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Abstract: We investigate global performances of non-linear wavelet estimation in

regression models with correlated errors. Convergence properties are studied over a

wide range of Besov classes Bs
π,r and for a variety of Lp error measures. We consider

error distributions with Long-Range-Dependence parameter α, 0 < α ≤ 1. In this

setting we present a single adaptive wavelet thresholding estimator which achieves

near-optimal properties simultaneously over a class of spaces and error measures.

Our method reveals an elbow feature in the rate of convergence at s = α
2
( p

π
− 1)

when p > 2
α

+ π. Using a vaguelette decomposition of fractional Gaussian noise we

draw a parallel with certain inverse problems where similar rate results occur.
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1 Introduction

There is a vast literature on regression models with correlated errors. Motiva-

tions for such studies are both theoretical and practical. For example, modern

nonparametric regression techniques are sensitive to the presence of correlated

errors and data-driven methods such as cross-validation are affected by long-

range-dependence. We refer to Opsomer, Wang and Yang (2001) for an up-to-

date review of the topic and extensive references.

Existing methods for dealing with correlated errors in regression models in-

clude kernel and wavelet estimation. Oracle kernel estimators are found in Hall

and Hart (1990), and Csorgo and Mielniczuk (1995). In these papers optimal

rates have been derived using a bandwidth which depends on the smoothness of

the unknown function f .

On the other hand, wavelet thresholding methods achieve near optimal prop-
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erties in an adaptive fashion i.e. in wavelet regression the fine tuning parame-

ters do not depend on the regression function smoothness. Oracle and adaptive

wavelet estimation in regression with correlated errors have been derived in Wang

(1996), Wang (1997), Johnstone and Silverman (1997), Johnstone (1999) and Li

and Xiao (2007). Most of these results have been established with respect to the

mean integrated square error (L2-loss).

Another key feature of wavelet methods is to provide adaptiveness with re-

spect to various Lp-metrics. Among other approaches the maxiset paradigm

has been used successfully to study wavelet thresholding algorithms in various

settings, see e.g. Kerkyacharian and Picard (2000), Kerkyacharian and Picard

(2002), Autin (2006), Rivoirard (2004) and Johnstone, Kerkyacharian, Picard

and Raimondo (2004). In the case where the regression errors are independent,

optimal rates and adaptive near-optimal Lp-estimation is now well understood.

For example when the regression function belongs to a Besov class Bsπ,r, it is

known that there is an elbow in the rates at s = 1
2( pπ −1) when p > 2+π, see e.g.

Kerkyacharian and Picard (2000). In this paper we follow the maxiset approach

to study the regression model when the errors are correlated. Our main result

shows that there is an elbow in rate results at s = α
2 ( pπ − 1) when p > 2

α +π. For

general p it agrees with the literature in the case of independent errors (α = 1)

and for p = 2 with the correlated noise setting of Wang (1996).

The paper is organised as follows. We present our rate results in the contin-

uous and discrete regression model scenarios, and draw a parallel with certain

inverse problems where similar elbow phenomenom arise. The mathematical

appendix is available online http://www.stat.sinica.edu.tw/statistica.

2 Preliminaries

2.1 Non-parametric regression with LRD errors

Let {Xi, i ≥ 1} be a stationary Gaussian, zero mean and unit variance sequence

satisfying

ρm := EX0Xm ∼ Lm−α, (2.1)

where fm ∼ gm means limm fm/gm = 1, α ∈ (0, 1] and L is a finite and positive

constant.
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The aim of this paper is to estimate a function f arising in a nonparametric

regression model with fixed-design:

Yi = f(ui) +Xi, ui = i/n, i = 1, . . . , n. (2.2)

2.2 Asymptotic model

Long-Range-Dependence can also be described in the continuous setting. As in

Wang (1996), we consider the Fractional Gaussian Noise (FGN) model,

dYt = f(t)dt+ εαdBH(t), t ∈ I = [0, 1], (2.3)

where BH(t) is a standard Fractional Brownian Motion (FBM). That is BH(t)

is a zero mean Gaussian process with covariance,

r(s, t) =
1
2

(|s|H + |t|H − |t− s|2H), s, t ∈ I. (2.4)

The parameter H = 1 − α/2 belongs to [1/2, 1). The noise level in (2.3) is εα

with ε = n−1/2.

