∑

λ (dim Mλ) eλ(x) .
This will be called the convergent case. That case prevails in particular when
the action of H on CN contains the scalar multiplications, i.e. when h contains an
element x1 so that αk(x1) = 1 for all k. In general this situation may be achieved
by replacing H by H × C

x where s ∈ C
x acts by multiplication on C

N and by s-k

on the k−th graded piece of an R,H-module M =
∑

Mk.

The following lemma is due to Joseph [9] (in the convergent case; the general case
is a consequence thereof).

(1.2) Lemma. Let M be an R,H-module, J its annihilator in R, and n the Krull-
dimension of R/J. Write

chM = 1
D

∑
λcλ eλ , (finite sum, cλ ∈ Z) ,

and define a homogeneous polynomial eM of degree N−n on h by
eM = 1

(N-n)!

∑
λcλ λ

N-n (1.3)
Then

chM (exp x ) = 1
π(x)

(
eM (x) + o(|x |N-n)

)
(1.4)

where π(x) =
∏

k αk (x) .

Definition. eM is called the H- equivariant multiplicity of the R,H-
module M.

Remark. In the convergent case the polynomial eM may also be defined by a
classical construction of Hilbert and Samuel, as follows. Fix x ∈ h with αk(x) < 0
for all k (convergent case) and consider∑

λ(x) ≤ s dimMλ (1.5)
as function of s. (The sum is finite because of the condition on x.) Joseph [9]
shows that asymptotically as s → ∞ this function is of the form

eM(x)
π(x)

sn

n! + o(sn); (1.6)
where eM is given by (1.3); π and n are defined as above. Furthermore, in the
convergent case eM is always non-zero; but in general eM may be zero.

The classical case of Hilbert and Samuel concerns H = Cx acting on CN by scalar
multiplication and M = R/J , J a homogeneous ideal. eM may then be thought
of as a number: eM(x) = eM xN-n ; as number, eM is the classical multiplicity
defined in algebraic geometry: it is the multiplicity of the point 0 on the affine
cone in C

N defined by the homogeneous ideal J or, equivalently, the degree of the
corresponding projective variety in CPN-1. (Mumford [10], §6C.) These remarks
explain the notation and terminology introduced above.

Comment. In contrast to the classical case, the function of s defined by (1.5)
is generally not polynomial for large s. (Otherwise eM(x)/π(x) would have to be
integral for αk(x) ∈ N (Hartshorne [8], p.49), which is generally not the case.)
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2. Multiplicities On H-Varieties. Let X be an N-dimensional complex analytic
manifold, with a holomorphic action by H = (Cx)r. Let Z be an H-stable n-
dimensional analytic subvariety of X. Let p be a fixed-point of H on Z. One may
introduce analytic coordinates z = (z1, . . . , zN) around p = (0, . . . , 0) on X so
that the action of H on X is locally of the form

h·z = (hα1z1, . . . , hαNzN).
We shall say that such a coordinate system linearizes the H action around p. (It
may be constructed using the exponential map of a Kähler metric which is invariant
under the compact real form of H.) α1, . . . , αN are the weights of the linear action
of H on the tangent space of X at p; if they are all non-zero we say that
the fixed-point is non-degenerate. In this situation we shall define a notion of
equivariant multiplicity of p on Z, related to the classical notion of multiplicity of a
point on a complex analytic variety. It will help to first recall the classical notion.
We give two (equivalent) definitions of the classical multiplicity ep of p on Z in X .

Algebraic definition. ep is the multiplicity of the local ring OZ,p as an OX,p -
module. (Mumford [10], P.121).

Analytic definition. ep is given by the formula
ep = limε→0 1

ε2n

∫
Z∩Bε

ω n (2.1)
where B ε = { ‖ z ‖ < ε} is the ε-ball in a coordinate system z1, . . . , zN around
p = (0, . . . , 0) and ω is the (1, 1) form

ω = − 1
2πi

∑
kdz k d

−
z k (2.2)

(Griffiths-Harris [6], p. 391).

We now turn to the equivariant case. In the situation described above, let OX,p
denote the local ring of X at p, MX,p its maximal ideal. The associated graded
ring

grOX,p =
∑∞
k=0 Mk

X,p/Mk+1
X,p

may be identified with the graded ring of polynomials in z1, · · · , zN and the graded
local ring of Z at p, grOZ,p, is an grOX,p,H-module in the sense of section 1. Again
we give two definitions of the equivariant multiplicity ep of p on Z in X.

