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ABSTRACT. The paper proposes a construction of representations of Lie groups by con-

tour path integrals and discusses some examples of this construction.1

...“Is it unitary?”...“I’ll explain it to you,“ Feynman said, “and then you can tell me if

it is unitary.” He went on and from time to time he thought he could still hear Dirac

muttering, “Is it unitary?” [J. Gleick, 1992]

1. Introduction

Some thirty years ago Bott [1965] pointed out that Weyl’s Character Formula is
closely related to the Atiyah–Singer Index theorem. It is not evident how this rela-
tion can be seen directly from the representations themselves, apart from character
theory. There is however an intriguing heuristic derivation of the Index Theorem,
due to Witten [1982] and discussed by Atiyah [1985], which provides some insight
into this relation. It is based on the Feynman’s path integral formula, one version
of which leads to an expression for the kernels of the representation operators of
the type

K(expX, z′′, z′) =
∫

z.

exp[
∫ z′′

z′
{α(żt) −HX(zt)}dt]Πσn(dz.);(I)

the “integral“ is over all paths z. = {zt} from z′ to z′′. It is not necessary to
go into details in order to explain the relation to the Index Theorem: it amounts
here to the assertion that the trace of the operator K is given by an analogous
finite–dimensional integral

trK(expX) =
∫

z

exp[−HX(z)] j−1/2(X)σn(dz).(II)

The form σ in (I) and (II) is a symplectic form on a real manifold, the phase
space, from which the representation is constructed by a method of quantization,
possibly in cohomology; the function HX is the Hamiltonian for X , α is a 1–form
satisfying dα = σ, and j is a universal function. The passage from (I) to (II) is
accomplished by a formal application of the Localization Formula of Duistermaat–
Heckman [1983] and Berline–Vergne [1982], a procedure which has by been justified
by Bismut [1984].

All of this is still in the context of representations of compact groups. But a
formula of the type (II) also exists for non–compact groups. For those unitary
representations which can be constructed by geometric quantization it amounts to

1Archiv version of the paper published in the CMS Conference Proceedings v16, 1995, 288-314
with an appendix added January 2004.
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a version of Kirillov’s Character Formula. For arbitrary (admissible, possibly non–
unitary) irreducible representations of semisimple Lie groups there is a formula
analogous to (II), but a new phenomenon arises: the integral becomes a contour
integral in a complex symplectic manifold, and the real phase space fades into a
contour of integration, which has significance only as a homology class [Rossmann,
1990]. The question then arises how to make sense of (I) in this setting, which
would seem to require a notion of contour path integrals. I hasten to admit that I
do not have a complete answer to this question, which seems to be very difficult,
if one is to judge by the literature on “ordinary“ path integrals; but I shall try to
indicate a preliminary and tentative framework in which contour path integrals of
the type (I) might be understood, and to work this out explicitly for some examples.
This is all I hope to do here.

2. Some prequantum mechanics

2.1 Hamilton’s principle. Consider a point object moving in some space with
position q and momentum p. The set of all a priori possible position–momentum
pairs z = (q, p) forms what is called the phase–space of the dynamical system under
consideration. To specify an actual motion, one needs to specify a HamiltonianH(z)
which gives the total energy as a function of position and momentum. Hamilton’s
principle in phase space asserts that an actual trajectory makes stationary the
action

S =
∫ t′′

t′
pdq + dφ−Hdt

for variations of the path which fix its endpoints z′ and z′′. The the endpoints
cannot both be specified arbitrarily, but the function φ is arbitrary: the term dφ
only adds the constant φ(z′′)−φ(z′) to the action S as a function of the paths with
the given endpoints. It has been included explicitly to emphasize this arbitrariness
in the integrand, which will play an important role later. An important feature
of the integrand is that it is linear in the tangent vector of the path, which enters
through the 1–form pdq + dφ.

We now take the point of view that phase–space Z is a manifold equipped with a
class of locally defined differential 1–forms α, any two of which differ by an exact
form dφ where defined. The differential 2–form σ = dα is therefore globally well–
defined; it is called the canonical 2–form, and we shall assume that it is everywhere
non–degenerate. This means that (Z, σ) is symplectic manifold. Its dimension is
necessarily even, say 2n. The choice of a local representative α of the class of one–
forms is called the choice of a gauge and α itself is called a connection 1–form for
σ.

2.2 The quantum line bundle. Imagine we have attached to every point z of
Z a complex line (one–dimensional complex vector space) Φz ; these Φz ’s make up
what will be called the quantum line bundle on (Z, σ). As part of its definition we
require that it come with an extra piece of structure, a connection with curvature
σ. This amounts to having for any choice α of a local gauge a local identification
ιz :C ≈→ Φz , determined up to multiplication by a constant independent of z, which
satisfies the following condition. Given a path z. = {zt | t′ ≤ t ≤ t′′} from z′ to z′′
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the map A[z.] : Φz′ → Φz′′ defined by

A[z.] = ιz′′ ◦ exp[
∫ z′′

z′
α] ◦ ι−1

z′

is independent of the choice of α. If α is replaced by α′ = α+dφ, then ι is replaced
by ι′ = exp(−φ)ι (or some constant multiple thereof). It will be convenient to
introduce the notation

A[z.] = expι[
∫ z′′

z′
α].

The identification ι is incorporated as a subscript to exp. Throughout we use the
notation z. for a path {zt}.
The map A[z.] is called the (covariant) transport along the path z. and the path
functional z. → A[z.] may be taken to be the connection, although this is an unusual
convention. The equation σ = dα expresses the condition that σ be the curvature
of the connection. A geometric interpretation is provided by Stokes’s theorem: the
integral of α over the boundary of a parametrized 2–surface in Z equals the integral
of dα = σ over its interior. For there to exist a line bundle with a connection
of curvature σ the exponential integral exp[

∫
σ] of σ over any two oriented 2–

surfaces with the same boundary must therefore be the same. Equivalently, the
integral of σ over any closed, oriented 2–surface must be an integral multiple of
2πi. Conversely if σ satisfies this condition, then such a line bundle with connection
exists; it is unique up to isomorphism if Z is simply connected [Woodhouse, 1991,
§8.3]. Thus a quantum line bundle for (Z, σ) always exists and is unique locally,
but not necessarily globally. For this reason, and others, our point of view will be
local throughout: in our constructions we may have to replace Z by a sufficiently
small open subset.

2.3 Lagrangian fibrations. Let (Z, σ) be a 2n–dimensional symplectic man-
ifold. The transport within a submanifold of Z on which the canonical 2–form σ
vanishes is independent of the path, so that the Φz’s on it may be identified with
each other (locally). Such a submanifold has dimension ≤ n; if it has dimension= n
then it is called Lagrangian. For example, the position fibres {q = qo} and the mo-
mentum fibres {p = po} are Lagrangian for dp ∧ dq =

∑
dpi ∧ dqi.

We define a Lagrangian fibration to be any map π : Z → R with a differential of
rank n = dim R everywhere, whose fibres π−1(x) are Lagrangian submanifolds.
A second Lagrangian fibration π̃ : Z → R̃ is transverse to π : Z → R if the map
π̃×π : Z → R̃×R is a local diffeomorphism. For example, the position–momentum
maps q, p above are transverse Lagrangian fibrations for σ = dp ∧ dq. The fibres
of a Lagrangian fibration π : Z → R are in a natural way affine spaces, at least
locally, so that one has the concept of a straight line between any two sufficiently
close points in a given fibre [Woodhouse, 1991, p.67].

2.4 Action of canonical transformations on Φ. Let H be a smooth function
on Z, X = XH the corresponding Hamiltonian vector field : this is by definition the
vector field corresponding to the 1–form dH under σ, i.e. dH(·) = σ(X, ·). Write
exp(tX) for the flow generated by X , i.e. the 1–parameter group of transformations
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of Z defined (locally in z and t) by

d

dt
exp(tX)z = X(exp(tX)z).