2.3 Besov classes

The regression function f is defined on the unit interval I = [0, 1]. To avoid

edge problems and unnecessary technicalities arising in defining wavelet basis

on the interval, we will further assume that f is periodic on I = [0, 1] and

present our results using the periodised Meyer wavelet basis. We believe that

similar rate results may be achieved without the periodic assumption using other

wavelet families provided that the wavelet function has enough regularity. Let

φ, ψ denote the periodised Meyer scaling and wavelet function, see e.g. Mallat

(1998), Meyer (1990). In the periodic setting, we recall that Besov spaces are

characterised by the behaviour of the wavelet coefficients

Definition 2.1 For f ∈ Lπ(I),

f =
∑
j,k

βj,kψj,k ∈ Bsπ,r(I) ⇐⇒
∑
j≥0

2j(s+1/2−1/π)r[
∑

0≤k≤2j

|βj,k|π]r/π <∞. (2.5)

As usual ψj,k(x) = 2j/2ψ(2j −k) denotes the dilated and translated version of ψ,

and βj,k =
∫ 1

0 f(u)ψj,k(u)du is the associated wavelet coefficient. The parameter



4 RAFA L KULIK AND MARC RAIMONDO

s can be thought of as related to the number of derivatives of f . With different

values of π and r, the Besov spaces capture a variety of smoothness features in

a function including spatially inhomogeneous behaviour.

2.4 Non-linear wavelet estimation

Our estimator is based on hard thresholding of a wavelet expansion as follows

(here and in the sequel κ will denote the multiple index (j, k) and ψ−1 = φ),

f̂n =
∑
κ∈Λ

β̂κ ψκ II{|β̂κ| ≥ λ} (2.6)

where the threshold parameter λ and index range Λ will be specified later, and

β̂κ is an estimator of the wavelet coefficient βκ. In the discrete model (2.2), we

set

β̂Dκ :=
1
n

n∑
i=1

ψκ(ui)Yi, (2.7)

in the continuous model (2.3), we set

β̂Cκ :=
∫
ψκ(t)dYt. (2.8)

2.5 Sequence FGN model

Applying the Meyer Wavelet transform to the data (2.3),∫
ψκ(t)dYt =

∫
f(t)ψκ(t)dt+ εα

∫
ψκ(t)dBH(t)

which we write as

β̂Cκ = βκ + εασjzκ, (2.9)

where, as in Wang (1996), σ2
j = V ar(

∫
ψκ(t)dBH(t)) and zκ are (weakly) corre-

lated Gaussian random variables with variance 1 and

σj = τ2−j(1−α)/2,

where τ is a scaling parameter which depends on ψ and α,

τ2 = τ2
A = (1− α

2
)(1− α)

∫ 1

0

∫ 1

0
ψ(u)ψ(v)|u− v|−α du dv. (2.10)

A similar model was used in Johnstone (1999).
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3 Wavelet regression with correlated errors

3.1 A maxiset approach

The connection between regression with LRD-errors and certain inverse prob-

lems has been made in Johnstone (1999) and is further discussed in section 3.4.

The sequence space representation (2.9) illustrates both the similarities: such

as a level-dependent variance and the differences: such as a LRD index depen-

dent noise level. Here we tune the non-linear wavelet approximation (2.6) for

regression with LRD-errors in a fashion similar to that of the WaveD method of

Johnstone, Kerkyacharian, Picard and Raimondo (2004). In particular we fol-

low a maxiset approach and use a level-dependent threshold together with a fine

resolution level which depends on the LRD index α.

Fine resolution level. The range of resolution levels (frequencies) where the ap-

proximation (2.6) is used:

Λn = {(j, k), −1 ≤ j ≤ j1, 0 ≤ k ≤ 2j}, (3.1)

here j1 is the finest resolution level which we set to be

2j1 =
( n

log n

)α
. (3.2)

Threshold. The threshold value λ = λj has three input parameters:

λj = η σj cn (3.3)

• η: η >
√

8α
√

2 ∨ p.

• σj : a level-dependent scaling factor, as in section 2.5 we set

σj = τ 2−j(1−α)/2, (3.4)

where τ2 = τ2
A, see (2.10), in the asymptotic model and

τ2 = τ2
D = L

∫ 1

0

∫ 1

0
ψ(u)ψ(v)|u− v|−α du dv, (3.5)

in the discrete model, L depends on the error distribution, see (2.1).

• cn: a sample size-dependent scaling factor:

cn = (log n)
1
2 n−

α
2 . (3.6)
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3.2 Rate results in the asymptotic model

First we present our rate results in the asymptotic model (2.3).