Algebraic definition. ep is the multiplicity of gr OZ,p as an gr OX,p , H -
module.

Analytic definition. ep is given by the formula
ep(x)
πp(x)

= 1
ε2n

∫
Z∩Bε

ω(x)n .(2.3)

Here πp =
∏

k αk as before. x ∈ h is assumed to satisfy αk (x) �= 0 for all k. Bε

= { ‖ z ‖ < ε} is any sufficiently small ε-ball in a coordinate system z1, . . . , zN

around p = (0, . . . , 0) which linearizes the H-action. ω(x) is the (1, 1)-form

ω(x) = − 1
2πi

∑
k

1
αk (x)

dz k d
−
z k . (2.4)

(The products of differential forms are exterior products.) The integral on the right
side of (2.3) is independent of ε (as will be shown).

The equivalence of the definitions will be proved after some remarks.

Remarks. (1) In limits of integrals of the type met in the analytic definition of ep,
the variety Z may be replaced by its tangent cone C at p, as explained in Griffiths-
Harris [6], p.391, and proved in detail in Thie [12]. Because of homogeneity, the
integral in formula (2.1) then becomes independent of ε, just like the integral in



5

(2.3). After passing to the tangent cone the formulas (2.1) and (2.3) may therefore
be written

ep =
∫
C∩B1

ω n (2.5)
and

ep(x)
πp(x)

=
∫
C∩B1

ω(x)n . (2.6)
The tangent cone C must then however be counted with the appropriate multi-
plicity, i.e. the integral over C must be interpreted as an integral over the cycle
associated to C as scheme (Fulton [5], p.15; on p.79 Fulton defines ep by the
projective equivalent of (2.5) ).

(2) The equivariant multiplicity reduces to the classical multiplicity in case H = C
x

acts by scalar multiplication in the linearizing coordinates. Starting with any
variety and any point thereon, this situation may be achieved by passing to the
tangent cone. In this way the classical multiplicity may be considered a special
case of the equivariant multiplicity.

(3) ep depends on the embedding of Z in the manifold X, although the quotient
ep/πp depends only on the action of H on Z. (It is for this reason that “ in X”
was added to “equivariant multiplicity of p on Z”.) Numerator and denominator
of ep could be unambigously normalized by passing to the smallest subspace of the
tangent space of X at p which contains the tangent cone of Z. (This is precisely the
Zariski-tangent space of Z at p.) The effect of the normalization is to cancel those
factors αk for which zk ≡ 0 on the tangent cone from numerator and denominator
of ep/πp .

(2.1) Theorem. The two definitions of “equivariant multiplicity” are equivalent.

The proof will consist of a reduction to the classical case. We shall need a lemma.

(2.2) Lemma. Let x ∈ h with αk (x) purely imaginary and �= 0 for all k. Denote
by Lx (resp. i(x)) the Lie derivative (resp. inner multiplication) by the correspond-
ing vector field on X. Let θ(x) be any C∞ one-form defined in a neighbourhood
of p on X, except at p itself, so that

Lxθ(x) = 0, and i(x)θ(x) ≡ 1 .
Such forms exist, and if B is any sufficiently small neighbourhood of p in X, then∫

∂(Z∩B) θ(x)(dθ(x))
n-1 (2.7)

is independent of θ and B (with the stated properties) and equals
(2πi)n

ε2n

∫
Z∩Bε

ω(x)n (2.8)
for any sufficiently small ε.

The proof of the lemma is an exercise with the equivariant Stokes’ Theorem. It
will be clearest to explain the procedure in some greater generality. (The method
is not new: it originates in a paper of BOTT [4] and was further developed by
Berline-Vergne [2] and others.)
Let v be a C∞ vector field on X. (Here X need only be a real C∞ manifold.)

Introduce the equivariant exterior derivative operator dv (generally inhomogeneous)
C∞ differential forms ω on X by the formula

dvω = dω + i(v)ω .
It satisfies (dv)2 = d◦i(v) + i(v)◦d = Lv,the Lie derivative, and dv(αβ) =
(dvα)β + (-1)aα (dβ) if α is homogeneous of degree a. (All products of forms are
exterior products.) The equivariant Stokes’s Theorem says : if Γ is a piecewise
C∞, finite m-chain on X which is tangential to v, then
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∫
Γ

dvω =
∫

∂Γ
ω

for every C∞ form ω. (Proof: the second summand of dvω = dω + i(v)ω vanishes
in degree m = dimΓ on Γ, in view of the “tangential” condition. − The integral of
an inhomogeneous form is the integral of its component in the appropriate degree.)

