
Corrections and comments (posted Aug 2004)

Corrections labeled (2002) refer to the first printing, already incorporated in the reprinting of 2003. I am grateful for
all correction and comments I receive!

p2, line 7 (2002). Replace pk = 1
k!X(p0) by pk = 1

k!X
k(p0).

p9, line 1. (Comment on exercise 11.) The formula is Weyl’s group theoretic formulation of the Canonical
Commutation Relations in quantum mechanics. (Weyl, 1950, §14). As he emphasizes (p.95), such matrices exist
only in infinite dimensions (if k �= 0). The formula is a formal consequence of the properties of the matrix exponential
listed in Proposition 1

p11, line -3. Add equation number (A.8).

p19, lines -4, -2. Replace a �= −1 by a = −1 and 0 < α �= 1 by −1 �= α < 0.

p22, line 13. For 12(b) add the hypothesis “Suppose LL ⊂ L”.

p24, line 14. Replace
∑∞

k=0 by
∑∞

k=1.

p24, line -4. Eq. (7) is better written as dZ
dτ = −ad Z

exp(ad Z)−1 + ad Z
exp(ad Z)−1 exp(adZ)Y .

p25, line 3,4. Expand the explanation to read: “Apply (9) to the numerator A =adZ of the fractions in (7), divide
by the denominator, and apply (8) to write exp(adZ)Y = exp(τX)Y in (7). Then compute as in the derivation of
(2):”

p25, line 8. In (10) replace ik + 1! by ik+1!

p28, line 6. Replace “onto” by “into”.

p31, line 2 (2002). Replace sl(3,R) by so(3,R).

p32, eq.(9) (2002). Replace aY by a�Y .

p32, line -3. Replace E → by
→
E

p33, line -7 (2002). Replace g exp(X)c−1 by c exp(X)c−1

p33-35. Example 2 (up to QED p35) is done below in a somewhat different way.

p34, line 9 (2002). After “tr X = 0” add “and X∗ = −X”

p35, line 1 (2002). Replace p(c)e=

−→
(aE3a

−1) by p(c exp
−→

(aE3a
−1) c−1)

p37, line 7. Replace
[

α
1

]
by

[
α
0

]
.

p44, line 7. Replace (a) by 11. (a).

p46-47. (2002) In the second paragraph of the proof, ak(τ) is a smooth curve with ak(0) = 1 and a′k(0) = Xk and a
recurring notation of the form “h :s· · · → M” indicates [a partially defined map, as explained in the footnote on p12].
In the line after the display insert “and” before “dg0X = X”. In the next line, insert “to” after “complementary”.
In the next-to-last line on page 46, change “defined on” to “defined and”. Online 4 on page 47, change “is a
neighborhood” to “in a neighborhood”.

p48 line 12. Change “lies” to “lie” and “ga(τ)” to “ga(τ)”.

p50, line -3 (2002). Replace ad:g→g/(g) by ad:g→gl(g).

p52, #3 (2002). Replace {a ∈ G | by {a ∈ M |.
p57 line -3.Change “Lemma 4a” to “Lemma 5”.

p61 line 11. Change (b) to (a) twice.
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p61 line -4. Replace cd expXk by · · · exp(Xk).

p68-69. (2002; from A. Knapp’s review.) On page 68 in the display before (1), change the left side to “(exp(Ū))k”.
in (2), change exp Ū to expU . Insert a tilde over “U” on the right side of the display after (2) and in the definition
on the next line, also on the ε that occurs twice on that line. Insert a tilde once on the left side on (3), twice on the
line of text afterward, and once on the left side of (4). At this point the Campbell-Baker-Hausdroff formula on the
ambient group can be invoked to conclude (5) but with “X̃” on the right side in place of “X”. Insert tildes twice on
“X” in the next-to-last line page 68 and once on the left side of the bottom display, as well as on the left side of the
first two displays on p69. In the last line of the proof, change “U” to “Ũ”.

p74 line 5. Change exercise 6 to read: “The only connected complex abelian group which is a compact subset of
the matrix space is the trivial group {1}”. [The assertion is correct as it stands, but harder to prove.]

p75 line 14. Change “problem 10” to “problem 9”.

p86 line -6. For problem 6 (b) insert: Let SU(1, 1) be the group of all complex 2 × 2 matrices of the form[
α β
β̄ ᾱ

]
, αᾱ− ββ̄ = 1.

p86 line -1. For problem 8, insert: Assume known that SO(4,C) is connected.

p87 line 18. For problem 10, insert: See §3.1 for the definition of Sp(2,C).

p91, line -7 (2002). Omit the repeated “with respect to ϕ”.

p132, line -6,-5. Replace “U ∩U” by “U ∩ Ũ”, “(U, x) and (U, x)” by “(U, x) and (Ũ , x̃)” , “x(U ∩U” by x(U ∩ Ũ).
p133, line -11 Replace “MFLD 3” by “MFLD 2”.

p142, line -10. Replace
∑

j by
∑

jk.