Theorem 3.1 Consider (2.3) with ε = n−1/2, and wavelet estimator (2.6) with

(2.10), (3.2), (3.3), (3.4), and (3.6). Assume that p > 1, f ∈ Bsπ,r with s ≥ 1
π ,

then there exists a constant C > 0 such that for all n ≥ 0,

E
∥∥∥f − f̂n

∥∥∥p
p
≤ C

((log n)
1
α

n

)γ
,

with

γ =
αsp

2(s+ α
2 )
, if s ≥ α

2
(
p

π
− 1), (3.7)

s−
(

1
π
− 1
p

)
+

>
s

2s+ α
, (3.8)

and

γ =
αp(s− 1

π + 1
p)

2(s− 1
π + α

2 )
, if

1
π
< s <

α

2
(
p

π
− 1). (3.9)

Remark 3.1 The two rate regimes (3.7) and (3.9) are usually referred as the

’dense’ and ’sparse’ phase, see e.g. Kerkyacharian and Picard (2000) in the iid

case or Kerkyacharian, Picard and Tribouley (1997) in the density case. Our

results show that the boundary region s = α
2 ( pπ − 1) depends on the LRD index

α, and the sparse region is smaller for dependent data.

Remark 3.2 For α = 1 our rate results agree with results obtained in the re-

gression model with independent errors (cf. Theorem 6.1 in Kerkyacharian and

Picard (2000)). For α < 1 our rate results in the sparse phase seems to be new in

the regression setting. From (3.9) we see that the condition p > 2
α +π is required

for the sparse regime to be visible.

Remark 3.3 Our estimator is adaptive with respect to the smoothness class as

our tuning paradigm does not depend on s. At present the method is not adaptive

with respect to the LRD parameter α as both the fine resolution parameter (3.2)

and threshold scaling value (3.4) depend on α. We believe that it is possible

to develop a tuning paradigm which does not involve α, using a fourier domain

stoping rule and random thresholds as in Cavalier and Raimondo (2007).
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3.3 Rate results in the discrete model

We now state our results in the discrete model (2.2).

Theorem 3.2 Consider (2.2), and wavelet estimator (2.6) with (3.2), (3.3),

(3.4), (3.6) and scaling factor

τ2 = τ2
D = L

∫ 1

0

∫ 1

0
ψ(u)ψ(v)|u− v|−α du dv,

then rate results of theorem 3.1 hold.

Remark 3.4 The proofs of theorems 3.1 and 3.2 are based on the maxiset the-

orem from Kerkyacharian and Picard (2000) with details given in the online

Appendix. The technical novelties appear in moment bounds and large devia-

tion results for wavelet coefficients which we establish under LRD. The maxiset

approach allows model-specific choice of the thresholding constant. This clarifies

the effect of LRD on the threshold. About (3.5) and (2.10), note that the FGN

model is obtained by taking the limit of standardized partial sums

1√
Var(

∑n
i=1Xi)

n∑
i=1

Xi

and then thresholding is applied. On the other hand, in the discrete model,

thresholding is applied to original data directly. Of course the constants τA and

τD agree in the special case where Xi is defined as increments of BH(·), i.e.

Xi = BH(i) − BH(i − 1). Alternative approaches show that if one starts from

the discrete model the resulting noise variables in the continuous model (2.9)

are asymptotically weakly dependent, either via fast decaying covariances (Wang

(1996)), or mixing properties (Johnstone (1999)). In this fashion Wang (1996)

has established the asymptotic equivalence of the discrete model (2.2) with the

continuous model (2.3) for the quadratic minimax risk. Whether such equivalence

extends to general Lp error measures, as indicated by our rate results, is an issue

for future work.

Remark 3.5 The algorithm of Donoho and Raimondo (2004) (see WaveD soft-

ware package, Raimondo and Stewart (2007)) may be used to study the numerical

performances of the estimator (2.6). This is under investigation by the authors.
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3.4 Connection with certain inverse problems in white noise

We give some heuristic arguments which suggest that the rate results (3.7) and

(3.9) are near optimal. As in Wang (1996), Johnstone (1999), Cavalier (2004) we

make a connection between regression in LRD noise and certain inverse problems.