We now turn to the proof of the lemma. Fix x ∈ h with αk(x) �= 0 for all k.
Assume given θ = θ(x) with Lxθ = 0 and i(x)θ = 1. The integral (2.7) may be
written as ∫

∂(Z∩B) θ(dθ)
n-1 = (−1)n-1

∫
∂(Z∩B) θ(1 + dθ)-1

where the inverse is taken in the exterior algebra:
(1 + dθ)-1 =

∑
(−1)k(dθ)k .

Observe that 1 + dθ = dxθ and dx(θ(1 + dθ)-1) = dx(θ(dxθ)-1) ≡ 1. So
dx(θ(1 + dθ)-1) is 0 except in degree 0. The independence of B of the integral (2.7)
is therefore immediate from the equivariant Stokes’ Theorem.
To see the independence of θ, suppose θ1 and θ2 are two forms with the required
properties. Choose coordinate balls B1 ⊂ B2. Construct a third such form θ so
that

θ =

{
θ1 on ∂B1
θ2 on ∂B2

This is possible: Since αk(x) is imaginary for all k, the real one-parameter group
exp(Rx) generated by x is a circle and the form θ may be taken as θ = c1θ1 + c2θ2
where c1 is an exp(Rx)-invariant C∞ function which ≡ 1 on ∂B1 and ≡ 0 on
∂B2. c2 is defined similarly, and c1 + c2 ≡ 1. Because of the independence of B:∫

∂(Z∩B) θ(dθ)
n-1 =

∫
∂(Z∩Bj)

θj(dθj)n-1 , j = 1,2.
It remains to prove the last assertion of the lemma. For that purpose we construct
a particular form θ as follows. Set ak = αk(x). Write ξ for the holomorphic
vector field on X corresponding to x ∈ h:

ξ =
∑

ak zk ∂
∂zk

and define (1, 0)-form ϕ = ϕ(x) by

ϕ =
∑

1
ak

−
z k dzk .

Then θ = θ(x) = ϕ/‖z‖2 is defined except at p and has the required properties:
Lξθ = 0, i(ξ)θ ≡ 1

Observe that dϕ = 2πi ω where ω = ω(x) is the form defined earlier. Further-
more, θ ≡ ϕ/ε2 on ∂Bε and dθ = dϕ/ε2 = 2πiω/ε2 there. Thus∫

∂(Z∩B) θ(dθ)
n-1

= 1
ε2n

∫
∂(Z∩Bε)

ϕ( dϕ)n-1

= 1
ε2n

∫
Z∩Bε

( dϕ)n

= (2πi)n

ε2n

∫
Z∩Bε

ωn .

This finishes the proof of the lemma.

We now turn to the proof of the theorem. To prove the equivalence of the the two
definitions we may replace the variety Z by its tangent cone at p: For the algebraic
definition this is evident because the tangent cone is exactly spec of the graded ring

grOZ,p =
∑∞
k=0Mk

Z,p/Mk+1
Z,p (2.9)

where MZ,p = MX,pOZ,p is the maximal ideal of the local ring OZ,p (Mumford
[11], p.302 or Fulton [5], p.435). For the analytic definition the corresponding
passage to the tangent cone was already mentioned.
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We shall therefore now assume that Z, as scheme, is a cone in X = CN defined
locally at p = 0 by a homogeneous ideal J of R = grOX,p. To prove the equivalence
of the algebraic and analytic definitions we have to show that∫

[Z∩B1] ω(x)n = e(x)
π(x) . (2.10)

e(x) is the multiplicity of the ON,H -module (2.9); [Z∩B1 ] cycle associated to
Z∩B1 (Fulton [5]). ω(x) is the form:

ω(x) = − 1
2πi

∑
k

1
αk(x)

dzk d
−
z k. (2.4)

Both sides of (2.10) are rational in x; it therefore suffices to prove (2.10) for x in
a Zariski dense subset of h.

