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The exponential map

1.1 Vector fields and one-parameter groups
of linear transformations1

A linear transformation X of the n-dimensional real or complex vector space E
can be thought of as a vector field: X associates to each point p in E, the vector
X(p). As an aid to one’s imagination one may think of a fluid in motion, so that
the velocity of the fluid particles passing through the point p is always X(p); the
vector field is then the current of the flow and the paths of the fluid particles
are the trajectories. Of course, this type of flow is very special, in that the
current X(p) at p is independent of time (stationary) and depends linearly on p.
Figure 1 shows the trajectories of such flows in the plane. (We shall see later,
that in appropriate linear coordinates every plane flow corresponds to exactly
one of these pictures.)

Consider the trajectory of the fluid particle that passes a certain point p0 at
time τ = τ0. If p(τ) is its position at time τ , then its velocity at this time is
p′(τ) = dp(τ)/dτ . Since the current at p(τ) is supposed to be X(p(τ)), one finds
that p(τ) satisfies the differential equation

p′(τ) = X(p(τ)) (1)

together with the initial condition

p(0) = p0. (2)

The solution of (1) and (2) may be obtained as follows. Try for p(τ) a power
series in τ :

p(τ) =
∞∑

k=0

τkpk

1Refer to the appendix to §1.1 for an explanation of the notation as necessary.
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2 1. The exponential map

with coefficients pk ∈ E to be determined. Ignoring convergence question for the
moment, eqn (1) becomes

∞∑
k=1

kτk−1pk =
∞∑

k=0

τkXk(pk),

which leads to
pk+1 =

1
k + 1

X(pk).

These equations determine pk inductively in terms of p0:

pk =
1
k!
X(p0).

We write the solution p(τ) thus found in the form

p(τ) = exp(τX)p0, (3)

where the exponential of a matrix X is defined by

expX =
∞∑

k=0

1
k!
Xk.

This exponential function is a fundamental concept, which underlies just
about everything to follow. First of all, the exponential series converges in norm
for all matrices X, and (3) represents a genuine solution of (1) and (2). (See
the appendix to this section.) We shall see momentarily that it is in fact the
only differentiable solution, but first we shall prove some basic properties of the
matrix exponential:
Proposition 1.
(a) For any matrix X,

d

dτ
exp τX = X exp(τX) = exp(τX)X,

and a(τ) = exp τX is the unique differentiable solution of

a′(τ) = Xa(τ), a(0) = 1

(and also of a′(τ) = a(τ)X, a(0) = 1).
(b) For any two commuting matrices X,Y ,

expX expY = exp(X + Y ).

(c) expX is invertible for any matrix X and

(expX)−1 = exp(−X).

(d) For any matrix X and scalars σ, τ

exp(σ + τ)X = exp(σX) exp(τX),

and a(τ) = exp τX is the unique differentiable solution of a(σ + τ) = a(σ)a(τ),
a(0) = 1, a′(0) = X.
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Proof.
(a) Because of the norm-convergence of the power series for exp τX (appendix),
we can differentiate it term-by-term:

d

dτ
(exp τX) =

d

dτ

∞∑
j=0

τ j

j!
Xj =

∞∑
j=1

τ j−1

(j − 1)!
Xj ,

and this is X exp(τX) = exp(τX)X, as one sees by factoring out X from this
series, either to the left or to the right.

To prove the second assertion of (a), assume a(τ) satisfies

a′(τ) = X(a(τ)), a(0) = 1.

Differentiating according to the rule (ab)′ = a′b+ ab′ (appendix) we get

d

dτ
(exp(−τX)a(τ)) =

(
d

dτ
exp−τX

)
a(τ) + exp(−τX)

(
d

dτ
a(τ)

)
= exp(−τX)(−X)a(τ) + exp(−τX)Xa(τ) = 0.

So exp(−τX)a(τ) is independent of τ , and equals 1 for τ = 0, hence it equals 1
identically. The assertion will now follow from (c).

(b) As for scalar series, the product of two norm-convergent matrix series can
be computed by forming all possible products of terms of the first series with
terms of the second and then summing in any order. If we apply this recipe to
expX expY , we get,

expX expY =


 ∞∑

j=0

Xj

j!


( ∞∑

k=0

Y k

k!

)
=

∞∑
j,k=0

XjY k

j!k!
. (4)

On the other hand, assuming X and Y commute, we can rearrange and collect
terms while expanding (1/m!)(X + Y )m to get

exp(X + Y ) =
∞∑

m=0

1
m!

(X + Y )m =
∞∑

m=0

1
m!


 ∑

j+k=m

m!
j!k!

XjY k


 =

∞∑
j,k=0

XjY k

j!k!
.

(5)
Comparison of (4) and (5) gives (b).

(c) This follows from (b) with Y = −X.
(d) The first assertion comes from (b) with X replaced by σX and Y by τX.

To prove the second assertion, assume a(τ) has the indicated property. Then

a′(τ) =
d

dσ
a(τ + σ)

∣∣∣∣
σ=0

= a(τ)
d

dσ
a(σ)

∣∣∣∣
σ=0

= a(τ)X, (6)

and the assertion follows from the second part of (a). QED
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Remark 2. For (b) it is essential that X and Y commute. In fact, the following
statements are equivalent:

(a) X and Y commute.

(b) expσX and exp τY commute for all scalars σ, τ .

(c) exp(σX + τY ) = exp(σX) exp(τY ) for all scalars σ, τ . (QED)

It is now easy to see that p′(τ) = X(p(τ)) and p(0) = p0 implies p(τ) =
exp(τX)p0 : that p(τ) = exp(τX)p0 satisfies p′(τ) = X(p(τ)) and p(0) = p0 is
clear from part (a) of the proposition; and the uniqueness of this solution is seen
by differentiating exp(−τX)p(τ) as in the proof of the uniqueness of (a).

The properties of the matrix exponential summarized in the proposition are
of basic importance. Parts (c) and (d) may be rephrased by saying that, for
fixed X, the map τ → exp τX is a homomorphism of the group of scalars under
addition (R or C) into the general linear group GL(E) of all invertible linear
transformations of E. This map τ → exp τX is called the one-parameter group
generated by X, even though it is a group homomorphism rather than a group.

The group property exp(σX) exp(τX) = exp(σ + τ)X of exp is intimately
related to the stationary property of flow in the physical picture: it may be
interpreted as saying that two fluid particles passing through the same point at
different times will travel along the same path, passing through the same points,
after equal time intervals.

There is another simple property of exp that is frequently used:
Proposition 3. For any matrix X and any invertible matrix a,

a(expX)a−1 = exp(aXa−1).

Proof.

a exp(X)a−1 = a

( ∞∑
k=0

Xk

k!

)
a−1 =

∞∑
k=0

(aXa−1)k

k!
= exp(aXa−1).

QED

Incidentally, the property of exp expressed by the proposition is shared by any
convergent matrix-power series. It only relies on the fact that the conjugation
operation X → aXa−1 in the matrix space M = L(E) is linear and preserves
product of matrices:

a(αX + βY )a−1 = α(aXa−1) + β(aY a−1),

a(XY )a−1 = (aXa−1)(aY a−1).

Proposition 3 is often useful for computing matrix exponentials. For example,
if X is diagonalizable, then X = aY a−1, where Y is the diagonal, and expX =
a(expY )a−1. The exponential of a diagonal matrix is easy to compute:

exp



λ1

. . .
λn


 =

∞∑
k=0

1
k!