We use the wavelet decomposition of FGN by Meyer, Sellan and Taqqu (1999),

referring to this paper for details. In an attempt to stay as close as possible to

their original construction we shall, from now on, consider functions f ∈ L2(IR)

and denote (φ, ψ) a Meyer wavelet basis of L2(IR). We conjecture that most

arguments below extend to the periodic setting, as in Johnstone, Kerkyacharian,

Picard and Raimondo (2004). For any d ∈ IR, let Dd
. denotes the operator, which

in Fourier domain is defined by

D̂d
f (ω) := (i ω)d f̂(ω). (3.10)

For d > 0 this corresponds to fractional differentiation and for d < 0 to fractional

integration. We set ψ(d) := Dd
ψ i.e.

ψ̂(d)(ω) = (i ω)d ψ̂(ω), (3.11)

in the Fourier domain. In the time domain, for any κ = (j, k), we set

ψ(d)
κ (x) = ψ

(d)
j,k (x) := 2j/2ψ(d)(2jx− k). (3.12)

We recall that the (ψ(d)
κ )’s are biorthogonal i.e.∫

ψ(d)
κ (x)ψ(−d)

κ′ (x)dx = 1 only if κ = κ′ and 0 otherwise. (3.13)

With a similar definition for φ(d). Let d = H − 1/2 = (1− α)/2,

dBH(t) =
∑
k

zk φ
(−d)(t− k) +

∑
j

∑
k

2−jd zj,k ψ
(−d)
j,k (t), (3.14)

where zj,k are iid standard normal and zk is a discrete-time fractional ARIMA.

Introducing vaguelettes:

Uκ(t) = Uj,k(t) := 2jd ψ(d)
j,k (t), (3.15)

which standardise noise contributions in sequence domain, using (3.13) and (3.14),

〈dBH ,Uκ〉 = 2jd 2−jd〈ψ(d)
κ , ψ(−d)

κ 〉 zκ = zκ ∼ N (0, 1), (3.16)
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moreover the zκ = zj,k’s are independent. Applying this in (2.3),

yκ := 〈dY,Uκ〉 = θκ + εαzκ, (3.17)

where by Plancherel, Hermitien symmetry, (3.11) and (3.15)

θκ =
∫
f(t)Uκ(t)dt =

∫
f̂(ω)[Ûκ(ω)]∗dω =

∫
f̂(ω)(−iω)d ψ̂∗κ(ω)dω.

Hence θκ can be interpreted as θκ =
∫
Kf (t)ψκ(t)dt where Kf is the operator

defined in Fourier domain by K̂d
f (ω) = (− i ω)d f̂(ω). This shows that, in wavelet

sequence space (3.17), the model (2.3) is equivalent to

dYt = Kf (t)dt+ ξdB(t), t ∈ [0, 1], (3.18)

where Kf is a fractional differentiation operator, B(t) is a Gaussian white noise

and the noise level ξ = εα. Introducing

Vκ := 2−jd ψ(−d)
j,k (t), (3.19)

using (3.13), (3.15) and (3.19) we see that the system Uκ,Vκ is biorthogonal.

Further, each of the systems Uκ, Vκ forms a Riesz basis, see Meyer, Sellan and

Taqqu (1999). Thus, the system Uκ,Vκ yields the wavelet vaguelette decompo-

sition (WVD) of Kf , see Donoho (1995). For such operators or certain smooth

convolutions, where the kernel k(t) satisfies |k̂(ω)| ∼ |ω|d, it is customary to de-

fine the Degree of Ill-posedness (DIP) as ν = −d so that |k̂(ω)| ∼ |ω|−ν agrees

with the standard WVD representation where the optimal rate over Besov balls,

is r(ξ) = ξ2γ ,

γ =
sp

1 + 2(s+ ν)
, if s ≥ (2ν + 1)(

p

2π
− 1

2
) (3.20)

and

γ =
(s− 1/π + 1/p)p

1 + 2(s+ ν − 1/π)
, if

1
π
< s < (2ν + 1)(

p

2π
− 1

2
). (3.21)

See Donoho (1995), Johnstone, Kerkyacharian, Picard and Raimondo (2004),

Cavalier and Raimondo (2007), Hoffmann and Reiss (2008).

Remark 3.6 The parallel between (2.3) and (3.18) holds with d = (1 − α)/2.