The defininig relation żt = X(zt) of the path zt = exp(tX)z0 is is the Euler–
Lagrange equation for Hamilton’s principle, so that this path is the phase–space
trajectory of H through z0.

The flow of a Hamiltonian vector field consists of canonical transformations of
(Z, σ), i.e. it leaves the canonical 2–form σ invariant. These transformations of Z
extend to transformations of line bundle Φ in the following way. For z ∈ Z define
A(expX , z) : Φz → Φexp(X)z by

A(expX, z) = expι

∫ exp(X)z

z

[α−Hdt]

where the integral is taken along the trajectory exp(tX)z, 0 ≤ t ≤ 1. We note that
H is constant along the trajectories of X , because along a trajectory

d

dt
H = dH(X) = σ(X,X) = 0.

Thus H can be replaced by the constant H(z) and taken outside of the integral.

By a section of the line bundle Φ we mean a function ϕ which associates to each
z ∈ Z and element ϕ(z) ∈ Φz. If we choose a gauge α then we can write ϕ = ιf
where f is scalar–valued. The maps A(expX) induce an action of exp(X) on
sections of Φ, denoted ϕ → A(expX)ϕ and defined by

[A(expX)ϕ](z) = A(expX , exp(−X)z)ϕ(exp(−X)z).

3. Some quantum mechanics

3.1 Wave functions. Fix a phase space (Z, σ) with a quantum line bundle
Φ and a Lagrangian fibration π : Z → R. According to the method of geometric
quantization [Woodhouse, 1991], the quantum–mechanical state space H(Z, σ,Φ, π)
of a mechanical system with phase space (Z, σ) consists of sections ϕ of Φ which are
(covariantly) constant along the fibres. (This has a meaning, since the Φz ’s along a
fibre may be identified.) Such a section ϕ will be called a wave function. In a gauge
given by a connection 1–form α which vanishes on vectors tangential to the fibres
a wave function on Z is represented by scalar–valued function f which is constant
along the fibres π−1(x). Such an α is said to be adapted to π. If we chose another
gauge α+dφ then f is replaced by (expφ)f , and in particular will generally not be
constant along the fibres. Wave functions are usually further required to be square
integrable, but we shall ignore this condition; it does not make sense in the present
setup.

3.2 Complex phase space and contours. Up to this point the phase space Z
was understood to be a real manifold, but it could equally well have been complex.
From now on (Z, σ) will be a 2n–dimensional complex symplectic manifold: a
complex manifold Z with a non–degenerate, holomorphic, closed 2–form σ. The
connection 1–form α and the Lagrangian fibration π are required to be holomorphic
as well.
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We shall have to consider what might be called “contour integrals“ in the complex
manifold Z. For this purpose we define a contour in Z to be a locally finite 2n–chain
in the sense of integration theory. For example, Γ could be specified by a oriented
real submanifold of dimension 2n in Z. The n–the exterior power σn , known as
Liouville form, is a holomorphic form of degree 2n, and it makes sense to consider
integrals of the type ∫

Γ

fσn

if f is scalar function defined (at least) on Γ for which the integral exists. We shall
drop the form σn from the notation, if there is no risk of confusion. A contour Γ
will now remain fixed, in addition to the data (Z, σ,Φ, π) introduced earlier.

3.3 Pairing and kernels. Let Φ∗ be the line bundle dual to Φ, whose fibre Φ∗
z

at z ∈ Z is the one–dimensional space of complex linear functionals on Φz. We
write ϕ̃(z)ϕ(z) for the value of ϕ̃(z) ∈ Φ∗

z on ϕ(z) ∈ Φz. If ϕ̃ and ϕ are sections
of Φ∗ and Φ, then ϕ̃ϕ is a complex scalar function on Z. The line bundle Φ∗ on
Z carries a natural connection characterized by the property that ϕ̃ϕ is invariant
under the transport. If α is a connection 1–form for Φ, then −α is a connection
1–form for Φ∗. The corresponding curvature form for Φ∗ is therefore −σ rather
than σ.

We now fix two Lagrangian fibrations, π : Z → R and π̃ : Z → R̃. If ϕ̃ ∈ H(Φ∗, π̃)
and ϕ ∈ H(Φ, π) we define

〈ϕ̃, ϕ〉 =
∫
Γ

ϕ̃ϕ.

The integral is with respect to a constant multiple σn/C of the Liouville form;
the normalization factor C, will play a role later. It is understood that the line
bundle and the sections ϕ and ϕ̃ are defined along the contour Γ. (This brings a
global element into our generally local discussion.) Thus 〈ϕ̃, ϕ〉 is a partially defined
pairing on H(Φ∗, π̃) × H(Φ, π). Since ϕ is constant along the fibres of π and ϕ̃ is
constant along the fibres of π̃, the function ϕϕ̃ is constant on their intersections.
We shall assume that the fibres of π and π̃ intersect locally in a single point, i.e.
that π and π̃ are transverse.

Given the data (Z, σ,Φ, π)and (Z,−σ,Φ∗, π̃), we consider (Z ×Z, σ⊗−σ, Φ⊗Φ∗,
π × π̃), which is a datum of the same type. An element F (z′′, z′) of Φz′′ ⊗Φ∗

z′ can
be considered as a linear transformation Φz′ → Φz′′ written ϕ(z′) → F (z′′, z′)ϕ(z′).
An element F of H(Φ∗ ⊗ Φ,π̃ × π) gives a partially defined operator on H(Φ, π),
defined by the formula

Fϕ(z′′) =
∫

z′∈Γ
F (z′′, z′)ϕ(z′)

whenever the integral exists. Thus Fϕ(z′′) is the pairing of ϕ(z′) with ϕ̃(z′) =
F (z′′, z′) for fixed z′′. The section F (z′′, z′) will be called the kernel of the operator
Fϕ. We have the composition rule

F ′′ ◦ F ′(z′′, z′) =
∫

z∈Γ
F ′′(z′′, z)F ′(z, z′)

with the usual proviso concerning the existence of the integral.
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4. Path integral operators

It will be clearest to divide the definition of path integral operators into two parts: a
first part, which amounts to an unusual notation for matrix products, and a second
part, which makes use of phase space with its additional data.

4.1 Matrix products. Path integrals arise from the formula for the N–th
composition power KN(z′′, z′) of a kernel Kε(z′′, z′):

KN (z′′, z′) =
∫ N∏

k=1

Kε(zk−1, zk).

The integral goes over (N − 1)–tuples (z1, · · · , zN−1) from some set Γ and we set
z0 = z′, zN = z′′. The nature of the set Γ, of the kernels K, and of the integral is
not important at this stage. The kernel Kε is required to be of the form

Kε(z′′, z′) = exp Sε(z′′, z′)

for some function Sε(z′′, z′), which is formally written as an integral

Sε(z′′, z′) =
∫ z′′

z′
L.

One can imagine that this might be an integral along some specified elementary
path from z′ to z′′ and take the up to now purely symbolic subscript ε to stand for
the duration (parameter interval) of the path. The formula for KN then becomes

KN(z′′, z′) =
∫

exp[
N∑

k=1

∫ zk

zk−1

L].

If one could take the limit as N → ∞ this could be conceived of as the integral
over all paths z. which can be approximated by chains of elementary paths (for
ε = 1/N) and written as a path integral

K(z′′, z′) =
∫

z.

exp[
∫ z′′

z′
L].

Physicists call the kernel K(z′′, z′) the propagator generated by the approximate
(short–time) propagator Kε(z′′, z′). It is important to keep in mind that the ap-
proximate propagator is not uniquely determined by K.