Since the cone Z is invariant under the action of Cx, we may now assume that
the action of H on X = CN contains the scalar multiplications: otherwise we
replace H by H × Cx. Denote by x1 an element of h which generates the scalar
multiplications: αk(x1) = 1 for k = 1, 2, . . . , N. The elements x ∈ h satisfying

αk(x) ∈ N for k = 1, 2, . . . , N (2.11)
are now Zariski-dense in h: If a polynomial vanishes on all of these points, then
it vanishes at x + sx1 whenever αk(x) ∈ Z for all k and s ∈ N is sufficiently
large. Hence it vanishes identically on x + sx1, s ∈ C, hence at all such x, hence
identically.
Fix x ∈ h satisfying (2.11) and set αk(x) = ak, ak ∈ N. Introduce new variables
wj and define a map f: w → z by setting

zk = wakk . (2.12)
The map f: C

N → C
N is finite of degree p = Πkak ( = π(x) for the fixed x).

Under this map the action of the Cx on the z through the one-parameter group
generated by 2πix,

e2πit·z = exp(2πitx)z = (e2πia1t z1, . . . , e2πiaNt zN),
corresponds equivariantly to the action of Cx on the w by scalar multiplication.
Choose a form θ = θ(2πix) as in the lemma for the action of C x on the z and

set e = e(x), p = π(x). After cancelling a factor (1/2πi)n, the equation (2.10) to
be proved becomes ∫

∂[Z∩B] θ(dθ)
n-1 = e

p . (2.13)

Let
∼
θ = f*θ be the pull-back of θ.

∼
θ is then a form of the type required by the

lemma for the multiplication action of C
x on the w. Let B be a sufficiently small

neighbourhood of z = 0,
∼
B its inverse image. Let

∼
Z = f-1Z denote the inverse

image of Z under (2.13) as scheme (Fulton [5] ).

The ring C[w] is free over f*C[z] = C[wa] (with basis consisting of the monomials

wm1
1 . . .wmN

N with m1 < a1, . . . , mN < aN ). The cycle [
∼
Z∩

∼
B] = [f-1(Z∩B)] is

therefore the flat pull back [
∼
Z∩

∼
B] = f*[Z∩B] and

f*f*[Z∩B] = (deg f) [Z∩B] = p [Z∩B]
(Fulton [5], Lemma 1.7.1, p.18 and Proposition 8.3 (c), p.140.) Thus∫

∂[Z∩B] θ(dθ)
n-1

= 1
p

∫
∂f*f*[Z∩B] θ(dθ)

n-1

= 1
p

∫
∂[
∼
Z∩

∼
B]

f*(θ(dθ)n-1)

= 1
p

∫
∂[
∼
Z∩

∼
B]

∼
θ (d

∼
θ )n-1 (2.14)
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The lemma now applies to both sides of this equation and gives∫
[Z∩B1]

ω(x)n

=
∫

∂[Z∩B] θ(dθ)
n-1

= 1
p

∫
∂[
∼
Z∩

∼
B]

∼
θ (d

∼
θ )n-1

= 1
p

∫
[
∼
Z∩

∼
B1]

∼
ω(x)n (2.15)

where
∼
B1 is the ball {‖w‖ ≤ 1} and

∼
ω the form (2.4) corresponding to the multi-

plication action of C
x on the w. Thus

∼
ω = − 1

2πi

∑
kdwk d

−
wk

is the form entering into the analytic definition of the classical multiplicity, and we
get ∫

[Z∩B1]
ω(x)n =

∼
e , (2.16)

the classical multiplicity of 0 on the cone
∼
Z. It remains to calculate

∼
e .

Let J be the ideal in R = {polynomials in z} which defines Z locally at 0,
∼
J = J

∼
R

the ideal it generates
∼
R = {polynomials in w}. (R is considered a subring of

∼
R via

z = wa).
∼
J is the ideal of definition of

∼
Z, and

∼
e is the (classical = equivariant)

multiplicity of
∼
R/

∼
J .

∼
J is a direct sum∼

J =
∑
mj<aj

Jwm1
1 . . .wmN

N

Thus the
∼
R,Cx-module character ( = Poincaré series) of

∼
J is

ch∼
J
(h) = chJ(h)

∑
mj<aj

hm1+ ···+mN = ch∼
J
(h) Πk(1 − hak )

(1 − h)N .
Therefore

ch∼
R/

∼
J
(h) = ch∼

R
(h) − ch∼

J
(h)=

1 − ch∼
J
(h) Πk(1 − hak )

(1 − h)N . (2.17)

Write R,Cx-module characters in the form chM = f/D as in Lemma (1.2), and∼
R,Cx-module characters similarly as ch∼

M
=

∼
f /

∼
D. Here D(h)= Πk(1 − hak) and

∼
D(h)= (1 − h)N. One finds from (2.17)

ch∼
R/

∼
J
(h) = 1 − fJ(h)∼

D(h)
= fR/J(h)

∼
D(h)

.