For α ∈ (0, 1], the DIP ν = −d = (α− 1)/2 is in the negative range −1
2 < ν ≤ 0,

whereas, typically, inverse problems are considered for ν > 0 (ν = 0 representing
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the direct case). We note, for example, that rate results (3.20) and (3.21) of

Johnstone, Kerkyacharian, Picard and Raimondo (2004) can be extented to cover

ν > −1
2 since, in this case, inverting the operator reduces the noise variance. As

a result, for −1/2 < ν ≤ 0 the rates (3.20) and (3.21) are faster than in the direct

case (ν = 0). We shall refer to the region where −1/2 < ν ≤ 0 as the fast zone

and ν > 0 as the slow zone. A similar rate phenomenom, with negative DIP,

arises in certain Berkson errors-in-variables models, see e.g. Delaigle (2007).

Remark 3.7 Donoho (1995) has established optimality properties of WVD for

inverse problems (3.18) where Kf is a fractional integration operator. In this

scenario, the WVD “inverses” Kf by applying a differentiation operator which,

in Fourier domain representation (3.10) corresponds to d > 0, and leads to

vaguelette (3.15). Unlike the case of FGN (2.3), applying the vaguelette trans-

form (3.15) to (3.18) inflates the noise by a multiplicative scale of order 2jν where

ν = d > 0 is, for obvious reason, called the Degree of Ill Posedness. Our approach

is similar, albeit twofold and reverse. First, we apply vaguelette transform (3.15)

to FGN (2.3) which leads to inverse model (3.18) where Kf is a differentiation

operator. In a second step, we apply the WVD paradigm to the differential op-

erator Kf using biorthogonal vaguelette transform (3.19) in (3.18); this affects

the noise scale by a multiplicative factor of order 2jν , but this time ν = −d < 0

corresponds to a negative DIP which reduces the noise variance.

Epilogue. Recall that the parallel between (2.3) and (3.18) holds with ν = −d =

(α − 1)/2, so that we are always in the fast zone −1/2 < ν ≤ 0. At first this

may seem surprising since for α > 0 the rates, at noise level ξ, are faster than in

the independent case α = 1. However, in the parallel between (2.3) and (3.18)

one has to adjust the noise level to ξ = εα, so that the detrimental effect of LRD

is concentrated on the noise level εα which tends to zero at a much slower rate

when α ∈ (0, 1) than in the independent errors scenario (α = 1). Finally, we note

that with ν = (α − 1)/2 and ξ = εα = n−α/2, the rates (3.20) and (3.21) agree,

up to log terms, with our rate results (3.7) and (3.9).
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4 Online appendix: proof of theorems 3.1 and 3.2

The proofs of theorems 3.1 and 3.2 are based on the maxiset theorem from

Kerkyacharian and Picard (2000). The steps are similar to those of Johnstone,

Kerkyacharian, Picard and Raimondo (2004). The technical novelties appear in

moment bounds and large deviation results for wavelet coefficients (2.7), (2.8)

which we establish under LRD assumption.

4.1 Maxiset Theorem

The following theorem is borrowed from Kerkyacharian and Picard (2000). We

refer to section 4.4 for the definition of Temlyakov property. First, we introduce

some notation: µ will denote the measure such that for j ∈ IN, k ∈ IN,

µ{(j, k)} = ‖σjψj,k‖pp = σpj 2
j( p

2
−1)‖ψ‖pp (6.1)

lq,∞(µ) =

{
f, sup

λ>0
λqµ{(j, k) : |βj,k| > σjλ} <∞

}
(6.2)

Theorem 4.1 Let p > 1, 0 < q < p, { ψj,k, j ≥ −1, k = 0, 1, ..., 2j} be a

periodised wavelet basis of L2(I) and σj be a positive sequence such that the

heteroscedastic basis σjψj,k satisfies Temlyakov property. Suppose that Λn is a

set of pairs (j, k) and cn is a deterministic sequence tending to zero with

sup
n

µ{Λn} cpn <∞. (6.3)

If for any n and any pair κ = (j, k) ∈ Λn, we have

E|β̂κ − βκ|2p ≤ C (σj cn)2p (6.4)

P
(
|β̂κ − βκ| ≥ η σj cn/2

)
≤ C (c2p

n ∧ c4
n) (6.5)

for some positive constants η and C then, the wavelet based estimator

f̂n =
∑
κ∈Λn

β̂κ ψκ II{|β̂κ| ≥ η σj cn} (6.6)

is such that, for all positive integers n,

E‖f̂n − f‖pp ≤ C cp−qn ,
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if and only if :

f ∈ lq,∞(µ), and, (6.7)

sup
n
cq−pn ‖ f −

∑
κ∈Λn

βκψκ‖pp <∞. (6.8)

