
2.5 LIE CORRESPONDENCE

2.5 The Lie Correspondence1

We shall prove in this section that the passage from a linear group to its Lie
algebra sets up a one-to-one correspondence between connected linear groups and
linear Lie algebras, the inverse being the passage from a linear Lie algebra to the
group generated by its exponentials. This is the essence of Lie Theory, as Lie must
have understood it, even though Lie’s conception was on the one hand broader,
in that he considered groups of transformations which were not necessarily linear,
but on the other hand less complete, in that he took a local point of view. The
global Lie correspondence is a refinement that is rather routine once the appropriate
topological notions are available. The version of the Lie correspondence stated
above follows from Satz 1 of Freudenthal (1941) and can be found in Bourbaki
(1960) in the context of general Lie groups.

The essence of the Lie correspondence, in turn, is the Campbell-Baker-Hausdorff
formula in its qualitative form, saying that in exponential coordinates the group
multiplication is given by a bracket series and therefore completely determined
by the Lie algebra, at least in a neighbourhood of the identity. (Actually, Lie
himself might object, if he could: he was not fond of any such algebraic formulation
of his theory, which he conceived of as being essentially geometric and analytic.
Even today the Lie correspondence is often established without Campbell-Baker-
Hausdorff; but the principle that “the Lie algebra determines the group“ is certainly
most simply and forcefully expressed by this formula.)

To succinctly state the Lie correspondence we use the following notation. The
Lie algebra of a linear group G will be denoted L(G) rather than g when it is
necessary to bring out its dependence on G. Furthermore, we shall use the char-
acterization of L(G) in terms of exp:

L(G) = {X ∈ M | exp τX ∈ G for all τ ∈ R}.
On the other hand, given a linear Lie algebra g, we denote by Γ (g) the linear group
generated by expg:

Γ (g) = {expX1 · expX2 · · · expXk|X1,X2,· · · ,Xk ∈g}.
Γ (g) is simply called the linear group generated by g.

Theorem 1. (The Lie Correspondence). There is a one-to-one correspondence
between connected linear groups G and linear Lie algebras g given by

G ↔g
if

g= L(G) or equivalently G = Γ (g).

Proof Γ (L(G)) = G. This says that G is generated by expL(G), which is (d) of
Proposition 1, §2.4.

1This excerpt comes from my own manuscript, not the printed version. The formatting is
primitive, but it should be free of at least those typographical errors pointed out by A. Knapp in
his review.
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Proof g=L(Γ (g)). Let g be a linear Lie algebra. Then Γ (g) is connected because
any element expX1 expX2 · · · expXk of Γ (g) can be joined to 1 by the continuous
path exp τX1 exp τX2 · · · exp τXk, τ ∈ R.

g⊂L(Γ (g)) is clear since exp(τX) ∈ Γ (g) for all X ∈g. The point is to show
that L(Γ (g)) ⊂g. Let

U = {X ∈g| ‖ X ‖ < ε} and Ū = {X ∈g| ‖ X ‖≤ ε}
for small ε > 0. From Campbell-Baker-Hausdorff we know that the equation

expZ = expX expY
defines a map Z = C(X ,Y ) from Ū × Ū to a neighbourhood of 0 in g : C(X ,Y )
is the Campbell-Baker-Hausdorff series. We set V = C(U ,U), V̄ = C(Ū ,Ū). Thus
exp(V ) = exp(U) exp(U). Since C(X ,Y ) reduces to C(0,Y ) = Y for X = 0, the
map U →g, Y → C(X ,Y ) (X fixed) has a differential of rank = dimg at Y = 0, as
is obvious if X = 0 and remains true for X in a neighbourhood of 0 by continuity.
The Inverse Function Theorem implies that C(X ,U) is an open neighbourhood of
X in g provided X is sufficiently close to 0 in g (which we may assume to be the
case for X ∈ V̄ ) and provided the ε defining U is sufficiently small. This we assume
to be so.