λk

1
. . .

λk
n


 =



eλ1

. . .
eλn


 .
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Example 4 (Exponential of 2 × 2 matrices).

(i) Every real 2 × 2 matrix is conjugate to exactly one of the following types
with α, β ∈ R, β �= 0.

(a) Elliptic: α
[
1 0
0 1

]
+ β

[
0 −1
1 0

]
. (b) Hyperbolic: α

[
1 0
0 1

]
+ β

[
0 1
1 0

]
.

(c) Parabolic: α
[
1 0
0 1

]
+ β

[
0 0
1 0

]
. (d) Scalar: α

[
1 0
0 1

]
.

(ii) The matrices X given above in (a)–(d) generate the following one-
parameter groups exp τX.

(a) Elliptic: eατ

[
cosβτ − sinβτ
sinβτ cosβτ

]
. (b) Hyperbolic: eατ

[
coshβτ sinhβτ
sinhβτ coshβτ

]
.

(c) Parabolic: eατ

[
1 0
βτ 1

]
. (d) Scalar: eατ

[
1 0
0 1

]
.

The normal forms in (i) may be derived by manipulating with eigenvalues
and eigenvectors, which we omit. As a sample calculation with exp, we verify
the formulas in (ii).

(a)

exp
(
ατ

[
1 0
0 1

]
+ βτ

[
0 −1
1 0

])
= exp

(
ατ

[
1 0
0 1

])
exp

(
βτ

[
0 −1
1 0

])

because the matrices commute. The first factor is eατ

[
1 0
0 1

]
.

To evaluate the second one, note that
[
0 −1
1 0

]2k

= (−1)k
[
1 0
0 1

]
,

[
0 −1
1 0

]2k+1

= (−1)k
[
0 −1
1 0

]
.

Therefore,

exp
(
τβ

[
0 −1
1 0

])
=

∞∑
k=0

(−1)k(τβ)2k

(2k)!

[
1 0
0 1

]
+

∞∑
k=0

(−1)k(τβ)2k+1

(2k + 1!)

[
0 −1
1 0

]
.

Recognizing the sin and cos series one gets (a).

Comment. The exponential just calculated may also be found by diagonal-
ization: [

0 −1
1 0

]
=
[
1 −i
−i 1

]−1 [−i 0
0 i

] [
1 −i
−i 1

]
.

(b) This is similar.
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(c) In this case, one actually gets a finite sum for exp of the second (non-scalar)
summand in part (c) of (i):

exp τ
[
0 0
1 0

]
=
[
1 0
0 1

]
+ τ

[
0 0
1 0

]
.

This kind of thing will evidently, always happen if one takes the exponential
of a nilpotent matrix, i.e. a matrix X for which Xk = 0 for some k.

Using the formulas in (ii) one may verify that the pictures in Figure 1 corre-
spond to the normal forms of the vector fields in (i).

(a) scalar
� = 0

(b) parabolic
� = 0

(c) elliptic
� = 0, � > 0

(d) scalar
� > 0

(e) parabolic
� > 0

(f) elliptic
� > 0, � > 0

(g) hyperbolic
0 < � = �

(h) hyperbolic
0 < � < �

(i) hyperbolic
0 < � < �

Fig. 1
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Problems for §1.1
1. Prove Remark 2.

2. Verify the formula for exponential in the hyperbolic case given in Example 4:
(a) by power series calculation, (b) by diagonalization.

3. Show that exp τX is orthogonal (unitary) for all τ ∈ R if and only if X is
skew-symmetric (skew-Hermitian).

4. Let E = R
3, 0 �= x ∈ E, X be the linear transformation of p → (x× p) of

E (cross-product).

(a) Choose a right-handed orthonormal basis (e1, e2, e3) for E with e3 a
unit vector parallel to x. Show that

exp(X)e1 = cos ‖x‖e1 + sin ‖x‖e2,
exp(X)e2 = − sin ‖x‖e1 + cos ‖x‖e2,
exp(X)e3 = e3.

[For the purpose of this problem, an ordered orthonormal basis
(e1, e2, e3) for E may be defined to be right-handed, if it satisfies the
usual cross-product relation given by the ‘right-hand rule’, i.e.

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.

Any orthonormal basis can be ordered so that it becomes right–
handed. The above formula means that exp(X) is the right-handed
rotation around x with an angle ‖x‖.]

(b) Show that

exp(X) = 1 +
sin ‖x‖

‖x‖ (X) +
1 − cos ‖x‖

‖x‖2 (X)2.

5. Show:

exp



λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
...

...
0 0 0 · · · λ


 =



eλ eλ eλ/2! · · · eλ/(n− 1)!
0 eλ eλ · · · eλ/(n− 2)!
...

...
...

...
0 0 0 · · · eλ


 .

6. Let E be the space of all polynomials f(ξ) = c0 + c1ξ + · · · + cn−1ξ
n−1 of

degree ≤(n− 1) (some fixed n; the coefficients cj can be taken either real
or complex). The derivative Df(ξ) = f ′(ξ) defines a linear transformation
D of E. Show:

exp(τD)f(ξ) = f(ξ + τ).

This problem is related to the previous one. Explain how.
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7. Show that [−1 1
0 −1

]
is not the exponential of any real 2 × 2 matrix. [Suggestion: consider
eigenvalues and eigenvectors.]

8. An affine transformation of E is a transformation of the form p → ap+ b
where a ∈ M is linear and b ∈ E operates as a translation p → p + b.
An affine transformation may again be interpreted as a vector field on E,
called affine vector field, typically denoted by p → Xp + v where X ∈ M
and v ∈ E.

Think of E as embedded on the hyperplane E+ = {(p, 1)} in a space
E × R (or E × C) of one higher dimension by identifying p ∈ E with
p+ = (p, 1) ∈ E+. The vectors of E × R (or E × C) tangential to E+ are
those of the form (y, 0) [not (y, 1)] and a vector field on E+ associates to
each point (p, 1) such a vector (y, 0).

(a) Show: the affine transformation p → ap + b of E corresponds to the
restriction of E+ to the linear transformation[

a b
0 1

]

and the affine vector field p → Xp + v on E corresponds to the
restriction to E+ of the linear vector field[

X v
0 0

]
.

(b) Show: the affine vector field A : p → Xp + v generates the one-
parameter group of affine transformations

exp τA : p → exp(τX)p+
exp τX − 1

X
v.

[Start by explaining what this means.]

9. Let X ∈ M . Show:

(a) There is exactly one trajectory for the vector field X through each
point of E.

(b) If a ∈ GL(E) commutes with X, then the transformation E → E,
x → ax, permutes with the trajectories of X.

10. Let X ∈ M . Show:

(a) For p ∈ E, exp(τX)p = p for all τ ∈ R if and only if X(p) = 0. [In
words: p is a stationary point of the flow, if and only if there is no
current at p.]

(b) If limτ→∞ exp(τX)p0 = p∞ for some p0, p∞ ∈ E, then Xp∞ = 0.



Appendix to §1.1: Notation and backgroud 9

11. Two matrices P,Q are said to satisfy Heisenberg’s Commutation Relation if

PQ−QP = k1

for some scalar k. Show that this is the case, if and only if

expσP exp τQ = eστk exp τQ expσP

for all real σ, τ .