As first step toward converting this scheme into something involving true paths and
integrals, we will need a set Z on which there is defined an integral over certain
subsets Γ so that the composition formula for kernels makes sense. The kernels
F (z′′, z′) we take momentarily to be scalar valued. We fix a functional on these
paths, written with slight modification of previous notation as

S[z.] =
∫ z′′t′′

z′t′
L[z.].

Finally we assume that there has been specified a class of elementary paths in Z
with the following property. Given any interval t′ ≤ t ≤ t′′ and any two points
z′, z′′ in Z there is a unique elementary path {zt | t′ ≤ t ≤ t′′} from z′t′ to z′′t′′.
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Given an integration domain Γ, two points z′, z′′ on Γ, and an interval [t′, t′′], we
consider

FN (z′′t′′, z′t′) =
∫

zk∈Γ
exp[

N∑
k=1

∫ zktk

zk−1tk−1

L[z.]]

where the outer integral is over all (N − 1)–tuples (z1, · · · , zN−1) from Γ. In the
exponent we have set z0 = z′, zN = z′′ and take for {tk} the partition of [t′, t′′]
with N equal steps of size ε = 1/N . The integrals in the exponents are over the
elementary path in the sense just explained.

It is clear that FN is the composite of the kernels Fk associated to the N elementary
paths, taken in the order of increasing t. If the path functional

∫
L[z.] is time

translation invariant, i.e. depends only on t′′ − t′, then all Fk are equal and FN

is the N–th composition power of this elementary kernel F . If FN has a limit as
N → ∞, we call it a path integral and denote it by the symbol

F (z′′t′′, z′t′) =
∫

z.∈Γ
exp[

∫ z′′t′′

z′t′
L[z.]].(3.1)

The notation is suggestive, but can be misleading: the endpoints zk−1 and zk of
the elementary paths entering into the limit can be arbitrarily far apart, so that
the “approximation“ of paths from z′ to z′′ by piecewise elementary paths does not
provide a Riemann sum approximation of the integral in the exponent.

If one uses subdivisions of the time interval t′ ≤ t ≤ t′′ which contain a given
t∗ = tk∗ , then the multiple integral over the zk can be written as an integral over
zk∗ of a product of two integrals, one over the zk for t′ ≤ tk ≤ t∗ the other over the
zk for t∗ ≤ tk ≤ t′′. This gives the composition formula for path integrals:

F (z′′t′′, z′t′) =
∫

z∗∈Γ
F (z′′t′′, z∗t∗)F (z∗t∗, z′t′).

If F depends only on s = t′′−t′, then one can write Fs(z′′, z′) instead of F (z′′t′′, z′t)
and finds the semigroup property

Fs′+s′′ = Fs′ ◦ Fs′′ .

4.2 Contour path integrals. We now return to the complex symplectic mani-
fold (Z, σ), equipped with the additional data Φ, π, π̃, and Γ. We choose a gauge
α and consider a path functional of the form

Sα[z.] =
∫ z′′t′′

z′t′
{α(żt)−H(zt) − τ(żt, żt)}dt

where H(z) is defined and holomorphic in a neighbourhood of Γ and τ is a complex
holomorphic quadratic form on the tangent spaces of Z. The integrand is therefore
an inhomogeneous quadratic function of the velocity. It is the Lagrangian of the
action functional Sα. The classical phase–space action functional of 2.1 is of this
form, but with τ = 0. It will arise as a limit as τ → 0 (in a sense which will be
specified) of quadratic action functionals of the above type.

We now assume fixed such an action functional Sα. The map

expι Sα[z.] : Ψz′ → Ψz′′
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is independent of the choice of the gauge α. The above construction gives a path
integral ∫

z.∈Γ
expι[

∫ z′′t′′

z′t′
{α(żt) −H(zt) − τ(żt, żt)}dt] ΠC−1σn(dz.)

as a limit of integrals over N–step piecewise elementary paths

z′t′ → z1t1 → · · · → zN−1tN−1 → z′′t′′

with zk ∈ Γ. The approximating paths need not lie on Γ, only the step points zk

do. The symbolic product ΠC−1σn(dzt) is a reminder of the Liouville forms in the
approximating integrals, and will again be omitted. The path integral itself is then
a map Φz′ → Φz′′ , independent of the choice of α. There is no guarantee that the
limit exists and there is furthermore a question of the nature of these limits: the
kernels K(z′′, z′) should define operators on a space wave functions by the formula
(3.1), and the limits should exist in this sense, which depends on a more precise
specification of the space of wave functions, e.g by growth conditions along Γ. We
shall ingore this point for now, but come back to it later in the examples.

To complete the definition it remains to specify the class of elementary paths, which
is an essential part of their definition. We shall consider two possibilities.

5. First definition of contour path integrals

5.1 Holomorphic trajectories. We denote by T the tangent space of Z at a
general point z ∈ Z, a complex vector space equipped with the complex symplectic
form σ, and by V, Ṽ the complex subspaces of T tangential to the fibres of π, π̃
through z. The form σ vanishes on V and Ṽ and T = V ⊕ Ṽ . Define a symmetric
bilinear form τ on T by the requirement that

τ(v̄, v̄) = σ(v, ṽ)

if v̄ = v + ṽ with v ∈ V and ṽ ∈ Ṽ .

We fix a holomorphic function H on Z, a gauge α, two points z′, z′′ in Z, and two
points t′, t′′ in the complex t–plane. Let {zt : t ∈ D} be a holomorphic arc in Z,
i.e. a holomorphic map D → Z, t → zt defined on some simply connected domain
D in the complex plane, so that t′, t′′ ∈ D and zt′ = z′, zt′′ = z′′. Consider the
integral

Sα[z.] =
∫ t′′

t′
{α(żt) −H(zt)− 1

2ν
τ(żt,, żt)}dt

taken along any path C in D; we may consider it as an integral along the image
path {zt | t ∈ C} on the holomorphic arc itself. Because of the holomorphicity of
the integrand, the integral is independent of the path from t′ to t′′ and therefore
defines a functional on the holomorphic arcs. The map expι Sα[z.] : Φz′ → Φz′′ is
furthermore independent of the choice of gauge.

The holomorphic trajectory for Sα from z′t′ to z′′t′′ is by definition the critical
holomorphic arc for the functional Sα (or equivalently for expι Sα), i.e. the solution
of the Euler–Lagrange equation with boundary values z′t′, z′′t′′. The existence and
uniqueness theorem for second order, holomorphic differential equations, together
with the non–degeneracy of the form τ , guarantees the existence and uniqueness
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of such holomorphic trajectories locally. Our constructions are therefore local, as
usual.

Adapting the definition of Feynman [1948] to the complex domain, we take as the
elementary path z′t′ → z′′t′′ entering into the construction of the path integral any
path on the holomorphic trajectory of Sα between these points.

5.2 Definition I. K(expX ;z′′, z′) :=

lim
ν→∞ lim

ε→0

∫
zk∈Γ

expι [
N∑

k=1

∫ zktk

zk−1tk−1

{α(żt) −H(zt)− 1
2ν

τ(żt, żt)}dt].

We have set z0 = z′ and zN = z′′. The outer integral is over (N − 1)–tuples
(z1, · · · , zN−1) from Γ, taken with respect to a normalized Liouville form σn/C.
We take tk − tk−1 = ε with ε = 1/N so that t′′ − t′ = 1. The normalization factor
C, which may depend on ν, ε and zk, will be specified presently. The integral in
the exponent is taken along any path on the holomorphic trajectory from zk−1tk−1

to zktk. This is written in path integral notation as

K(expX ; z′′, z′) =

lim
ν→∞

∫
z.

expι [
∫ 1

t=0

{α(żt)−H(zt) − 1
2ν

τ(żt, żt)}dt].