Hence f∼
R/

∼
J

= fR/J . From Lemma 2 of §1 one finds that the
∼
R,Cx-multiplicity

∼
e

of
∼
R/

∼
J equals the R,C x-multiplicity e of R/J:

e =
∼
e (2.18)

From (2.14) − (2.18) follows the desired formula (2.11).
This proves the equivalence of the algebraic and analytic definitions of ep(x) and
completes the proof of the theorem.

3. The Localization Formula. The Localization Formula of equivariant coho-
mology may be stated as follows (Berline-Vergne [2]).

Let T be a real torus acting on a compact, oriented manifold M of dimension 2n.
Assume all fixed-points of T are non-degenerate. Let x ∈ t be a regular element
and µ(x) a C∞ form on M satisfying dxµ(x) = 0. Then
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-1
2πi

)n ∫
M
µ(x) =

∑
p

1
πp(x)

µp(x), (3.1)
sum over all fixed-points p of T.

Explanation. Around a fixed-point p of T one may introduce positively oriented
coordinates x1, . . . , x2n around p on M so that exp x ∈ T acts by the rotation[

cos θk(x) −sin θk(x)
sin θk(x) cos θk(x)

]
in the xk,xn+k − plane. The αk = iθk are the weights of T on the tangent space
at p, and the fixed point p is non-degenerate if these weights αk are all non-zero
(for every fixed-point p). An element x ∈ t is regular if αk(x) �= 0 for every αk.
dx = d + i(x) is the equivariant exterior derivative, as explained in connection
with the Lemma (2.2). µp(x) is the value at p of the degree-zero component of the
(inhomogeneous) form µ(x).

Remark. The formula concerns only one vector field at a time; T can therefore
be replaced by any compact Lie group, since any one-parameter subgroup is then
contained in a torus.

We shall prove an analogous localization formula when the smooth manifold M
is replaced by a possibly singular complex variety. For this purpose we have
to consider integrals over chains Γ, namely the chains [Z∩B] cut out from the
fundamental cycle of a complex variety by a coordinate ball B. Such chains satisfy
the following regularity condition. For every C∞ form ψ

limε→0 1
εk

∫
Γ∩Bε

ψ = 0 for k < dim Γ. (3.2)
Here Bε denotes the ε-ball in an arbitrarily chosen coordinate system about an
arbitrarily chosen point of X. The intersection Γ∩Bε may be defined using a sub-
division of Γ. That the condition (3.2) is satisfied for the fundamental cycles of
complex analytic varieties is clear from the usual proof of local integrability over
such cycles (Griffiths-Harris [6], p.32). (It is in fact more generally satisfied when
Γ is a subanalytic chain on a real analytic manifold, as one can see in Hardt [7])

(3.1) Localization Formula. Let H be a complex torus acting holomorphically
on a complex manifold X, Z a compact subvariety of X of dimension n. Assume
all fixed-points of H are non-degenerate. Let x ∈ h be a regular element and µ(x)
a C∞ form on X depending holomorphically on x ∈ h and satisfying dxµ(x) = 0.
Then (

-1
2πi

)n ∫
Z µ(x) =

∑
p

ep(x)
πp(x)

µp(x), (3.3)
sum over all fixed-points p of H on Z. ep is the equivariant multiplicity of p and
πp = Πkαk the product of the weights of H on the tangent space of X at p.

Proof. The method (which goes back to Bott [4]) is the same as for the formula
(3.1). We give the argument here in order to indicate how the regularity property
(3.3) is used and how ep(x) comes in.
Let µ(x) be a form on X of the prescribed kind. It is enough to prove the formula
(3.3) when αk(x) is imaginary and non-zero for all weights αk at all fixed-points
p. Fix such an x ∈ h. Around each fixed point p one can then find a C∞

one-form θ = θ(x) which has the properties of the Lemma (2.2) : Lxθ = 0,
i(x)θ = 1. These local θ may be patched together with the help of an exp(Rx)-
invariant partition of unity to obtain a globally defined θ with the same properties.
As noted before, dxθ = (1 + dθ) has the exterior inverse

(1 + dθ)-1 =
∑

(−1)k (dθ)k .
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Set µ = µ(x) for the fixed x. Since dxµ = 0 one finds that
dx(θ(dxθ)-1µ) = µ .