Appendix to §1.1: Notation and background

E denotes a n-dimensional real or complex vector space. Whenever necessary,
we shall assume that E comes equipped with a positive definite inner product,
written (x, y). We shall frequently have to express elements of E in terms of
their components with respect to some basis and linear transformations of E
in terms of their matrix coefficients. We could of course take E to be R

n or
C

n from the outset, but this is of no help when one needs to choose a basis
adapted to a particular situation rather than the standard basis. We therefore
use the following expedient. Having fixed a basis (sometimes without mentioning
this explicitly), we identify elements of E with (column) n-vectors and linear
transformations of E with n × n matrices without change of notation. In this
spirit, and in the interest of brevity, linear transformations of E are frequently
referred to as matrices. The space of all linear transformations of E is denoted
by M = L(E) (matrix space). Elements of M are typically denoted X, Y , or
Z when thought of as vector fields on E. Invertible linear transformations of
E are usually denoted a, b, or c; they form the general linear group GL(E) =
{a ∈ L(E)|det a �= 0} of all invertible linear transformations of E. GL(Rn) and
GL(Cn) are also denoted GL(n,R) and GL(n,C), respectively.

A basis {ek} for E gives a basis {Eij} for the matrix space M consisting of
the matrices Eij with ij-entry 1 and 0 elsewhere. If ek is orthonormal for the
inner product (x, y) on E, then Eij is orthonormal for the inner product (X,Y )
on M given by

(X,Y ) = tr(Y ∗X) =
∑
ij

Xij Ȳij .

The asterisk denotes the adjoint with respect to the inner product (x, y) :
(Xx, y) = (x,X∗y). If X is represented as a matrix relative to an orthonor-
mal basis, as above, then X∗ = X̄t (conjugate transpose).

The matrix norm in M is given by

‖X‖2 = (X,X).

In terms of the orthonormal basis {Eij}, ‖X‖2 is the usual sum of the squares
of the absolute values entries of matrix X:

‖X‖2 =
∑
ij

|Xij |2.
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It satisfies the inequalities

‖X + Y ‖ ≤ ‖X‖ + ‖Y ‖, (A.1)
‖XY ‖ ≤ ‖X‖‖Y ‖. (A.2)

The first of these is the familiar triangle inequality, which holds for any inner
product space. The second one follows from the Schwarz inequality as follows:
the ij-entry of XY , satisfies

∣∣∣∣∣
∑

k

XikYkj

∣∣∣∣∣
2

≤
(∑

l

|Xil|2
)(∑

l

|Ylj |2
)

the Schwarz Inequality. Summing over ij and taking the square root one
gets (A.2).

A real vector space may always be thought of as the real subspace of a
complex vector space of the same dimension, consisting of those vectors whose
components with respect to a fixed basis are real. Similarly for real matrices.
More formally, a real vector space E may be embedded in a complex vector space
E ⊕ iE whose elements are formal sums x+ iy, x, y ∈ E, added and multiplied
by complex scalars in the obvious way. E ⊕ iE is called the complexification of
E, denoted EC.

On the other hand, a complex vector space E may be considered as a real
vector space (of twice the dimension) by forgetting about multiplication by i.
The real and imaginary parts of the components of a vector in E relative to a
complex basis {ek} are the components of the vector with respect to the real
basis {ek, iek}.

A linear transformation of a real vector space E extends uniquely to a linear
transformation of its complexification EC. Both are represented by the same
matrix with respect to a real basis for E considered also as a complex basis
for EC. By the eigenvalues of a linear transformation of a real vector space
E, we always mean the eigenvalues of the corresponding transformation of EC

(i.e. we always allow complex eigenvalues, as is customary).
As real vector space, M may be identified with Mn(R) = R

n×n or, if E
is complex, with Mn(C) ≈ R

2n×2n (with the real and imaginary parts of the
entries of complex matrices as real coordinates). Thus all notions from analysis
on R

N apply to M without further comment. A special feature of analysis on
the matrix space M are M -valued functions of a matrix variable X ∈ M defined
by matrix-power series:

∞∑
k=0

αkX
k. (A.3)

A tail segment of such a series may be estimated by∥∥∥∥∥
M∑

k=N

αkX
k

∥∥∥∥∥ ≤
M∑

k=N

|αk| ‖Xk‖ ≤
M∑

k=N

|αk| ‖X‖k, (A.4)
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obtained from the inequalities (A.1) and (A.2). From this, one sees that the
matrix series (A.3) converges whenever

∑∞
k=0 |αk|‖Xk‖ converges. One then

says that the matrix series converges in norm or is norm-convergent. Such is in
particular the case when the power series of norms

∑∞
k=0 |αk|‖X‖k converges.

Substituting τX for X into the series (A.3) one gets a power series in the scalar
variable τ with coefficients depending on X:

∞∑
k=0

αkτ
kXk. (A.5)

Generally, a power series with matrix coefficients,
∑
τkAk(Ak ∈ M), has

a radius of (norm)-convergence R ≥ 0 and may be treated according to the
usual rules for scalar power series for |τ | < R. For example, the series can be
differentiated or integrated term-by-term with respect to τ within its radius of
norm-convergence (|τ | < R):

d

dτ

(∑
τkAk

)
=
∑

kτk−1Ak,∫ (∑
τkAk

)
dτ =

∑ τk+1

k + 1
Ak + C.

For any matrix valued function a(τ) of a real variable τ (defined on some inter-
val), the derivative a′(τ) = da/dτ is defined by

a′(τ) = lim
ε→0

1
ε
(a(τ + ε) − a(τ)), (A.6)

whenever the limit exists. In addition to the usual rules for the derivative of
vector valued functions one has the product rule

(ab)′ = a′b+ ab′. (A.7)

This follows directly from the definition (A.6), since

(ab)(τ + ε) − (ab)(τ) = (a(τ + ε) − a(τ))b(τ + ε) + a(τ)(b(τ + ε) − b(τ)).

Note, incidentally, that the product rule (A.7) depends only on the fact that the
matrix product ab is bilinear in a and b. The formula (A.7) therefore holds for
any bilinear function ab = f(a, b). The variables a and b and the value f(a, b)
may come from any (possibly different) vector spaces.

Where det a(τ) �= 0, the inverse a(τ)−1 is differentiable and its derivative may
be found by differentiating the relation aa−1 = 1 according to the rule (A.7),
which gives:

da

dτ
a−1 + a

da−1

dτ
= 0,

hence
da−1

dτ
= −a−1 da

dτ
a−1.

Consult the appendix on Analytic Functions and the Inverse Function Theorem
on page 250 for a review of these topics.
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1.2 Ad, ad, and d exp

We continue with exp, considered as a mapping X → expX of the matrix space
M onto itself. First item:

Proposition 1. The map exp : M → M carries a neighbourhood of 0 one-to-
one onto a neighbourhood of 1.