(5.1)

Feynman remarks in a footnote [1948, footnote (11)] that for action functionals
which are quadratic, but perhaps inhomogeneous, in the velocities żt, such as the
the integrand above, one can equally well take as elementary paths the critical
paths of the free action functional∫ t′′

t′
τ(żt, żt)dt

defined by the leading homogeneous form τ/2ν. The form τ there is positive definite
and ν is purely imaginary on Γ. In the case of a real manifold and positive definite
form τ/2ν, these critical paths are the geodesics of τ as Riemann metric. The path
integral then has an interpretation in terms of stochastic integrals for the Wiener
measure. In that context the definition of path integrals as limits of the type (6.1)
is due to Daubechies and Klauder [1985], who evaluated them explicitly in several
specific cases.

5.3 The normalization factor. The determination of the normalization fac-
tors for path integrals is a delicate matter, in general. If one extrapolates from
Feynman’s reasoning [1948, equation (28)] one arrives at the Gaussian integral

C =
∫

v̄∈TΓ

exp[α(v̄)− 1
2νε

τ(v̄, v̄)]σn(dv̄).

The integral is taken over the tangent space TΓ to Γ at point z ∈ Γ and converges
if Re(τ/ν) is positive–definite on TΓ. It then has the value

C = eντ−1(α,α)/2(2πνε)n(5.2)

where τ−1 is the inverse of τ , a quadratic form on the dual space of T . In general
C may depend on z as well as on ν and ε. The formula (6.2) for the nomalization
constant is correct for the examples considered by considerd by Daubechies and
Klauder [1985] and Klauder [1988].
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6. Second definition of contour path integrals

Path integrals according to definition I are hard to evaluate. There is however a
recipe for their evaluation, which produces the correct result in a number of special
cases. Since I do not have a proof of this recipe (which may in fact apply only under
additional hypotheses), I shall simply take it as another definition and I shall only
give a heuristic argument for its equivalence with the previous definition. There is
no problem as far as the examples to be discusses later are concerned: they can be
understood entirely on the basis of the second definition.

6.1 Zig–zag paths. For z′, z′′ in Z sufficiently close there is a unique point z∗

satisfying π(z∗) = π(z′′), π̃(z∗) = π̃(z′). By the zig–zag from z′ to z′′ we mean
the composite path z′ → z∗ → z′′ consisting of the line segment from z′ to z∗ in
the fibre of π̃ containing these points (an affine space) followed by the line segment
from z∗ to z′′ in the fibre of π.

z'

z"

π

π

∼

Figure (6.1). A zig-zag

These line segments have natural parametrizations, defined up to an affine change
of parameter t → at+ b. Up to a time translation, the parametrization is therefore
uniquely determined by the time interval, which can be taken to be 0 ≤ t ≤ 1,
although this is immaterial here. We shall use these zig–zag paths as elementary
paths in the formal construction of the path integral operators outlined above.
To complete their definition as operators on wave functions we add some remarks
concerning transport along zig–zags.

6.2 Zig–zag rectangles and generating function. Let z′, z′′ be a pair of
points in Z. By a zig–zag rectangle [z′z′′] we mean any parametrized rectangle {ztt̃|
0 ≤ t,t̃ ≤ 1} in Z with sides t = 0 and1, t̃ = 0, 1 in the fibres of π and π̃ and with
z′, z′′ as two opposite vertices z00, z11. For example, choose curves {xt} from π(z′)
to π(z′′) and {x̃t̃} from π̃(z′) to π̃(z′′) and take ztt̃ ↔ (xt, x̃t̃). Let

A(z′′, z′) = exp[
∫
[z′z′′]

σ].

Since σ is closed and vanishes on the fibres of π and π̃, the integral depends only
on (z′′, z′). For any fixed z0 ∈ Z one has

σ = ∂∂̃logA(z0, z)(6.1)
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where d = ∂ + ∂̃ is the splitting of the exterior derivatives provided by π× π̃ : Z →
R× R̃. This means that the function

logA(z0, z) =
∫
[z0z]

σ

considered as function of (x, x̃) = (π(z), π̃(z)) is a generating function for the
Lagrangian fibrations π and π̃ [Woodhouse, 1991 §6.9].
The formula (6.1) provides a construction of connection 1–forms for σ. The simplest
are −∂logA(z0, z) and ∂̃logA(z0, z), and from these one can built

α = −∂logΠ + ∂̃logΠ̃

where Π =
∏

A(zk, z)µk , Π̃ =
∏

A(z̃k̃, z)
µ̃k̃ , the products run over any finite set

{zk}, {z̃k̃} of points in Z, and the complex coefficients are subject to
∑

µk+µ̃k = 1.
The transport along a zig–zag z′ → z∗ → z′′ in the gauge α is

F (z′′, z′) = exp[
∫ z∗

z′
+

∫ z′′

z∗
α].

On the first segment only the first component of α contributes and on the second
segment only the second component. The integral is

F (z′′, z′) =
Π̃(z′′)Π(z∗)
Π̃(z∗)Π(z′)

.(6.2)

6.3 Zig–zag triangles. Let γ = {z∗t | 0 ≤ t ≤ 1} be a (parametrized) path in
Z, {x∗

t } and {x̃∗
t } its image in R and R̃. Let ztt̃ ↔ (x∗

t , x̃
∗
t̃
) under Z → R × R̃.

Then {ztt̃ | 0 ≤ t, t̃ ≤ 1} is a rectangle in Z whose vertical and horizontal sections
t =const and t̃ =const lie in the fibres of π and π̃, and whose diagonal t = t̃ is the
path γ. By the zig–zag triangle over γ we mean the parametrized triangle

∆ = {ztt̃ : 0 ≤ t, t̃ ≤ 1 and t ≥ t̃}.
The boundary ∂∆ of ∆ consists of γ, followed by the zig–zag β from the initial
point of γ to its endpoint, but traversed in the opposite direction. Thus we write

∂∆ = γ − β.

We recall that a connection 1–form α satisfies dα = σ. Hence by Stokes’s theorem∫
∆

σ =
∫

γ−β

α,

which implies that the transport along a path γ is related to the transport along
the zig–zag β over γ by the relation

expι[
∫

γ

α] = expι[
∫

β

α] exp[
∫
∆

σ].

This relation between the transport along an arbitrary path γ and the transport
along the zig–zag joining its endpoints will be useful later.

6.4 Free propagators. Given z′, z′′ in Z, define the approximate free propagator

F (z′′, z′) = expι[
∫ z′′

z′
α] : Φz′ → Φz′′
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to be the transport along the zig–zag from z′ to z′′. As far as this definition is
concerned, the straight line segments z → z∗ and z∗ → z in the fibres of π̃ and
π could be replaced by any paths between these points, since the transport within
these fibres depends only on the endpoints. As a function of (z′′, z′), the kernel is
constant along the fibres of π × π̃, i.e.

F (z′′, z′) belongs to H(Φ ⊗ Φ∗, π × π̃),(6.3)

as it should. The formula (6.2) gives an expression for it in terms of generating
functions.

The free propagator, denoted E(z′′, z′), is defined as a path integral:

E(z′′, z′) =
∫

z.∈Γ
expι[

∫
t

α(dzt)].

By definition, this means that

E(z′′, z′) = lim
N→∞

∫
zk∈Γ

expι[
N∑

k=1

∫ zk

zk−1

α].

The sum of the integrals in the exponent can be written as the integral along the
composite of the zig–zags z′ → z1 → · · · → zN−1 → z′′, which will be called the
zig–zag path through these points. The zig–zag paths will of course not lie in Γ.

The free propagator is necessarily a projection in the sense that E ◦ E = E. If the
approximate propagator F is itself a projection then E = F and we say that the
approximate propagator F is exact. In that case there is no problem of convergence
of FN , since the limit collapses, but E can then hardly be considered a genuine
path integral operator.