This theorem identifies the ’Maxiset’ of a general wavelet estimator of the form

(6.6). This is done by using conditions (6.7) and (6.8) for an appropriate choice

of q. In the proof of the theorems we will choose q according to the dense or

sparse regime by setting:

q = qd :=
αp

2s+ α
, when s ≥ α

2

( p
π
− 1

)
(6.9)

q = qs :=
αp
2 − 1

s− 1
π + α

2

, when s <
α

2

( p
π
− 1

)
. (6.10)

4.2 Moment bounds and large deviation estimates in fBM model

Here β̂κ = β̂Cκ , see (2.8). In what follows C denotes a generic constant which does

not depends on n but may change from line to line. From (2.9) with ε = n−1/2,

(3.4) and (3.6) it follows that Eβ̂κ = βκ and

Varβ̂κ = Var(εα
∫
ψκ(t)dBH(t)) = n−α2−j(1−α)τ2 ≤ Cσ2

j c
2
n.

Since the rv’s β̂κ−βκ are Gaussian higher moments bound (6.4) follows from the

previous inequality. Similarly,

Pr
(
|β̂κ − βκ| > ησj cn/2

)
≤ exp

(
− log n

η2

8

)
≤ C (c2p

n ∧ c4
n) (6.11)

provided η >
√

8α
√
p ∨ 2. Which proves (6.5).

4.3 Moment bounds and large deviation estimates in the discrete

model

Here β̂κ = β̂Dκ , see (2.7). Write

β̂κ − βκ = β̂κ − Eβ̂κ + Eβ̂κ − βκ

=
1
n

n∑
i=1

Xiψκ(ui) +

(
1
n

n∑
i=1

f(ui)ψκ(ui)− βκ

)
.
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The main tool to derive rates of convergence is the following lemma. To

establish moments bounds we do not assume that Xi’s are Gaussian. These

estimates may be of independent interest.

Lemma 4.2 For each fixed j and k, and p > 1,

E(β̂κ − βκ)2 ∼ 2−j(1−α)n−ατ2
D, (6.12)

E
∣∣∣β̂κ − βκ

∣∣∣p = O
(
n−αp/22−jp(1−α)/2

)
. (6.13)

If moreover Xi’s are Gaussian, then for all λ > n−1,

Pr
(
|β̂κ − βκ| > λ

)
≤ n−α/22−j(1−α)/2

λ
exp

(
− λ2

2(n−α2−j(1−α)τ2
D)

)
. (6.14)

To prove this lemma we will replace βκ with β̂κ and use |Eβ̂κ − βκ| = O(n−1).

(Note that this just the distance between the integral
∫
f(x)ψκ(x) dx and the

Riemann-Stjeltjes sum.

Proof:

Note that
n∑
i=1

ψ2
κ(ui) = 2j

n∑
i=1

ψ2
(

2j
i

n
− k

)
= 2jn

∫ 1

0
ψ2(2jx)dx+ o(n) = n+ o(n). (6.15)

Bearing in mind that Var(Xi) = E(X2
1 ) = 1 we have:

E(β̂κ − Eβ̂κ)2 = Var

(
1
n

n∑
i=1

Xiψκ(ui)

)

=
1
n2

 n∑
i=1

ψ2
κ(ui) +

∑
i6=l

ψκ(ui)ψκ(zl)Cov(Xi, Xl)

 .
By (6.15) above, the first part is of order n−1 + o(n−1). For the second part we

have ∑
i6=l

ψκ(ui)ψκ(zl)Cov(Xi, Xl)

=
∑
i6=l

2j |i− l|−αψ
(

2j
i

n
− k

)
ψ

(
2j
l

n
− k

)

= L2jn−α
∑
i6=l

∣∣∣∣ in − l

n

∣∣∣∣−α ψ (2j
i

n
− k

)
ψ

(
2j
l

n
− k

)
,
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which behaves asymptotically as 2−j(1−α)n2−ατ2
D.

Further, the first part dominates the second one if and only if 2j > n, which

is not possible. Thus (6.12) follows.

To prove (6.13), let

br =
n∑
i=r

ai−rψκ(ui), r = 1, . . . , n,

br =
n∑
i=1

ai−rψκ(ui), r = −∞, . . . , 0.