More precisely, in a neighbourhood of 0, exp : M → M has a local inverse2

log :M · · · → M , defined in a neighbourhood of 1 by the series

log a =
∞∑

k=1

(−1)k−1

k
(a− 1)k. (1)

This series converges in norm for ‖a− 1‖ < 1, and

log(expX) = X for ‖X‖ < log 2, (2)
exp(log a) = a for ‖a− 1‖ < 1. (3)

Proof. The series (1) converges in norm for ‖a− 1‖ < 1 because

∞∑
k=1

1
k

‖a− 1‖k,

converges for ‖a− 1‖ < 1.
Working towards a proof of (2), we first try to calculate log(expX) naively

by substituting the log series into the exp series:

log(expX) =
(
X +

1
2!
X2 + · · ·

)
− 1

2

(
X +

1
2!
X2 + · · ·

)2

+
1
3

(
X +

1
2!
X2 + · · ·

)3

+ · · ·

= X +
(
1
2!
X2 − 1

2
X2
)
+
(
1
3!
X3 − 1

2
X3 +

1
3
X3
)
+ · · ·

= X + 0 + 0 + · · ·
except that it is not immediately clear that the remaining dots are really all equal
to 0. But one can argue as follows. First of all, since ‖ expX − 1‖ ≤ e‖X‖ − 1,
the double series for log(expX) converges in norm provided e‖X‖ − 1 < 1, i.e.
‖X‖ < log 2. Assuming this, the terms of the double series for log(expX) may
be rearranged at will. But then the coefficients of Xk must add up to 1 for k = 1
and to 0 otherwise, because this is the case when X is a scalar variable, and the
operations on the coefficients are evidently the same whether X is thought of as
a scalar or as a matrix. This proves (2); (3) is seen in the same way. QED

2The broken arrow · · · → indicates a partially defined map, here and elsewhere.
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The trick just used, though obvious, is worth recording:
Substitution Principle 2. Any equation involving power series in a variable X,
which holds as an identity of absolutely convergent scalar series, also holds as
an identity of norm-convergent matrix series. If the scalar series converge for
|X| < ρ, then the matrix series converge for ‖X‖ < ρ.
Remark 2 (Substitution principle).
(a) A more detailed version of the Substitution Principle may be formulated as
follows:

Let F (z) and G(z) be power series in a real or complex variable z with real
or complex coefficients. Let σ > 0 be the radius of convergence of F (z), ρ > 0
that of G(z). Let X ∈ M be a real or complex matrix. Then

(i) (F +G)(X) = F (X) +G(X), if ‖X‖ < min(σ, ρ)

(ii) (FG)(X) = F (X)G(X), if ‖X‖ < min(σ, ρ)

(iii) (F ◦G)(X) = F (G(X)), if ‖X‖ < ρ, ‖G(X)‖ < σ, and G(0) = 0.

The series F + G, FG, F ◦ G is defined by formal calculation the coefficients
of this series. The condition G(0) = 0 in (iii) ensures that only finitely many
coefficients of F and G contribute to a given coefficient of F ◦G.

The idea behind the Substitution Principle may apply even if the statement
itself does not. For example, if X is a nilpotent matrix (Xk = 0 for some k),
then F (X) exists for any power series F , even though ‖X‖ may lie outside its
radius of convergence: consider F (τX) as a power series in scalar variable τ .
Some caution with the Substitution Principle is nevertheless advised, as one sees
already from the equation log exp z = z when one tries to substitute z = 2πi.

(b) The Substitution Principle extends in an obvious way to power series in
several commuting matrices. All of the formulas of Proposition 1 of §1.1 could
have been derived from the scalar case by the Substitution Principle in this form.

(c) The result of Proposition 1 is not the best possible. In fact, exp : M →
M,X → a = expX, maps the region of matrices X whose eigenvalues λ satisfy
|Imλ| < π one-to-one onto the region of matrices whose eigenvalues α are not
real and ≤0. These λ and α are in bijection under the complex exponential
function α = expλ. The assertion concerning matrices ultimately comes down
to this. (See problem 3(c).) The notation log is also used for the inverse of exp
on this larger domain, where series (1) need not converge.

There are two operations with matrices which are of importance in connection
with exp. First, for any invertible a ∈ M it is customary to denote by Ad(a) the
conjugation operation by a as linear transformation of M :

Ad(a)Y = aY a−1.

Note that
Ad(ab) = Ad(a)Ad(b), Ad(a−1) = Ad(a)−1,

so that Ad is a homomorphism from the group of invertible linear transformation
of E to that of M :

Ad : GL(E) → GL(M).
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This homomorphism is called the adjoint representation of GL(E). Second, in
addition to big Ad, we introduce little ad by:

ad(X)Y = XY − Y X.

ad(X) :M → M is a linear transformation ofM defined for allX ∈ M (invertible
or not), and certainly not a group homomorphism. When thought of as an
operation on matrices, ad(X)Y is also written as a bracket :

[X,Y ] = XY − Y X.

This bracket operation is evidently bilinear and skew-symmetric in X and Y ; in
addition it satisfies the Jacobi Identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0.

(XY Z are permuted cyclically to form the terms of this sum.) It is equivalent to

(adZ)[X,Y ] = [(adZ)X,Y ] + [X, (adZ)Y ],

which is called the derivation property of adZ. (The Jacobi Identity for matrices
is verified by a simple calculation, which we omit. It derives its name from
Jacobi’s investigations in mechanics (1836).)

Big Ad and little ad are intertwined by exp in the following sense:
Proposition 4. For any X ∈ M ,

Ad(expX) = exp(adX).

Explanation. There are two different exp’s in this formula: on the left is exp of
the linear transformation X of E, on the right, exp of the linear transformation
adX of M . Written out explicitly the formula says that for all X,Y ∈ M ,

exp(X)Y exp(−X) =
∞∑

k=0

1
k!
(adX)kY.

Proof. Fix X ∈ M and let A(τ) = Ad(exp τX) for τ ∈ R. Calculate its
derivative:

A′(τ)Y =
d

dτ
(exp(τX)Y exp(−τX))

= X exp(τX)Y exp(−τX) + exp(τX)Y exp(−τX)(−X)
= (adX)Ad(exp τX)Y.

Thus
A′(τ) = UA(τ)

with U = adX, and
A(0) = 1.

From Proposition 1 of §1.1 we know that the only solution of these equations is
A(τ) = exp(τU), which gives the desired result. QED
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The next item is a differentiation formula for exp:

Theorem 5.
d

dτ
expX = exp(X)

1 − exp(−adX)
adX

dX

dτ
.

Explanation. In this formula X = X(τ) is any matrix-valued differentiable
function of a scalar variable τ . The fraction of linear transformations of M is
defined by its (everywhere convergent) power series

1 − exp(−adX)
adX

=
∞∑

k=0

(−1)k

(k + 1)!
(adX)k.

The proposition may also be read as saying that the differential of exp :M → M
at any X ∈ M is the linear transformation d expX :M → M of M given by the
formula

d expX Y = exp(X)
1 − exp(−adX)

adX
Y.

Historical Comment. The formula goes back to the beginnings of Lie theory. It
was first proved by F. Schur (1891) (not to be confused with the better known
I. Schur), and was taken up later from a different point of view by Poincaré
(1899).

Proof. Let X = X(τ) be a differentiable curve in M and set

Y (σ, τ) = (exp−σX(τ))
∂

∂τ
expσX(τ)

for σ, τ ∈ R. Differentiate with respect to σ:

∂Y

∂σ
= (exp−σX)(−X)

∂

∂τ
exp(σX) + exp(−σX)

∂

∂τ
(X expσX)

= (exp−σX)(−X)
∂

∂τ
exp(σX) + exp(−σX)

dX

dτ
exp(σX)

+ (exp−σX)X
∂

∂τ
exp(σX)

= (exp−σX)
dX

dτ
exp(σX)

= Ad(exp−σX)
dX

dτ

= exp(ad − σX)
dX

dτ
.

Now

exp(−X)
d

dτ
expX = Y (1, τ) =

1∫
0

∂

∂σ
Y (σ, τ) dσ [since Y (0, τ) = 0]
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and
∂Y

∂σ
= (exp−σ adX)

dX

dτ
=

∞∑
k=0

(−1)kσk

k!
(adX)k

dX

dτ
.