6.5 The propagator for an arbitrary Hamiltonian. Let H be a smooth
function on Z, X the corresponding Hamiltonian vector field. For any z′, z′′ and
any ε (which may be considered as another variable) we define the approximate
propagator for X as the linear transformation Φz′ → Φz′′

expι[
∫ z′′t′′

z′t′
α(dz) −H(z′′)dt]

where the integral is along the zig–zag path z′ → exp(−εX)z′′ → z′′ of total
duration t′′ − t′ = ε. The value of H has been frozen at the endpoint and the
Hamiltonian vector field X enters into the definition of the path. This is artificial
in general, since the path integral involves points zk−1, zk, which may be arbitrarily
far apart, but is appropriate in the special case considered below. We shall return
to this point later. We now define the propagator K(expX ; z′′, z′) for X along Γ:

6.6 Definition II. K(expX ; z′′, z′) :=

lim
N→∞

∫
zk∈Γ

expι[
N∑

k=1

∫ zktk

zk−1tk−1

α(dz) −H(zk)dt].

The exponential term is the composite of the approximate propagators for X with
ε = tk − tk−1 = 1/N and Hk = H(zk). The outer integral is over (N − 1)–tuples
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(z1, · · · , zN−1) from Γ, taken with respect to a normalized Liouville form σn/C.
The formula is written as a path integral,

K(expX ; z′′, z′) =
∫

z.∈Γ
expι[

∫ 1

t=0

α(dzt) −H(zt)dt].

But this notation has to be interpreted with care, again because H is frozen at the
endpoint zk of each approximating path zk−1 → exp(−εX)zk → zk.

6.7 Hamiltonians leaving the fibrations invariant. Assume that exp(tX)
leaves the fibrations π and π̃ invariant, in the sense that exp(tX) maps fibres to
fibres. Then

K(expX) = A(expX) ◦ E(6.3)

as operators.

This is seen as follows. By definition, E is the limit of the N–th composition power
FN of the approximate free kernel. The invariance of the fibrations under exp(tX)
implies that A(expX) ◦ F = F ◦A(expX) and therefore

A(expX) ◦ E ≈ A(expX) ◦ FN = A(expX/N) ◦ FN .

In the notation of (6.4) the kernel of A(expX) ◦ E is obtained by applying the
operator A(expX) to F (zk, zk−1) as function of zk. This means that the kernel of
K(expX) is given by the same path integral that of A(expX)◦E but with different
elementary paths: for A(expX) ◦E the integration from zk−1 to zk is taken along
the composites of the zig–zags zk−1 → exp(−εX)zk and β : exp(−εX)zk → zk;
for K(expX) the second zig–zag β is replaced by the trajectory γ = {exp(tX)zk |
−ε ≤ t ≤ 0}. The two path integrals therefore differ by the integral

∫
∆
σ over

the zig–zag triangle ∆ over γ. Because of the invariance of the fibrations under
exp(tX), this integral is independent of the choice of zk. Hence we can replace zk

by some fixed zo ∈ Γ. The integral
∫
∆
σ is a function of ε. Its leading term as

ε → 0 is the integral of σ over the triangle in the tangent space at zo spanned by
the components of the vector εX along the fibres of π and π̃ through zo. Therefore∫
∆

σ is O(ε2), independently of zk. The contribution of such terms to the sum in
the exponent of of the path integral for K(expX) is then NO(1/N2) and does not
contribute to the limit.

The formula (6.3) gives a realization of the propagators K(expX) = A(expX) ◦E
representing the canonical transformations exp(tX) which preserve the fibrations π,
π̃ by path integral operators. These are generally genuine path integral operators
in the sense that they are not equal to the approximate propagators, even if the
approximate free propagator itself is exact. Nevertheless, in the exact case the path–
integral formalism can be avoided for Hamiltonians leaving the fibrations invariant,
since the formula (6.3) gives the propagators directly.

6.8 Comparison of the two definitions. We compare the two definitions of
contour path integrals, but we restrict attention to the free propagators. Fix z′, z′′

in Γ and ε > 0. The two approximate free propagators are expι of

(I)
∫

γ

[α(żt)− 1
2ν

τ(żt, żt)dt] (II)
∫

β

α(żt)dt,

where γ a path on the holomorphic trajectory and β is the zig–zag from z′ to z′′,
both of parametrized on [0, ε], although the first integral is of course independent
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of the parametrization. In accordance with Feynman’s remark quoted above we
replace the holomorphic trajectory of

∫
α − τ/2ν by that of τ , which we call the

holomorphic geodesic. Thus γ = {zt | 0 ≤ t ≤ ε} will now denote a path on this
holomorphic geodesic.

Let z̄ be any point on γ. The tangent vector of γ at z̄ is of the form (1/ε)v̄ where v̄
is independent of ν and ε, but does depend on z′, z′′. We approximate the zig–zag
triangle in Z by the triangle in the tangent space at z̄ with base v̄ = v+ ṽ and sides
v, ṽ in the fibres of π and π̃. Since σ(v, ṽ) = τ(v̄, v̄) this gives∫

∆

σ =
1
2
τ(v̄, v̄) + o(δ2).

where o(δ2) denotes a function which vanishes to order > 2 along z′ = z′′. On the
other hand ∫

γ

τ(żt, żt)dt =
1
ε
τ(v̄, v̄)

because τ(żt, żt) is constant along the complex geodesic, and γ has duration ε.
Hence ∫

∆

σ =
∫

γ

ε

2
τ(żt, żt)dt + o(δ2).

As in 6.3, Stokes’s theorem applied to ∂∆ = γ − β gives∫
γ

{α(żt)− 1
2ν

τ(żt, żt)dt} =
∫

β

α(żt)dt + o(δ2),(6.4)

where we have put ν = 1/ε. The free propagator according to Definition I is

lim
ν→∞ lim

ε→0

∫
zk∈Γ

expι[
N∑

k=1

{
∫

γk

α(żt) − 1
2ν

τ(żt, żt)dt}].

where in the nation introduced above, ε = 1/N and γ = γk, a path from zk−1 to zk

on the complex geodesic. We set ν = N , ε = 1/N and replace the double limit by
the limit as N → ∞. In view of (6.4), the last expression becomes

lim
N→∞

∫
zk∈Γ

expι[
N∑

k=1

{
∫

βk

α(żt)dt} + o(δ2k)](6.5)

If we drop the terms o(δ2k) from this limit, we get exactly the free propagator
according to Definition II,

lim
N→∞

∫
zk∈Γ

expι[
N∑

k=1

{
∫

βk

α(żt)dt](6.6)

The last step is crucial, and I do not know how to justify it. A similar step occurs
in Feynman’s discussion [1948, p.375]. The justification given there amounts to a
stationary phase argument to the effect that terms vanishing to order > 2 along
zk−1 = zk may be dropped. This is Feynman’s rule that “xi+1 − xi is of order
ε1/2“. The analogous statement for the Wiener measure is a theorem concerning
stochastic integrals.

In the context of the Wiener integral on a Riemannian manifold, the path integral
of Definition I represents the kernel for exp(ν∆) where ∆ is the Laplace operator
on L2 functions on Γ (Feynman–Kac Formula). Since ∆ ≤ 0, the limit as ν → +∞
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gives the kernel for the projection onto the space of L2 harmonics. This is the
McKean–Singer argument, which, adapted to ∆ acting on forms rather than on
functions, is the starting point of one approach to the Index Theorem [McKean
and Singer, 1967].