Also, note that by (6.12),

v2
n := Var

(
n∑

r=−∞
εrbr

)
=

n∑
r=−∞

b2r = Var

(
n∑
i=1

Xiψκ(ui)

)

and thus

v2
n/(n

2−α2−j(1−α)τ2
D) → 1 (6.16)

as n→∞.

Note now that each Gaussian sequence (2.1) can be represented as

Xi =
∞∑
m=0

amεi−m, i ≥ 1, (6.17)

where am is a regularly varying sequence with index −(α + 1)/2 and {εi, i ≥ 1}
is a centered sequence of i.i.d. random variables. Via Rosenthal inequality, for

p ≥ 2

E
∣∣∣β̂κ − Eβ̂κ

∣∣∣p = E

∣∣∣∣∣ 1n
n∑
i=1

Xiψκ(ui)

∣∣∣∣∣
p

= n−pE

∣∣∣∣∣
∞∑
m=0

am

n∑
i=1

εi−mψκ(ui)

∣∣∣∣∣
p

= n−pE

∣∣∣∣∣
n∑

r=−∞
εrbr

∣∣∣∣∣
p

≤ n−p
(

n∑
r=−∞

b2r

)p/2
+ n−p

n∑
r=−∞

|br|p

≤ n−p
(

n∑
r=−∞

b2r

)p/2
+ n−p sup

r
|br|p−2

n∑
r=−∞

b2r

= n−pO

((
n2−α2−j(1−α)

)p/2)
+ n−pnp/2−1O

(
n2−α2−j(1−α)

)
= O

(
n−αp/22−jp/2(1−α) + n1−α−p/22−j(1−α)

)
.
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The second term is negligible for all j such that 2j ≤ n.

To prove (6.14) note that
∑n
i=1Xiψκ(ui) ∼ N (0, v2

n). Thus,

Pr
(
|β̂κ − Eβ̂κ| > λ

)
≤ C

vn
nλ

exp

(
−n

2λ2

2v2
n

)
.

and the result follows by (6.16). �

Consequently,

E
∣∣∣β̂κ − βκ

∣∣∣p = O
(
n−αp/22−jp/2(1−α)

)
= O(σpj c

p(n)) (6.18)

and taking λ = λj = ησjcn,

Pr
(
|β̂κ − βκ| > ησjcn/2

)
≤ exp

(
− log n

η2

8

)
= O(c2p

n ) (6.19)

provided η >
√

8pα. The similar argument applies to 1 < p < 2. In this case we

require η >
√

16α.

4.4 Temlyakov property

As seen in Johnstone, Kerkyacharian, Picard and Raimondo (2004, appendix A),

the basis (σjψj,k(.)) satisfies Temlyakov property as soon as∑
Λn

2j σ2
j ≤ C sup

Λn

(
2jσ2

j

)
,

and ∑
Λn

2jp/2 σpj ≤ C sup
Λn

(
2jp/2σpj

)
, 1 ≤ p < 2,

which is clearly satisfied when σ2
j = τ2 2−j(1−α), as prescribed in (3.4).

4.5 Fine resolution tuning

Here we check that condition (6.3) is satisfied. Using (3.4) and (6.1),

µ(Λn) =
∑
j≤j1

2j−1∑
k=0

µ(j, k) =
∑
j≤j1

2jµ(j, k) = τp
∑
j≤j1

2j 2j(
p
2
−1− p(1−α)

2
) = O(2

j1
2 )
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from (3.2) and (3.6), with p > 1,

µ(Λn)cpn =
( n

log n

)α
2
((log n)

1
2

n
αp
2

)
= O

(
cp−1
n (

log n
(log n)α

)
1
2

)
= o(1),

which shows that condition (6.3) is satisfied.

4.6 Besov embedding and Maxiset condition (Part I)

For both the dense (6.9) and sparse (6.10) regime, we look for a Besov scale δ

such that

Bδπ,r ⊆ lq,∞. (6.20)

As usual we note that it is easier to work with

lq(µ) =

f ∈ Lp : f =
∑

j,k∈Aj

|βjk|q

σqj
‖σjψj,k‖pp <∞

 ,
where Aj is a set of cardinality proportional to 2j . Using (3.4) and ‖σjψj,k‖pp =

σpj 2j(
p
2
−1) = 2j(

αp
2
−1), we see that f ∈ lq(µ) if

∑
j≥0

2j
(αp−2+(1−α)q)

2

2j−1∑
k=0

|βj,k|q =
∑
j≥0

2
jq

[
α(p−q)

2q
+ 1

2
− 1

q

]
2j−1∑
k=0

|βj,k|q < +∞.