The equivariant Stokes’ Theorem now gives∫
Z
µ

=
∑
p lim
ε→ 0

∫
Z−Z∩Bε(p)

dx(θ(dxθ)-1µ)

= − lim
ε→ 0

∑
p

∫
∂(Z∩Bε(p))

θ(dxθ)-1µ

=
∑
p,k(−1)k+1 lim

ε→ 0

∫
∂(Z∩Bε(p))

θ(dθ)kµ .

Bε(p) is a coordinate ε-ball around p. We take the coordinates z1, . . . , zN around
p to be linearizing and we assume that there the form θ is the one constructed in
the proof of the Lemma (2.2): θ = ϕ/‖z‖2 where

ϕ =
∑

1
ak

−
z k dzk .

Then the above integral becomes∫
Z µ =

∑
p,k (−1)k+1 lim

ε→ 0
1

ε2(k+1)

∫
∂(Z∩Bε(p))

ϕ(dϕ)kµ

=
∑
p,k (−1)k+1 lim

ε→ 0
1

ε2(k+1)

∫
Z∩Bε(p)

d
(
ϕ(dϕ)kµ

)
=

∑
p (−1)k+1 lim

ε→ 0
1

ε2n

∫
Z∩Bε(p)

d
(
ϕ(dϕ)n-1µ

)
because of the regularity property (3.2). The only component of µ which con-
tributes to the last integral is the component in degree zero; in the limit, it may
be evaluated at p and taken out from the integral. This gives∫

Z µ =
∑
p(−1)n µp limε→0 1

ε2n

∫
Z∩Bε(p)

(dϕ)n .
In the notation of §2, dϕ = (1/2πi)ω. Thus the last equation is exactly the desired
formula (3.3)

(3.2) Example: Schubert varieties. Let X = G/B be the flag manifold of a
semisimple complex algebraic group G. Let H be a Cartan subgroup of G contained
in the Borel subgroup B. For each element w ∈ W (the Weyl group of G, H)
denote by Zw corresponding Schubert variety. Let µ(x) be a form on X as in
the Localization Formula: µ(x) depends holomorphically on x ∈ H and satisfies
dxµ(x) = 0. Assume in addition that µ(x) is invariant under the action of W on
X and h:

w·µ(x) = µ(w·x).
(As usual, the action of W on X depends on the choice of a compact form K of G:
w·(kB) = kwB for k ∈ K and w ∈ W.)
In this situation there is an explicit formula for the integral of µ(x) over Zw, due
to Arabia [1]: (

-1
2πi

)n ∫
Zw

µ(x) = Aw µy(x) (3.4)
where n = l(w) = dimZw.

Explanation. Aw is the operator on holomorphic functions on h introduced by
Bernstein-Gelfand-Gelfand [3]: for a reflection sα in a simple root α, Asα = Aα is
defined by

Aα = 1
α

(
sα − 1

)
. (3.5)

(Weyl group elements are here considered as operators on functions on h: w·f(x) =
f(w-1x). ) For general w ∈ W,
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Aw = Aα1 · · · Aαn (3.6)
where w = sα1 · · · sαn is any reduced expression for w as a product of simple
reflections. µy(x) is the component of degree zero of the form µ(x) at the point
py = yB of X = G/B. Written out explicitly, the formula (3.4) reads(

-1
2πi

)n ∫
Zw

µ(x) =
∑
y qw,y(x) µy(x) (3.7)

where
qw,y =

∑
s1 ··· sn

1
Πn

k=1s1 ··· sk(αk)
, (3.8)

sum over all sequences (s1, · · · , sn) with sj = sαj or 1 and s1 · · · sn = y. The
corresponding points py = yB which occur in the sum (3.7) are precisely the fixed-
points of H on Zw. If one compares (3.7) with (3.3) one comes to the conclusion
that

qy,w = (−1)l(y) ey
π (3.9)

where ey is the equivariant multiplicity at py and π the product of the positive roots.
This conclusion presupposes that there are enough form µ(x) of the required kind
so that the rational functions qw,y on the right side of (3.7) are uniquely determined
when the left side is known for all such µ(x). This is indeed the case: If f(x) is
a holomorphic function on h one can construct a form µfof the required type by
the equivariant Chern-Weil homomorphism of Berline-Vergne [2]) with the property
µfy(x) = f(y-1·x), as explained by Arabia [1].

The formula (3.9) shows that the rational functions qy,w can be written with de-
nominator π, a property which can be proved in other ways, but is not evident from
their definition (3.8).
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