7. Path integral representations of SL(2,R)

The integral (I) in the introduction now has a meaning (and in fact two). We
shall examine some simple examples, namely the coadjoint orbits for SL(2,C), to
see how it can be evaluated and what its relation to (II) might be. In these ex-
amples the Hamiltonians leave the fibrations π and π̃ invariant, and the strategy
will be to verify that the approximate free propagator is exact, so that the formula
K(expX) = A(expX) ◦ E of 6.7 applies. Throughout we let G = SL(2,C) and
g=sl(2,C), its Lie algebra. We shall specify certain contours of integration on G–
orbits in g∗ by conditions on their behaviour at infinity. For this reason we start
with some observations on certain completions of these orbits.

7.1 Coadjoint orbits. Let ĝ∗ = P (g∗ × C) be the projective completion of
g∗: the elements of ĝ∗ are of the form ξ/τ , ξ ∈ g∗, τ ∈ C, not both zero, with
the understanding that ξ′/τ ′ = ξ/τ if ξ′τ = ξτ ′. The space g∗ is embedded in ĝ∗

as elements of the form ξ/1; its complement is the plane at infinity, consisting of
elements ξ/0, and denoted g∞. It is naturally isomorphic with the projective space
Pg∗ ≈ CP

2 associated to the vector space g∗.

Whenever convenient, we identify g∗ and g by the form 〈X,Y 〉:= 1
2 tr(XY ), but we

continue to use the notation X for elements of g and ξ for elements of g∗. We write
q(ξ) = 1

2 tr(ξ
2) for the invariant quadratic form on g∗. For a fixed λ ∈ C, we have

quadric surfaces in g and in ĝ∗:

Ωλ = {ξ ∈ g∗ | q(ξ) = λ2} Ω̂λ = {ξ/τ ∈ ĝ∗ | q(ξ) = (τλ)2}.
If λ �= 0 then Ωλ is an orbit of G in g∗ for the coadjoint action g · ξ = ξ◦Ad(g−1);
if λ = 0 then Ωλ degenerates into the nilpotent cone Ω0. All Ωλ intersect at
infinity in a variety Ω∞ = Ω̂λ

⋂
g∞, isomorphic with the projective nilpotent variety

PΩ0 = {q(ξ) = 0} in Pg∗.

There is another way of looking at ĝ∗ which will be useful. Let M be the space of
complex 2×2 matrices. The inclusion g→ M gives a projection M∗ → g∗, ζ → ζ | g,
which extends to a G–equivariant isomorphism M∗ ≈→ g∗×C, ζ → (ζ | g, λ−1tr(ζ))
for any λ �= 0. It induces an isomorphism of projective spaces, which sends the
projective variety Ẑ of of rank one matrices in PM∗ onto Ωλ:

pλ : PM∗ ≈→ ĝ∗, Ẑ → Ω̂λ.

Whenever convenient we identify M∗ with M by the form 1
2 tr(XY ) and both with

C2 ⊗ (C2)∗ so that x ⊗ y becomes the linear transformation v → 〈v, y〉x of C2,
〈v, y〉 being the natural pairing. Then Ẑ = P{x ⊗ y | x �= 0, y �= 0} and the map
pλ : Ẑ → Ω̂λ is given by

ξ/τ = λ(x ⊗ y − 〈x, y〉t)/〈x, y〉(7.1)

where t = 1
2 (e⊗ ẽ+ f ⊗ f̃) for any pair of dual bases e, f and ẽ, f̃ and the notation

ξ/τ for elements of ĝ∗ has been used.
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In terms of the structure of the group G, the situation is this. The natural action of
G on C2 induces an action on the flag manifold (Riemann sphere) R = P (C2) and
on the dual projective space R̃ = P (C2)∗. Let R∞ denote the subvariety of points
(x, y) in R × R̃where 〈x, y〉 = 0, another copy of CP1. There is a G–equivariant
isomorphism

πλ × π̃λ : Ω̂λ → R× R̃

given by (7.1) where (x, y) now represents a point of R× R̃. On the part at infinity
in Ω̂λ this map induces the isomorphism Ω∞ → R∞, x ⊗ y → x ⊗ y/0 and on the
finite part {〈x, y〉 �= 0} it induces the isomorphism

Ωλ → R× R̃−R∞, ξ:=λ
(x⊗ y

〈x, y〉 − t
)
→ (x, y).

We shall consider Z ⊂ Ẑ together with the maps pλ : Ẑ → Ω̂λ, and π × π̃ : Ẑ →
R×R̃ as a standard orbit for the family of orbits Ωλ, λ �= 0, recorded in the diagram

Ẑ
pλ−→ Ω̂λ

π × π̃ ↘ ↙ πλ × π̃λ

R× R̃

The particular realization of Z is not important; what is important is that it come
equipped with isomorphisms pλ and π × π̃ which fit into this diagram.

7.2 Symplectic form and connection form. As a coadjoint orbit, Ωλ carries
a natural symplectic form σλ defined by σλ(X · ξ, Y · ξ) = 〈ξ, [X,Y ]〉 where X ∈ g
acts by the coadjoint action X · ξ = −ad(X)∗ξ on ξ ∈ Ωλ. The pull–back of σλ by
pλ : Z → Ωλ can be written as σλ = λσ where σ is a symplectic form on Z. The
map Ẑ → R × R̃ provides Lagrangian fibrations π : Ẑ → R and π̃ : Ẑ → R̃ for σ.
In the notation of 6.2, the exponential integral A(z0, z) of σ over the the zig–zag
rectangle [z, z0] is

A(z0, z) =
〈x0, x̃〉〈x0, x̃0〉
〈x, x̃〉〈x, x̃0〉

where (x, x̃;x0, x̃0) corresponds to (z, z0) under Ẑ → R × R̃. This is the classical
cross–ratio of the four image points in CP1 if we identify identify C2 and (C2)∗ so
that the pairing 〈x, x̃〉 becomes the G = SL(2,C) invariant form 〈x, x̃〉 = x1x̃2−x2x̃1
on C2. The form σλ is given by the formula:

σλ = ∂∂̃logAλ(z0, z).

(We keep the parameter λ in sight, for the moment). As mentioned in 6.2, this
formula provides a construction of connection 1–forms α for σ. A simple choice is

α = ∂logA−λ(z0, z).

The approximate free propagator then is

F (z′′, z′) = A−λ(z0, z∗〉Aλ(z0, z′)

where z∗ is the corner of the zig–zag z′ → z∗ → z′′: under Ẑ → R × R̃, z′, z∗, z′′

correspond to (x′, x̃′), (x′′, x̃′), (x′′, x̃′′) respectively.
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7.3 Contour integrals. We now bring in a contour Γ on Z. We recall the
significance of Γ for path integral operators comes from the composition rule

F ′′ ◦ F ′(z′′, z′) =
∫

z∈Γ
F ′′(z′′, z)F ′(z, z′)C−1σ(dz).

We shall take for F ′ and F ′′ the approximate free propagator F according to Def-
inition II, in the gauge provided by the connection form α above. We shall write
such integrals as

I =
∫
Γ

Ψ

where Ψ = F (z′′, z)F (z, z′)C−1σ(dz). In order to make sense of the integral I we
shall impose three conditions on the contour Γ:

(a) The line bundle Φ is globally defined along Γ.
(b) Γ is a relative cycle on Z ⊂ Ẑ, i.e. ∂Γ ⊂ Z∞.
(c) ∂Γ is invariant under a real form GRof G.

The real form GR will remain fixed throughout. Up to conjugacy, there are only
two choices for GR, namely GR = SL(2,R) or GR = SU(2). In accordance with its
interpretation as a kernel, we shall consider the integral I as a generalized function
in the variables z′ and z′′. As its space of test function we take Fourier transforms
of compactly supported C∞ functions on the Lie algebra gR of GR. These test
functions are naturally functions on g∗, and can therefore be integrated against
generalized functions on an orbit Ωλ in g∗.