Integrate this series term-by-term from σ = 0 to σ = 1 to get

exp(−X)
d

dτ
expX =

∞∑
k=0

(−1)k

(k + 1)!
(adX)k

dX

dτ
,

which is the desired formula. QED

The theorem, together with the Inverse Function Theorem (Appendix), gives
information on the local behaviour of the exponential map: the Inverse Function
Theorem says that exp has a local inverse around a point X ∈ M at which
its differential d expX is invertible, and the theorem says that this is the case
precisely when (1 − exp(−adX))/adX is invertible, i.e. when zero is not an
eigenvalue of this linear transformation of M . To find these eigenvalues we use
a general result:

Lemma 6. Let f(z) =
∑∞

k=0 αkz
k be a power series with real or complex

coefficients. Suppose U is a linear transformation so that the series f(U) =∑∞
k=0 αkU

k converges. If λ1, λ2, . . . , λN are the eigenvalues of U , listed with
multiplicities, then f(λ1), f(λ2), . . . , f(λN ) are the eigenvalues of f(U), listed
with multiplicities.

Proof. Choose a basis so that U is triangular with diagonal entries λ1, λ2, . . . , λN .
(This may require passing to complex scalars, even if U starts out as a real
linear transformation.) For each k = 0, 1, . . . , Uk is then also triangular with
diagonal entries λk

1 , λ
k
2 , . . . , λ

k
N . Thus, f(U) itself is a triangular matrix with

diagonal entries given by the power series f(λ1), f(λ2), . . . , f(λN ); these power
series f(λj) converge, because f(U) is assumed to converge. QED

From the lemma and the remarks preceding it one obtains now:

Proposition 7. If none of the eigenvalues of adX are of the form λ = 2πik,
k = ±1,±2, . . . , then exp :M → M has a local inverse near X.

Proof. By the lemma, the eigenvalues of (1 − exp−U)/U are of the form (1 −
e−λ)/λ, λ an eigenvalue of U . The given values of λ are precisely the solutions of
the equation (1−e−λ)/λ = 0; this gives the conclusion when one takes U = adX.

QED

It remains to determine the eigenvalues of adX:

Lemma 8. If X has n eigenvalues {λj |j = 1, 2, . . . , n}, then adX has n2 eigen-
values {λj − λk|j, k = 1, 2, . . . , n}.
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Proof. Let {ej} be a basis so that X is triangular, say

Xej = λjej + · · · ,
where the dots indicate a linear combination of ek’s with k > j. Let Ejk be the
corresponding basis forM(Ejk has jk-entry 1 and all other entries 0). Order the
basis Ejk of M so that j − k < j′ − k′ implies Ejk precedes Ej′k′ . One checks
by matrix computation that

ad(X)Ejk = (λj − λk)Ejk + · · · ,
where the dots indicate a linear combination of Ej′k′ ’s that come after Ejk in
the chosen order. This means that ad(X) is triangular with diagonal entries
(λj − λk). QED

In view of Lemma 8, Proposition 7 can be rephrased as

Proposition 7′. If no two eigenvalues of X ∈ M have a difference of the form
2πik, k = 1, 2, . . ., then exp :M → M has a local inverse near X.

Example 9 (exp for real 2 × 2 matrices). We start with the observation that
for any matrix X

det(expX) = etr X ;

this is immediate from the formulas for det and tr in terms of eigenvalues. This
formula implies first of all that any exponential of a real matrix must have a
positive determinant. Furthermore, since exp(α1 + X) = eα expX, it suffices
to consider matrices with trX = 0, as far as the behaviour of the real matrix
exponential is concerned.

We now specialize to the case of real 2× 2 matrices. In view of the preceding
remarks, we specialize further by assuming throughout that tr(X) = 0. The
characteristic polynomial of a 2 × 2 matrix X is

det(λ1 −X) = λ2 − (trX)λ+ (detX)1.

According to Cayley–Hamilton,

X2 − (trX)X + (detX)1 = 0.

The assumption that trX = 0 implies X2 = −(detX)1. Use this fact to
compute:

expX =
∞∑

k=0

Xk

k!

=
∞∑

k=0

X2k

(2k)!
+

∞∑
k=0

X2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k

(2k)!
(detX)k1 +

∞∑
k=0

(−1)k

(2k + 1)!
(detX)kX.
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Recognizing these series one finds

expX = (cos
√
detX)1 +

sin
√
detX√

detX
X. (4)

(The functions in (4) are independent of the choice of the sign of the root. The
root may be imaginary; sin θ and cos θ are defined for complex arguments by:

sin θ = 1
2i (e

iθ − e−iθ), cos θ = 1
2 (e

iθ + e−iθ).

Looking at formula (4) more closely one sees:
For a 2 × 2 matrix a with det a = 1, the equation expX = a has a solution

X if and only if 1
2 tr a > −1 or a = −1. If so, the solutions are given as follows:

(a) For − 1 < 1
2 tr a < 1: X =

ξ

sin ξ
(
a− 1

2 tr a1
)

with ξ > 0 satisfying cos ξ = 1
2 tr a. There are countably many solutions.

(b) For 1
2 tr a > 1: X =

ξ

sinh ξ
(
a− 1

2 tr a1
)

with ξ > 0 satisfying cosh ξ = 1
2 tr a. There is a unique solution.

(c) For 1
2 tr a = 1, a �= 1: X = a− 1.

(d) a = ±1: X = any matrix on one of the family of surfaces in the space of
matrices 2 × 2 of trace zero is given by the equations

detX =

{
(π2k2), if a = +1
(π(2k + 1))2, if a = −1, k = 0, 1, 2, . . . .

To get a better overview of the situation we introduce coordinates x, y, z in
the three-dimensional space of a real 2 × 2 matrix X of trace zero, by setting

X = x

[
1 0
0 −1

]
+ y

[
0 1
1 0

]
+ z

[
0 −1
1 0

]
.

Then detX = − 1
2 trX

2 = −x2 − y2 + z2. The region detX > 0 inside the cone
detX = 0 consists of matrices of elliptic type. Under exp, they get mapped
onto the region det a = 1, −1 < 1

2 tr a < 1 in a periodic way; the ‘periods’
are separated by the two-sheeted hyperboloids detX = (πk)2, k = 1, 2, . . . ,
which themselves get collapsed to the points ±1. The region detX < 0 outside
the cone consists of matrices of the hyperbolic type; they get mapped onto the
region det a = 1, 1

2 tr a > 1 in a bijective way. The cone detX = 0 consists of
nilpotent matrices (X2 = 0; parabolic type); they get mapped bijectively onto
the unipotent matrices ((a− 1)2 = 0) (Figure 1).
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y

x

z

det (u) = const. > 0
(two components)

det (u) = 0

det (u) = const. < 0

Fig. 1

These observations illustrate several results of this section. The equation

exp(cXc−1) = c(expX)c−1

implies that exp maps the similarity class {cXc−1|c an invertible 2 × 2 matrix}
of X to the similarity class of a = expX. The similarity classes in {trX = 0}
are the surfaces detX = const., except for X = 0 on the cone detX = 0. They
are represented by the matrices[

0 θ
−θ 0

]
,

[
ξ 0
0 −ξ

]
,

[
0 1
0 0

]
,

[
0 0
0 0

]
(5)

with θ, ξ �= 0. The similarity classes in {det a = 1} are the surfaces 1
2 tr a =

const., except for a = ±1 on 1
2 tr a = ±1. They are represented by the matrices[

cos θ − sin θ
sin θ cos θ

]
, ±

[
α 0
0 α−1

]
, ±

[
1 1
0 1

]
, ±

[
1 0
0 1

]
(6)

with θ �= 2πk, k = 0,±1,±2, . . . and α > 0. The critical points of exp, those
where its differential is singular, comprise the two-sheeted hyperboloids detX =
(πk)2, k = 1, 2, . . . (represented by θ = πk in (5)); they get collapsed to the
points ±1. These are exactly the points where exp fails to be locally invertible,
in agreement with the Inverse Function Theorem. The condition 1

2 tr a > −1 or
a �= −1 excludes those similarity classes of 2 × 2 matrices a with det a = 1 from
the image of exp that are represented by[

α 0
0 α−1

]
, 0 < α �= 1, −

[
1 1
0 1

]
.