From (2.5), the latter condition holds when f ∈ Bδq,q for

δ =
α

2

(p
q
− 1

)
. (6.21)

Now depending on whether we are in the dense (6.9) or sparse phase (6.10) we

look for s and π such that

Bsπ,r ⊆ Bδq,q. (6.22)

The dense phase. By definition (6.9) of q = qd we have π ≥ qd. Hence (6.22)

follows from (6.26) as long as s ≥ δ = α
2 (pq − 1) which is always true under the

dense regime where q = qd. Note that δ = α
2 ( pqd − 1) = s, thus automatically

δ > 0.

The sparse phase. Take q = qs and δ = α
2

(
p
qs
− 1

)
= α

sp− p
π

+1

αp−2 . We consider

two cases. If π > qs we use the embedding (6.26). We have to check that

s > α
sp− p

π
+1

αp−2 which is equivalent to s < α
2

( p
π − 1

)
, which is true in the sparse
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case. Further, we must guarantee that δ > 0 which leads to the two conditions

i) p > 2/α and s > 1
π −

1
p or ii) p < 2/α and s < 1

π −
1
p . However, the last one is

not relevant since we have s > 1
π . Thus we established (6.22) for qs < π < qd.

If π < qs we introduce a new Besov scale s′ and index q = qs such that

s− 1
π

= s′ − 1
q
, s′ =

α

2

(p
q
− 1

)
. (6.23)

In this case, (6.27) and (6.21) ensures that

Bsπ,r ⊆ Bs′q,q ≡ lq(µ),

as had to be proved. Solving (6.23) yields definition (6.10) of q under the sparse

regime.

4.7 Besov embedding and Maxiset condition (Part II)

First we look for a Besov scale δ such that for any f ∈ Bδp,r the maxiset condition

(6.8) is satisfied. Using (3.1), (3.2) it follows

cq−pn ‖f −
∑
κ∈Λn

βκΨκ‖pp = cq−pn 2−j1δp ‖f‖Bδ
p,r

= O
(
cq−p+2δp
n (

(log n)α

log n
)δp
)
.

Thus condition (6.7) holds for any f ∈ Bδp,r if

δ =
1
2

(1− q

p
). (6.24)

Now we look for s and π such that

Bsπ,r ⊆ Bδp,r. (6.25)

To answer this question, we will use two different types of Besov embedding,

depending on whether π ≥ p or π < p. We recall that

Bsπ,r ⊆ Bs′′p,r, provided that π ≥ p, and s ≥ s′′. (6.26)

Bsπ,r ⊆ Bs′′p,r, provided that π < p, and s− 1
π

= s′′ − 1
p
. (6.27)

The case π ≥ p. We note that in this case we are always in the dense phase

since s must be non-negative. Here we use (6.26) with s′′ = δ at (6.24). Hence
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we see that (6.25) holds as long as s ≥ 1
2(1− q

p). Using definition (6.9) of q = qd

this will happen when s ≥ 1−α
2 .

The dense case when π < p. Here we introduce a new Besov scale s′′ such

that s − 1
π = s′′ − 1

p and use embedding (6.27). For (6.25) to hold in the dense

case we need s′′ ≥ δ for q = qd at (6.9), we obtain the following condition:

s ≥ 2
2s+ α

+
1
π
− 1
p
. (6.28)

The sparse case when π < p. Here we introduce a new Besov scale s′′ such

that s− 1
π = s′′ − 1

p and use embedding (6.27). For (6.25) to hold in the sparse

case we need s′′ ≥ δ for q = qs at (6.10), we obtain the following condition:

s >
1
π
− α

2

which is always true since s > 1
π .

4.8 Proof of theorem 3.1 and theorem 3.2

The proof(s) are a direct application of theorem 4.1 with σj , cn and η given in sec-

tions 3.1. Combining results of sections 4.4,...,4.7 we see that all the assumptions

theorem 4.1 are satisfied. Using the embedding results of section 4.6 we derive

rate exponent (3.7) for any f ∈ Bsπ,r from definition (6.9) of q when s ≥ α
2 ( pπ −1).

Finally we derive rate exponent (3.9) for any f ∈ Bsπ,r using definition (6.10) of

q when 1
π −

1
p < s < α

2 ( pπ − 1).