The integrals I may further have to be interpreted by regularization procedure.
For the examples we have in mind the following will be sufficient. We assume that
the integrand Ψ exists for fixed z as a generalized function of (z′′, z′) depending on
the parameter λ. If the integral exists in the same sense, then we take this as its
definition; we extend the definition by analytic continuation in λ whenever possible.

7.4 Invariance properties and projection formula. We shall be interested
in contours Γ for which the integral I defines a G–invariant functional on the
integrands Ψ, in so far as this makes sense. To discuss the invariance properties of
the integral I as function of (z′′, z′) we shall assume that the integral I converges
pointwise in (z′′, z′) for suitable forms λ; it then represents a holomorphic functions
of these λ.

The function F (z′, z′′) ∈ Hom(Φz′ ,Φz′′) has the following invariance property under
the action of G:

F (gz′′, gz′) = A(g, z′′) ◦ F (z′′, z′) ◦A(g, z′)−1(7.2)

for (z′′, z′′, g) in a neighbourhood of Γ× Γ × {1} in Z × Z ×G. It follows that the
integrand Ψ(z′′, z′, dz) satisfies

Ψ(gz′′, gz′, gdz) = A(g, z′′) ◦ Ψ(z′′, z′, dz) ◦A(g, z′)−1

in the same sense. Consider the integral of both sides of this equation over z ∈ Γ.
If g ∈ G leaves ∂Γ ⊂ Z∞ invariant, then one can change variables z → g−1z on the
left–hand side and finds that∫

z∈g−1Γ

Ψ(gz′′, gz′, dz) = A(g, z′′) ◦
{∫

z∈Γ
Ψ(z′′, z′, dz)

}
◦A(g, z′)−1.
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This means that the integral I(z′′, z′) satisfies (7.2) as long as g ∈ G fixes ∂Γ and
remains in a neighbourhood of 1, which may depend on (z′′, z′). By condition (c)
on Γ, this applies to g ∈ GR, hence I satisfies (7.2) for g in a neighbourhood of 1 in
the real group GR; because of holomorphicity in then holds for g in a neighbourhood
of 1 in the complex group G as well.

The complement of R∞ in R × R̃ is a single G–orbit. It follows that on Z × Z
a function F (z′′, z′) which satisfies (7.2) and which is covariantly constant along
the fibres of π × π̃ is uniquely determined locally by its value at a single point.
This holds in particular for the integrals I and implies that for these integrands
and for connected contours we have I = CF were C is a constant, depending
holomorphically on the parameter λ. If C is non–zero, then we can take it to be
the constant entering into the definition of the composition rule and the discussion
above then shows that then I = F ◦F coincides with F . This amounts to what we
shall call the projection formula:

F ◦ F = F.(7.3)

So in this case the approximate free propagator F is exact. We can then apply the
general construction in 6.7 to elements of the Lie algebra gR of the real form GR of
G which fixes ∂Γ. The result is what we call a path integral representation of GR,
which associates to each X ∈ gR the kernel K(expX, z′′, z′) given by Definition II,
or equivalently by the formula (7.3). It corresponds to a group representation in the
usual sense only if the kernels K(expX ;z′′, z′) define genuine integral operators on
the state space H(Z,Φ,π), which need not be the case, even if the wave functions
are subject to further restrictions, e.g. L2.

7.5 The contours. We now examine the contours Γ. We recall that ∂Γ ⊂
R∞ ≈ CP

1 must be invariant by a real form GR of G = SL(2,C). We shall take
GR =SL(2,R). To get an overview of the possibilities for Γ it is useful to consider
the Lagrangian fibration π : Z → R. It is G–equivariant and its fibres are one–
dimensional affine spaces. This fibration admits a continuous section

R → Z, x → z =
x⊗ x∗

〈x, x∗〉 − t

here x → x∗, C2 → (C2)∗ is the conjugate–linear map for which 〈x, x∗〉 = x1x̄1 +
x2x̄2 is the positive–definite SU(2)–invariant form. As an affine bundle with a
section, the fibration π : Z → R can be considered a vector bundle over R, namely
the cotangent bundle R∗ → R. Thus we can identify Z ≈ R∗. (This identification
is only topological and not holomorphic nor G–equivariant.)

The group GR = SL(2,R) has three orbits on the Riemann sphere R: the upper
hemisphere, the lower hemisphere and the equator. Let S be the subset of R∗

consisting of cotangent vectors orthogonal to these orbits; it is the union of the
conormal bundles of the GR–orbits, a real analytic variety, the conormal variety
or the GR–action on R. The map pλ : Z → Ωλ maps S to the orbit Ωλ, which
degenerates to the nilpotent cone Ω0 as λ → 0. The limit map p0 : Z → Ω0 is still
well–defined.
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Figure (7.1). The variety S and its degeneration

The condition that ∂Γ ⊂ Z∞ be invariant under GR means that Γ has to asymp-
totically approach the conormal variety S. It may then be deformed into a cycle
which actually lies on S and then represents an element of the top homology group
H2(S) of 2–cycles with arbitrary support. Four such cycles are shown below.

Figure (7.2). Four cycles on S : Γ0 = Γ+ + Γ− + ∆.

(For more on the variety S and its homology, see [Rossmann, 1994], from where the
pictures are taken.) We shall discuss the path integral representations correspond-
ing to these cycles. For that purpose we shall specify equivalent cycles directly on
R × R̃ − R∞ ≈ Z, rather than on the variety S. We also replace SL(2,R) by its
conjugate SU(1, 1), when this is more convenient.

7.6 Coordinate formulas. To work out the integrals we need coordinates. We
introduce linear coordinates (x1, x2) on C2 and (x̃1, x̃2) on (C2)∗ so that the pairing
becomes x1x̃2 − x2x̃1, and we use x = x2/x1,and x̃ = x̃2/x̃1 as coordinates on R

and R̃. We consider (x, x̃) as coordinates on Z and Ωλ by the maps Z, Ωλ → R×R̃.
The symplectic form on Ωλ is then

σλ =
λdx ∧ dx̃

(1 − xx̃)2
.

In order to write σλ in the form ∂∂̃logA(z0, z) we choose a base–point z0 for Z,
corresponding to a point (x0, x̃0) in R × R̃, say with coordinates (x, x̃) = (0, 0).
We use the constructions and the notation of 6.2. The function A, the symplectic
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2-form σλ, and the gauge 1-form αλ are

A(z0, z) = (1 − xx̃)−λ, σλ = ∂∂̃log(1 − xx̃)−λ, α = ∂log(1 − xx̃)λ.

The approximate free propagator according to Definition II is

F (z′′, z′) = (1 − x′′x̃′)λ(1 − x′x̃′)−λ.

The integral I = F ◦ F to be evaluated is

I = (1 − x′x̃′)−λ

∫
Γ

(1 − x′′x̃)λ(1 − xx̃)−λ−2(1 − xx̃′)λ dx ∧ dx̃

7.7 Evaluation of the integral. We consider separately the integral I over the
contours ∆, Γ±,Γ0.

(A) ∆ = {z = (x, x̃) ∈ Z | x̃ = −x̄}. In this case ∂∆ = 0 hence trivially invariant
under any real form of G. The cycle ∆ itself is only SU(2)–invariant. A quantum
line bundle with connection exists globally on ∆ iff λ ∈ Z, is then unique, and
extends to all of Z. The locally defined transformations A(expX), X ∈ sl(2,C),
induce a globally defined action of SL(2,C) on this line bundle. The integral I
converges pointwise in (z′′, z′) for λ + 1 > 0. Because of the invariance property
it suffices to take (z′′, z′) = (z0, z0), and one arrives the value I = CF with C =
π/(λ + 1). Alternatively, the integral I itself can be evaluated directly (e.g. by
power series expansion of the terms (· · · )λ), which leads to the same result. If
λ = 0, 1, 2,· · · then the path integral representation of GR gives a representation
in the usual sense and we get a realization of the finite–dimensional irreducible
representations of SL(2,C) by path integral operators.