In particular, exp : {trX = 0} → {det a = 1} is far from being surjective.
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Problems for §1.2
1. A matrix X ∈ M is called nilpotent if Xk = 0 for some k (equivalently: all

eigenvalues of X are equal to 0); a ∈ M is called unipotent if (1 − a)k = 0
for some k (equivalently: all eigenvalues of a are equal to 1). Show:

X → expX maps the nilpotent matrices bijectively onto the unipo-
tent matrices with inverse a → log a.

[Proposition 1 does not apply directly, nor does the Substitution Principle
as stated; a minor adjustment will do.]

2. A matrix a is called semisimple if it is diagonalizable over C. Show:

(a) X → expX maps semisimple matrices to semisimple matrices.

(b) If a is an invertible semisimple matrix, then there is a semisimple
matrix X so that a = expX and no two distinct eigenvalues of X
differ by a multiple of 2πi.

(c) AssumeX andX ′ are both semisimple and no two distinct eigenvalues
of X differ by a multiple of 2πi. Show that expX = expX ′ if and only
if X and X ′ are simultaneously diagonalizable with diagonal entries
differing by multiples of 2πi.
Any matrix X can be uniquely written as X = Y + Z where Y is
semisimple, Z is nilpotent, and Y and Z commute. Furthermore, Y
and Z are linear combinations of powers of X. X = Y +Z is called the
Jordan decomposition of X. [See Hoffman–Kunze (1961) Theorem 8,
page 217, for example.]

3. Show:

(a) Any invertible matrix a can be uniquely written as a = bc where b is
semisimple, c is unipotent, and b and c commute. Furthermore, b and
c are linear combination of powers of a.

(b) If X = Y + Z is the decomposition of X as in (a), then expX =
expY expZ is the decomposition of expX as in (b).

(c) Assume that no two distinct eigenvalues of X differ by a multiple
of 2πi. (See problem 2(b)). Show that expX = expX ′ if and only
Z = Z ′ and Y and Y ′ are simultaneously diagonalizable with diagonal
entries differing by integral multiples of 2πi. Deduce Remark 3(c).

4. Let λ be a non-zero complex number. Show that the matrix

λ 1 0 · · · 0
0 λ 1 · · · 0
...

...
...

...
0 0 0 · · · λ
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is the exponential of a complex matrix. Deduce that every invertible com-
plex matrix is an exponential. [Suggestion: For the second part, use the
Jordan canonical form, which is the explicit version of the Jordan decom-
position mentioned before problem 3.]

5. Show: not every matrix of determinant 1 is an exponential (real or com-
plex) of a matrix of trace 0. Suggestion: Consider[−1 1

0 −1

]
.

6. Let f(X) =
∑

k αkX
k be any matrix-power series. Use the Cayley–

Hamilton Theorem to show that f(X), can formally be rewritten as

f(X) = c0(X) + c1(X)X + · · · + cn−1(X)Xn−1,

where the cj(X) are (multiple) power series in the matrix entries ofX which
are invariant under conjugation, i.e. cj(aXa−1) = cj(X). [‘Formally’
means ‘do not worry about convergence when rearranging the series’].

7. Suppose X ∈ M satisfies ‖X‖ < 2π. Show that for v ∈ E,

exp(X)v = v if and only if Xv = 0.

[Suggestion: the power series for z/(exp z − 1) converges for |z| < 2π].

8. (a) Prove the Jacobi Identity

[[X,Y ], Z] + [[Z,X], Y ] + [[Y,Z], X] = 0.

Deduce that
(b) (adZ)[X,Y ] = [(adZ)X,Y ] + [X, (adZ)Y ],
(c) ad([X,Y ]) = [adX, adY ].
(The bracket on the right side of (c) is that of linear transformations of
the matrix space M .)

9. Show that for all X ∈ M ,

expX = lim
k→∞

(
1 +

1
k
X

)k

.

[The formula has a ‘physical’ interpretation: subdivide the time interval
0 ≤ τ ≤ 1 into a large number of subintervals k; the fluid particle travelling
on the trajectory p(τ) = exp(τX)p0, with velocityXp(τ) at p(τ), will move
from p0 to approximately p0 + (1/k)Xp0 = (1 + (1/k)X)p0 in the first
time interval, on to (1 + (1/kX))2p0 in the second, etc., until at τ = 1 it
reaches approximately (1 + 1/kX)kp0, which must therefore approximate
exp(X)p0].
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10. Prove the Trotter Product Formula: for all X,Y ∈ M ,

exp(X + Y ) = lim
k→∞

(
exp

(
1
k
X

)
exp

(
1
k
Y

))k

.

[Suggestion: start with exp(τX) exp(τY ) = exp(τ(X + Y ) + o(τ)].

11. Let R → M , τ → a(τ), be a continuous map satisfying a(σ+τ) = a(σ)a(τ)
and a(0) = 1. Show that a(τ) = exp τX for some X ∈ M . [This shows
that the differentiability hypothesis on a(τ) in part (d) of Proposition 1
of §1.1 can be replaced by continuity. Suggestion for the proof: consider
X(τ) = log(a(τ)) for small τ . Show that X(ρτ) = ρX(τ), first for ρ = p/q
rational, then for all ρ ∈ R].

12. Fix X ∈ M . Let L be a subspace of M satisfying [X,Y ] ∈ L for all Y ∈ L.
Show:

(a) exp(τX)Y exp(−τX) ∈ L for all Y ∈ L.

(b) exp(−X) exp(X + Y ) ∈ 1 + L for all Y ∈ L.

[Suggestion for (b): consider the tangent vector of the curve a(τ) =
exp(−X) exp(X + τY ).]

13. Show that for any differentiable matrix valued function a = a(τ) of a real
variable τ with det a(τ) �= 0,

d

dτ
det a = (det a) tr

(
a−1 da

dτ

)
.

[Suggestion: assume first a(0) = 1 and prove this formula at τ = 0.]

1.3 The Campbell–Baker–Hausdorff series

In a neighbourhood of the identity matrix in M where exp has an inverse (e.g.
on ‖a−1‖ ≤ 1, where the log series converges) one may think of exp as providing
a coordinate system: the matrix X (restricted to a neighbourhood of 0) serves as
coordinate point of the matrix a = expX (restricted to a neighbourhood of 1).
We shall refer to these coordinates as exponential coordinates, without (for now)
giving any further meaning to the term ‘coordinates’ in general. We need a
formula for matrix multiplication in exponential coordinates; that is, we need a
formula for the solution of the equation

expX expY = expZ

for Z in terms of X and Y , at least for X,Y, Z in a neighbourhood of 0 in M ,
where this equation does have a unique solution, namely

Z = log(expX expY ). (1)
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Expanding the right side of (1) we get

Z =
∞∑

k=1

(−1)k−1

k

{( ∞∑
i=0

Xi

i!