p142-143. An alternative, more algorithmic, formulation of Problem 13 is the following.
Fix a basis (e1, · · · , en) for E to represent its elements as column n vectors. Represent P ∈Grm(E) by an n × m
matrix p = [p1, · · · , pm] whose columns form a basis for P , unique up to right multiplication p → pa by an invertible
m×m matrix a. Show:
(a)Given P ∈Gr(P ) there is a permutation matrix sei = es(i) so that first m rows of sp are linearly independent.
Then sp can be uniquely written in the form sp = [ 1x ]a where x = x(P ) is an (n − m) × m matrix, which is
independent of the basis p chosen.
(b) As s runs over runs over all permutation of (e1, · · · , en), the partially defined maps P → x(P ) from Gr(E) to
R(n−m)×m or C(n−m)×m satisfy the axioms MFLD 1-4. (Specify the coordinate domains. Explain why it suffices to
take permutations of the form (ei1 , · · · , eim , · · · ) where i1 < · · · < im and the dots indicate the remaining eis in their
proper order as well.)

p147, line -9. Replace “αβ, γ, δ” by “α, β”.

p148, line 18. Replace “{expX · · · ” by “exp{X · · · ”.
p157, line 6. Replace exp(0) = 0 by exp(0) = 1.

p157, line 17. Replace (expX/pq)pq by (expX/pq)pq.

p160, line 4. Replace SU(2) by SU(1, 1).

p160, line -3. Replace 2πi by πi twice.

p160, line -2. Replace su(2) by su(1, 1).

p192, line -13. Replace ẽj ⊗ f̃k by ẽj⊗̃f̃k.

p201, line 8. Replace g(ba)d by g(ba).
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§2.1 Example 2. (The special unitary group SU(2)).

This is the group

SU(2) = {a ∈ M2(C) | aa∗ = 1}
where a∗ is the Hermitian adjoint (conjugate transpose) of a. Explicitly, the elements of SU(2) are of the form

a =
[
α −β̄
β ᾱ

]
, α

−
α + β

−
β = 1.

The group SU(2) is therefore just the 3–sphere S3 in M2(C) ≈ R4. We also set

su(2) = {X ∈ M2(C) | X∗ = −X, trX = 0}.
This is a Lie algebra, i.e. real vector space matrices closed under the bracket operation. (It is not a complex vector
space.)

Lemma 2.A. (a)Let X ∈ M2(C). exp(τX)∈SU(2) for all τ ∈ R if and only if X ∈ su(2).
(b)exp : su(2) →SU(2) is surjective.

Proof. (a) (expX)∗ = exp(X∗) and det(expX) = etrX .
(b)By consideration of eigenvectors and eigenvalues one can check that any a ∈SU(2) is conjugate to a matrix of the
form [

eiθ 0
0 e−iθ

]
= exp

[
iθ 0
0 −iθ

]
.

This implies (b) . QED

The three dimensional real vector space E = su(2) comes equipped with a positive definite inner product defined by
(X,X) = 1

2 tr(X
∗X). Explicitly, for X ∈ su(2)

X =
[

iξ3 −ξ1 + iξ2
ξ1 + iξ2 − iξ3

]
,

1
2
tr(X∗X) = ξ2

1 + ξ2
2 + ξ2

3 .

We now take SO(3) to be the rotation group of this space su(2). If a ∈SU(2), then Ad(a) gives a linear transformation
of su(2) which belongs to SO(3), still denoted Ad(a). The map Ad:SU(2) →SO(3) is a homomorphism of groups. i.e.
preserves products: Ad(ab) =Ad(a)Ad(b). Similarly, X ∈ su(2) gives ad(X) ∈ so(3). The map ad: su(2) → so(3) is
a homomorphism of Lie algebras, i.e. preserves brackets: ad[X,Y ] = [adX,adY ].

Lemma 2.B. (a)ad: su(2) → so(3) is bijective.
(b)Ad:SU(2) →SO(3) is surjective with kernel {±1}.
Proof. (a)Since ad: su(2) → so(3) is a linear map between spaces of the same dimension (namely 3), it suffices to
show that its kernel is zero. Suppose X ∈ su(2) satisfies ad(X)su(2) = 0. Any Z ∈ M2(C) is of the form Z = U + iV
where U, V are skew Hermitian, namely U = 1

2 (Z − Z∗), V = 1
2i(Z − Z∗). Hence M2(C) = su(2) + isu(2) + C1

and ad(X)su(2) = 0 implies ad(X)M2(C) = 0, i.e. X commutes with all matrices. Hence X is a scalar matrix and
trX = 0 implies X = 0.
(b)The surjectivity of Ad:SU(2) →SO(3) follows from the surjectivity of the exponential maps and of ad: su(2) →
so(3):
Ad(exp su(2)) = exp(ad su(2) = exp so(3) =SO(3).
Suppose a ∈SU(2) belongs to the kernel of Ad:SU(2) →SO(3), i.e. Ad(a)X = X for all X ∈ su(2). As in the proof
of (a) this implies that a ∈SU(2) commutes with all Z ∈ M3(C). Hence a is a scalar matrix and det(a) = 1 implies
a = ±1. QED

Part (b) of the lemma says that the group homomorphism SU(2) →SO(3) is a double covering in the sense that each
element a of SO(3) has exactly two preimages ±ã in SU(2). The ’inverse map’ SO(3) �SU(2) is double-valued; it
associates two unitary transformations ψ → ±ãψ of C2 to each a ∈SO(3). This is the famous spin representation of
SO(3). The elements ψ of C2 are referred to as spinors in this context, as in Weyl’s “Theory of Groups and Quantum
Mechanics” of 1931.
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