(B) Γ± = {z = (x, x̃) ∈ Z | x̃ = x̄, ±(1 − xx̄) > 0}. In this case ∂Γ± is the circle
{(x, x̄) | xx̄ = 1} in P ≈ CP

1; it is invariant under GR = SU(1, 1), which leaves Γ±
itself invariant. A quantum line bundle with connection exists globally on Γ± for all
λ ∈ C, and is unique. The locally defined transformations A(expX), X ∈su(1, 1),
induce a globally defined action of the universal covering group S̃U(1, 1) on this
line bundle, which passes to SU(1, 1) itself if λ ∈ Z. The integral I converges for
λ+ 1 < 0; as above one finds the value I = CF with C = ±π/(λ+ 1). If λ+ 1 < 0
then the path integral representation of GR gives a representation in the usual sense
of the universal covering group S̃U(1, 1) and we get a realization of the “discrete“
series of S̃U(1, 1) by path integral operators; for integral λ+1 = −1,−2, · · · we get
the discrete series of SU(1, 1) itself.

(C) Γ0 = {z = (x, x̃) ∈ CP
1 × CP

1 | x, x̃ ∈ R, 1 − xx̃ �= 0}. In this case
∂Γ0 = {(x, x−1) | x ∈ RP1} is a circle on R∞ ≈ CP

1; it is invariant under
GR =SL(2,R), which leaves Γ0 itself invariant. In this case a quantum line bundle
with connection exists globally on Γ0 for all λ ∈ C, but is not unique: for a given
λ ∈ C, the inequivalent quantum line bundles on Γ correspond to complex–valued
characters χ of the stabilizer of a base–point z0 on Γ0 in the universal covering
group S̃L(2,R). The locally defined transformations A(expX), X ∈sl(2,R), induce
a globally defined action of S̃L(2,R) on this line bundle, which passes to SL(2,R)
itself if the character χ passes to the stabilizer of z0 in SL(2,R). It is then of the
form sgnε(t) | t |λ, as we shall now assume.
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The integral I over Γ = Γ0 does not converge pointwise in (z′′, z′), but can be
evaluated as a generalized function as follows. Set y = x̃−1. Then I becomes

I ′ = (y′ − x′)−λ

∫
Γ0

(y − x′′)λ(y − x)−λ−2(y′ − x)λ dx ∧ dy.

The integrand along Γ0 is specified by interpreting the three factors (yj)µj in it
as sgnε(yj) | yj |µj according to the choice of the line bundle. In these factors,
yj = yj(x, y) is an affine function of the integration variables (x, y) with with
coefficients depending on (x′, y′;x′′, y′′). For (yj)µj to be considered as a generalized
function we have to require that λ /∈ Z. Interpreted in this way the integral can be
evaluated by the duality theorem of Gel’fand and Graev [1987]. For this purpose
it is preferable to rewrite the integral I ′ in homogeneous coordinates (x, y, z) with
Γ0 given by {z = 1}:

I ′′ = (y′ − x′)−λ

∫
{z=1}

(z)−λ(zy − x′′)λ(y − x)−λ−2(zy′ − x)λ (zdx ∧ dy).

The integrand now contains four factors (xj)µj in which xj = xj(x, y, z) is a linear
form in (x, y, z). According to [Gel’fand and Graev, 1987], the value of the integral
is the product of the Fourier transforms of the (xj)µj as generalized functions of one
variable, evaluated at any point (ξj) on the line

∑
xj(x, y, z)ξj ≡ 0 in the dual space

of the (xj). According to this recipe one finds the value C(y′−x′′)λ for the integral
over {z = 1} where C equals

∏
sin(πµi/2)Γ(µi + 1) or

∏
cos(πµj/2)Γ(µj + 1)

depending on the ε in sgnε(t) | t |λ, apart from a non–zero constant. We find

I ′′ = C(y′ − x′)−λ(y′ − x′′)λ

which is just CF (z′′, z′). Thus we again have the projection formula F ◦ F = F .
For λ /∈ Z, the path integral representation of GR gives a representation in the usual
sense and we get a realization of the principal series representations of SL(2,R) by
path integral operators.

In all of the cases considered, the representations by path integral operators are
realized by means of the projection formula (7.3), based on the Definition II of
path integrals. For the cases (A) and (B) the path integrals have also been worked
out according to Definition I, see [Daubechies and Klauder 1985; Klauder, 1988].
The results agree with those above.

It may be appropriate to add a comment on path integrals in general, since they
are often regarded with suspicion, and rightly so. Their definition along the lines
of Feynman [1948], a version of which is explained in section 4, is in principle
quite acceptable; but the question then arises whether these limits exist and in
what sense. This is a very difficult problem, and it may indeed be the case that
other definitions preferable to deal with it, for example along the lines of stochastic
integrals for the Wiener measure. In simple cases as above, however, where the
approximate propagator is exact, the question of convergence does not arise, or can
be dealt with directly.

7.8 Characters. We can now state in precise fashion the character formula
(II) of the introduction. It says that whenever the path–integral representation
corresponding to one of the contours Γ above gives a genuine representation of GR,
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then its character is given by

trK(expX) = j−1/2(X)
∫

pλ(Γ)

e〈ξ,X〉 σ(dξ)(7.4)

where j(X) = det[sinh ad(X/2)/ad(X/2)]. The formula is understood as an iden-
tity of distributions in the variable X ∈ gR, representing the group element exp(X)
of GR in exponential coordinates. (Thus (7.4) determines the character only on
the image of exp.) Such a formula is valid for any irreducible character of a semi-
simple real Lie group [Rossmann, 1990]. The proof of the formula (7.4) in general
makes no use of path integral operators, but is based on Harish–Chandra’s theory
of characters.

Homology relations between contours become relations between characters. For
example, the relation Γ0 ∼ Γ+ + Γ− + ∆, visible in Figure 2, becomes the familiar
decomposition formula for principal series characters. It holds as a character iden-
tity on the image of the exponential map whenever all four contours correspond
to genuine representations. The homology relation between the contours is best
understood as a monodromy relation in the sense of Picard and Lefschetz [Ross-
mann, 1994]. By means of the formula (7.4) it translates directly into a relation
between characters, but it might be interesting to see this relation in the kernels of
the representations themselves, presumably through contour path integrals.

Of course it now transpires that there still is no real explanation of the relation
between formulas (I) and (II) in the introduction. My excuse is that one first has
to make sense out of (I) for contour integrals. There also remains the question
of how to extend (I) to kernels operating in cohomology, which is not addressed
here at all. It seems that the passage from (I) to (II), though difficult, should still
proceed by a version of the Localization Formula, adapted to contour integrals,
perhaps along the lines of [Rossmann, 1991]. Needless to say, apart from the the
case when the form σ is purely imaginary on the contour Γ, questions of unitarity
of path integral operators remain entirely unexplored.

7.9 Notes. Many examples of path integrals, in its various forms, can be found
in the literature. I mention only a few which are relevant to the discussion here.
Examples of constructions of representations by path integrals are discussed in
[Hashimoto et al., 1991]. Path integrals in the sense of Wiener integrals have been
studied by Daubechies and Klauder [1985] in a number of cases; see [Klauder, 1988]
for a survey. A different approach to representations via path integrals is that of
[Alekseev, 1989]. As mentioned in the introduction, the relation of path integrals to
the Index Theorem is discussed by Witten [1982] and Atiyah [1985] and is treated
in detail by Bismut [1984].
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