)( ∞∑
j=0

Y j

j!

)
− 1

}k

=
∞∑

k=1

(−1)k−1

k

{ ∑
i,j≥0,i+j≥1

XiY j

i!j!

}k

,

which leads to

Z =
∑ (−1)k−1

k

Xi1Y j1 · · ·XikY jk

i1!j1! · · · ik!jk! (2)

where the sum is over all finite sequences (i1, j1, . . . , ik, jk) of integers ≥ 0 sat-
isfying ir + jr ≥ 1. The order of summation is unimportant as long as the
series converges in norm when summed in some order, which is the case when∑
(1/k)(e‖X‖e‖Y ‖ − 1)k converges, i.e. when ‖X‖ + ‖Y ‖ < log 2.
The monstrosity (2) is extremely awkward to work with, but at least one can

write out the first few terms:

Z = (X + Y +XY + 1
2X

2 + 1
2Y

2 + · · · ) − 1
2 (XY + Y X +X2 + Y 2 + · · · ) + · · ·

= X + Y + 1
2 (XY − Y X) + · · · .

Again we meet the bracket [X,Y ] = XY − Y X, in terms of which

Z = X + Y + 1
2 [X,Y ] + · · · . (3)

The formula (2) gives the Taylor expansion of Z as function of X and Y ; from (3)
one sees that to the first order, Z is just the sum of X and Y , the second order
term involves their bracket. It is truly a remarkable fact that the whole series
(2) can be rewritten solely in terms of repeated brackets of X and Y . The proof,
in hindsight quite simple, occupied several mathematicians: Campbell (1897),
Poincaré (1899), Baker (1905), Hausdorff (1906), and Dynkin (1947). The first
four addressed the question whether Z can be represented as a bracket series
at all (which is the crux of the matter) without producing the explicit formula.
(As Bourbaki (1972) puts it: “chacun considère que les démonstrations de ses
prédécesseurs ne sont pas convaincantes’.) Dynkin finally gives the explicit for-
mula, now generally (and somewhat paradoxically) known as ‘Campbell–Baker–
Hausdorff Series’. The proof given here follows Duistermaat–Kolk (1988); the
essential ingredient is F . Schur’s formula for the differential of exp (Theorem 5
of §1.2).
Theorem 1 (Dynkin’s Formula). For matrices X,Y, Z ∈ M sufficiently close
to 0, the equation

expX expY = expZ

has a unique solution for Z = C(X,Y ) as a convergent series in repeated brackets
of X and Y , namely

C(X,Y ) =
∑ (−1)k−1

k

1
(i1 + j1) + · · · (ik + jk)

[X(i1)Y (j1) · · ·X(ik)Y (jk)]
i1!j1! · · · ik!jk! . (4)
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Explanations and remarks. The sum is over all 2k-tuples (i1, . . . , ik, j1, . . . , jk)
of integers ≥0 satisfying ir + jr ≥ 1 with k = 1, 2, . . .. The brackets are defined
as follows. For any finite sequence X1, . . . , Xk of matrices we set

[X1, X2, . . . , Xk] = [X1, [X2, . . . , [Xk−1, Xk], . . .]],

the brackets being inserted in the order shown. The expression

[X(i1)Y (j1) · · ·X(ik)Y (jk)]

in (4) means the sequence starts with i1X ′
1s, then j1Y

′
1s etc. The convergence of

(4) is not in question: if (4) is equal to (2), in the sense that the terms involving
a given finite number of factors X,Y are equal, then (4) must converge for
‖X‖ + ‖Y ‖ < log 2, because (2) does, and must represent Z as long as ‖Z‖ < 1
(so that log(expZ) exists). Therefore the phrase ‘sufficiently close to 0’ may be
interpreted more precisely as

‖X‖ + ‖Y ‖ < log 2, ‖Z‖ < 1. (5)

(Alternatively: compare (4) directly with the series expansion of
∑∞

k=0(1/k)
(eαeβ −1) using ‖[X,Y ]‖ < 2‖X‖ ‖Y ‖. In this way, one need not know (2) = (4)
to prove the convergence of (4).)

Actually, the exact expression of Z in terms of X and Y is of little importance
and will not be used later. What is of importance is that Z can be written as
a bracket series in X and Y in some way. The exact formula is given mainly to
dispel the air of mystery from the qualitative statement.

Of course, at this point it is not at all clear what is to be gained by writing
the complicated series (2) in the even more complicated form (4). Certainly, as
far as actual computations are concerned, the formula (4) is hardly practical; its
significance is theoretical: the whole edifice of Lie theory ultimately rests on this
formula (at least on its qualitative form).

Proof. Fix X,Y and let Z = Z(τ) be the solution of

exp(Z) = exp(τX) exp(τY ). (6)

Differentiate using Theorem 5 of §1.2:

exp(Z)
1 − exp(− adZ)

adZ
dZ

dτ
= X exp(Z) + exp(Z)Y

or
dZ

dτ
=

− adZ
1 − exp(adZ)

X − adZ
1 − exp(adZ)

exp(adZ)Y. (7)

Equation (6) gives

exp(adZ) = exp(ad τX) exp(ad τY ), (8)
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(Proposition 4 of §1.2). Now use the power series expansions

A = log(1 + (expA− 1)) =
∞∑

k=0

(−1)k

k + 1
(expA− 1)k+1. (9)

Apply (9) with A = adZ to the fractions in (7) and apply (8) to the term
exp(adZ)Y in (7) and compute as in the derivation of (2):

dZ

dτ
=

∞∑
k=0

(−1)k

k + 1
{(exp(ad τX) exp(ad τY ) − 1)kX

+ (exp(ad τX) exp(ad τY ) − 1)k exp(ad τX)Y }

=
∞∑

k=0

(−1)k

k + 1

{∑
τ i1+j1+···+ik+jk

[X(i1)Y (j1) · · ·X(ik)Y (jk)X]
i1j1! · · · ik!jk!

+ τ i1+j1+···+ik+jk+ik+1
[X(i1)Y (j1) · · ·X(ik)Y (jk)X(ik+1)Y ]

i1!j1! · · · ik!jk!ik + 1!

}
. (10)

Integrate expression term-by-term (using Z(0) = 0):

Z(1) =

1∫
0

dZ

dτ
dτ.

This gives the desired relation (4) after shifting the index of summation. One
also needs to observe that the general term of (4) is zero unless jk equals 0 or 1,
which corresponds to the two terms in (10). QED

We close this section with a few formulas, which follow from Campbell–
Baker–Hausdorff, but are actually better proved directly.

Proposition 2.

(a) exp(X) exp(Y ) = exp(X + Y + 1
2 [X,Y ] + · · · )

(b) exp(X) exp(Y ) exp(−X) = exp(Y + [X,Y ] + · · · )
(c) exp(X) exp(Y ) exp(−X) exp(−Y ) = exp([X,Y ] + · · · )

where the dots indicate terms involving products of three or more factors X,Y .

Proof.
(a) is a restatement of equation (3), although a simpler proof may be given if this
is all one wants: one only needs to compare terms of order ≤2 in exp(X) exp(Y ) =
expZ, Z written as a power series in X,Y with unknown coefficients.