The set V̄ = C(Ū ,Ū) is covered by the open sets C(X ,U), X ∈ V̄ (because
certainlyX ∈ C(X ,U)). Since V̄ is a compact subset of g (being a continuous image
of the compact set Ū × Ū) already finitely many C(X ,U) cover V̄ , say C(Xj ,U),
j = 1,· · · ,N, Xj ∈ V̄ . Write expXj = a′

ja
′′
j with a′

j , a′′
j ∈expŪ and apply exp to

V̄ ⊂ ⋃
j C(Xj , U) to find that

expŪexpŪ ⊂ ⋃
j a′

ja
′′
j expŪ ,

even with Ū replaced by U on the right. Let {bj : j = 1,2,· · · } be the (countable)
set of all products of finite sequences from {a′

j , a
′′
j : j = 1, · · · , N} and write (expŪ)k

for the set of k-fold products of elements of expŪ . From the above inclusion one
gets inductively that

(exp Ū)k ⊂ ⋃∞
j=1 bj(exp Ū)

for all k ≥ 1. Hence Γ (g) =
⋃ ∞

k=1(expŪ)k is expressible as a countable union
Γ (g) =

⋃∞
j=1 bj(exp Ū) (1)

for appropriate bj ∈ Γ (g). By Baire’s Covering Lemma (proved below; see also the
comment (b) thereafter):

some bjexpU contains a neighbourhood of some point ao in Γ (g). (2)
Say

bj expU ⊃ ao exp Ũ

where Ũ = {X̃ ∈L(Γ (g)) :‖ X̃ ‖ < ε̃} for some ε̃ > 0. Then
exp Ũ ⊂ c expU (3)

where c = a−1
o bj . This implies that for all X̃ ∈ Ũ

exp X̃ = c expX (4)
with X ∈ U . Furthermore, for ε and ε̃ sufficiently small, X ∈ U and X̃ ∈ Ũ will be
arbitrarily close to 0, hence c = exp(−X) exp(X̃) will be close to 1 and the unique
solution of (4) for X ∈ U is

X = log(c−1expX̃). (5)
Replacing X̃ by τX̃ with τ close to 0 in R we see that

exp τX̃ = c expX(τ)
with X̃(τ) ∈ Ũ depending differentiably on τ . Setting τ = 0 we find c = exp(−X(0))
and therefore
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exp τX̃ = exp(−X(0)) expX(τ).
Differentiating this equation at τ = 0 we obtain

X̃ = 1−exp−ad(X(0))
ad(X(0)) X ′(0),

which lies in g since X(0), X ′(0) ∈g and g is a Lie algebra. Thus the neighbourhood
Ũ of 0 in L(Γ (g)) is contained in g, hence L(Γ (g)) ⊂g as required.

It remains to show that (1) implies (2). This will follow from the following
general lemma, which will be useful more than once.

Lemma 2: Baire’s Covering Lemma. Let {Aj} be a countable family of
subsets of G that cover G:

G =
⋃∞

j=1 Aj . (6)
Then the closure Āj of some Aj contains an open subset of G.

Comments. (a) One could as well take the Aj to be closed in the first place.
(b) If Aj contains an open, dense subset of its closure Āj , as does a ball, for

example, then some Aj itself will have to contain an open subset of G.
(c) The lemma (and its proof) hold in more general spaces, in particular in

manifolds, to be defined later.

Proof (by contradiction). Assume no Āj contains an open subset of G. The part
of G outside of Ā1 is then certainly non-empty, hence (being open) contains a closed
coordinate-ball B̄1. For the same reason, the part of B1 outside of Ā2 contains a
closed coordinate-ball B̄2. Continuing in this way one gets a nested sequence of
closed coordinate-balls in G :

B̄1 ⊃ B̄2 ⊃ · · · .
The intersection of the B̄j is non−empty, but lies outside of all Āj , in contradiction
to (6). (To see that

⋂
j B̄j is non−empty, one may consider any limit point of

a sequence whose j−th term is taken from B̄j . Such a limit point always exists:
since B̄1 may identified with a ball in R

m, we are essentially dealing with a bounded
sequence in R

m.) QED.