(b) This is seen either by writing

exp(X) exp(Y ) exp(−X) = exp (exp(adX)Y )
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and writing out the first few terms of the inner exp, or by using (a) twice:

exp(X) exp(Y ) exp(−X) = exp(X + Y + 1
2 [X,Y ] + · · · ) exp(−X) [once]

= exp(Y + [X,Y ] + · · · )[twice]
(c) Same method. QED

Problems for §1.3
1. Prove part (c) of Proposition 2.

2. Use Dynkin’s formula (4) to show that

C(X,Y ) = X + Y + 1
2 [X,Y ] +

1
12 [X, [X,Y ]] +

1
12 [Y, [Y,X]] + · · · .

Check that this agrees with what one obtains by writing out the terms up
to order three of the series (4).

3. Prove that the series C(X,Y) can also be written in the following form:

C(X,Y ) =
∑ (−1)k

k + 1
1

i1 + · · · + ik + 1
[X(i1)Y (j1) · · ·X(ik)Y (jk)X]

i1!j1! · · · ik!jk! .

[Suggestion: Start with Z = Z(τ) defined by exp(Z) = exp(τX) exp(Y )
instead of (6); imitate the proof. Comment: this formula might seem
slightly simpler than (4), but is equally unmanageable and less symmetric.
If one reverses the roles of X and Y in this procedure one obtains a formula
reflecting the relation C(−Y,−X) = −C(X,Y ), which is evident form the
definition of C(X,Y )].

4. Write exp(Z) = exp(τX) exp(τY ) as in (6). Let

Z =
∑

k

τkCk,

be the expansion of Z in powers of τ . Derive the recursion formula

(k + 1)Ck+1 = −[Ck, X] +
∑

γj [Ck1 · · · [Ckj , X + Y ] · · · ],
where the γj are defined as the coefficients of the series

x

1 − e−x
=
∑

j

γjx
j .

(Compare with the Bernoulli numbers βj defined by

x

ex − 1
=
∑

j

βj
xj

j!
,

i.e. γj = (−1)jβj/j!).
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[Suggestion: Show first that

dZ

dτ
= − ad(Z)X +

adZ
1 − exp(− adZ)

(X + Y ).

Then substitute power series.]

A linear Lie algebra is a space n ⊂ M of linear transformations that is
closed under the bracket operation:

X,Y ∈ n implies [X,Y ] ∈ n.

5. Let n be a linear Lie algebra consisting of nilpotent matrices. Let N =
{exp n = expX|X ∈ n}. Show that N is a group under matrix multiplica-
tion, i.e.

a ∈ N implies a−1 ∈ N,

a, b ∈ N implies ab ∈ N.

[Suggestion: for a = expX and b = expY , consider Z(τ) defined by
exp(τX) exp(τY ) = expZ(τ) as a power series in τ with matrix coeffi-
cients. All nilpotent n× n matrices A satisfy An = 0.]

6. Let n1 and n2 be two linear Lie algebras consisting of nilpotent matrices
as in problem 5, N1 and N2 be the corresponding groups. Let ϕ : n1 → n2
be a linear map. Show that the rule f(expX) = expϕ(X) defines a group
homomorphism f : N1 → N2 (i.e. a well-defined map satisfying f(ab) =
f(a)f(b) for all a, b ∈ N1) if and only if ϕ([X,Y ]) = [ϕX,ϕY ] for all
X,Y ∈ n1.

Problems 7 and 8 are meant to illustrate problems 5 and 6. Assume known
the results of those problems.

7. (a) Describe all subspaces n consisting of nilpotent upper triangular ma-
trices real 3 × 3 matrices 

0 α γ
0 0 β
0 0 0




which satisfy [n, n] ⊂ n. Describe the corresponding groups N .

(b) Give an example of a subspace n of M with [n, n] ⊂ n for which N =
exp n is not a group. [Suggestion: Consider Example 9 of §1.2.]

8. Let n be the space of all nilpotent upper triangular real n× n matrices

0 ∗ ∗ · · · ∗
0 0 ∗ · · · ∗
...

...
...

...
0 0 0 · · · 0


 . (1)
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Then N = exp n consists of all unipotent upper triangular real n × n
matrices 


1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
...

...
...

...
0 0 0 · · · 1


 .

Let ϕ : n → R be a linear functional. Show that the rule

f(expX) = eϕ(X)

defines a group homomorphism f : N → R
× of N onto the group R

× of
non-zero reals under multiplication if and only if ϕ(n′) = 0, where n′ is
the subspace of n of matrices with entries zero directly above the main
diagonal.

9. Compare the series (2) and (4):

Z =
∑ (−1)k−1

k

Xi1Y j1 · · ·XikY jk

i1!j1! · ik!jk! , (2)

C(X,Y ) =
∑ (−1)k−1

k

1
(i1 + j1) + · · · (ik + jk)

[X(i1)Y (j1) · · ·X(ik)Y (jk)]
i1!j1! · · · ik!jk! .

(3)

This problem ‘explains’ the evident formal relation between the two through
an outline of Dynkin’s original proof.

Let A denote the collection of all formal polynomials (finite formal series)
in the non-commuting formal variables X,Y . A is a real vector space with
a basis consisting of the (infinitely many) distinct monomials in the list
Xi1Y j1 · · ·XikY jk , ir, jr = 0, 1, 2, . . . . Elements of A are multiplied in the
obvious way, and we define a bracket in A by the formula

[a, b] = ab− ba.

This bracket is real-bilinear, skew-symmetric, and satisfies the Jacobi Iden-
tity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Let L be the subspace of A spanned by all repeated brackets of X’s and
Y ’s, including the elements X and Y themselves. It is clear that [a, b] is
in L whenever a and b are. Define a map γ : A → L by

γ(1) = 0, γ(X) = X, γ(Y ) = Y,

and generally

γ(Xi1Y j1 · · ·XikY jk) = [X(i1)Y (j1) · · ·X(ik)Y (jk)],
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the right side being interpreted as explained in connection with formula (4).
For each a ∈ A define a linear map δ(a) : A → A by

δ(1)c = c, δ(X)c = [X, c], δ(Y )c = [Y, c],

and generally

δ(Xi1Y j1 · · ·XikY jk)c = δ(X)i1δ(Y )j1 · · · δ(X)ikδ(Y )jkc.

These operations obey the rules

δ(ab) = δ(a)δ(b),
γ(ab) = δ(a)γ(b),

which follow directly from the definitions. Prove:

(a) If a ∈ L, then δ(a)b = [a, b].

(b) If a, b ∈ L, then γ([a, b]) = [γ(a), b] + [a, γ(b)].

(c) If a ∈ L is homogeneous of degree m, then γ(a) = ma.

Explanation. a ∈ A is homogeneous of degree m if it is a linear combination
of terms

Xi1Y j1 · · ·XikY jk (4)

with i1 + j1 + · · · + ik + jk = m. [Suggestion: It suffices to consider
homogeneous elements. Use induction on the degree.]

Written as a = (1/m)γ(a), the rule (c) says: a homogeneous polyno-
mial of degree m which can be written as a bracket series in some way,
remains unchanged if we replace each monomial therein by the correspond-
ing bracket monomial and divide by m. If this recipe is applied to the
homogeneous terms of the series (2), assuming known that this series does
lie in L (as was indeed the case historically), there results the series (4).


