
Weak invariance principle for mixing sequences in the

domain of attraction of normal law

R.M. Balan∗ R. Kulik †

July 16, 2007

Abstract

In this article we prove a weak invariance principle for a strictly station-
ary φ-mixing sequence {Xj}j≥1, whose truncated variance function L(x) :=
EX2

1
1{|X1|≤x} is slowly varying at ∞ and mixing coefficients satisfy the loga-

rithmic growth condition:
∑

n≥1
φ1/2(2n) < ∞. This will be done under the

condition that limn Var(
∑n

j=1
X̂j)/[

∑n
j=1

Var(X̂j)] = β2 exists in (0,∞),

where X̂j = XjI{|Xj |≤ηj} and η2

n ∼ nL(ηn).
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1 Introduction

Let {Xj}j≥1 be a sequence of independent identically distributed random vari-
ables with E(X1) = 0, and let Sn =

∑n
j=1 Xj, V 2

n =
∑n

j=1 X2
j . A long-standing

conjecture of [10], which was recently proved in [9], states that the self-normalized
central limit theorem:

Sn

Vn

d−→ N(0, 1) (1)

holds true if and only if the distribution of X1 lies in the domain of attraction of
the normal law, i.e.

(DAN) L(x) = EX2
11{|X1|≤x} is slowly varying at ∞

Other self-normalized fluctuation results for sequences of independent observa-
tions have been proved by various authors; we refer to [9] and the references
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therein. A common feature of all these results is that the distributional assump-
tions under which a self-normalized limit theorem would hold are in general milder
than the assumptions of the corresponding classical limit theorem; in particular,
most of these results do not require that the variance be finite.

The recent paramount result of [8] showed that if (DAN) holds, then it is
possible to redefine the sequence {Xj}j≥1 on a larger probability space together
with a standard Brownian motion W = {W (t)}t∈[0,∞) such that

sup
t∈[0,1]

∣

∣

∣

∣

S[nt]

Vn
− W (nt)√

n

∣

∣

∣

∣

= oP (1). (2)

Recall that a sequence {Xj}j≥1 of random variables is called φ-mixing if φ(n) :=
supk≥1 φ(Mk

1 ,M∞
k+n) → 0 as n → ∞, where M

b
a denotes the σ-field generated by

Xa, Xa+1, . . . , Xb and

φ(Mk
1 ,M∞

k+n) := sup{|P (B|A) − P (B)|;A ∈ M
k
1 , B ∈ M

∞
k+n}.

In the present paper we prove that a weak invariance principle similar to
(2) continues to hold under (DAN), in the case of a strictly stationary φ-mixing
sequence {Xj}j≥1 whose mixing coefficients φ(n) satisfy the “logarithmic rate”
condition:

(L)
∑

n≥1

φ1/2(2n) < ∞.

To our knowledge, the only results that are available in the literature in this
general framework are the central limit theorem of [6], its “functional” version
found in [19], and a recent strong approximation result due to [1].

We note in passing that there is an immense amount of literature dedicated
to (both classical and self-normalized) limit theorems for mixing sequences with
finite variance; see [7] for an excellent review of the classical results, and [3], [14],
[15], [16] for some self-normalized results.

We begin by noting that in the case of a φ-mixing sequence, one cannot obtain
exactly (2), even if the variance is finite. To see this, assume that {Xj}j≥1 is a
strictly stationary φ-mixing sequence such that EX1 = 0, EX2

1 = σ2 < ∞ and
(L) holds. Let Sn =

∑n
j=1 Xj and σ2

n = E(S2
n). Assume σ2

n → ∞. The following
facts are well-known:

(i)
Sn

σn

d−→ N(0, 1) and (ii)
Vn

σ
√

n
P−→ 1

((i) was proved in [11], while (ii) can be proved using standard methods). There-
fore the fact that

lim
n→∞

σn

σ
√

n
:= β exists in (0,∞)

(which was proved in [5] using a procedure specific to the finite variance case),
allows us to conclude that the central limit theorem for a φ-mixing sequence with
finite variance should be of the form

Sn

βVn

d−→ N(0, 1). (3)
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In the present paper, we adapt this method of identifying a suitable normalizer
β for which (3) holds, to the case when the variance may not exist, but (DAN)
holds. Our method relies on the truncation technique of [8] and [1], which differs
slightly from that of [6] and [19]. More precisely, let

ηn = inf

{

s ≥ 1;
L(s)

s2
≤ 1

n

}

(4)

and note that η2
n ∼ nL(ηn). We define

X̂j = XjI{|Xj |≤ηj}, Ŝn =
n
∑

j=1

X̂j , A2
n = Var(Ŝn), B2

n =
n
∑

j=1

Var(X̂j).

The following result lies at the origin of our developments: its part (a) is
an immediate consequence of the central limit theorem of [6], mentioned above
(details are given in the Appendix); part (b) is our Proposition 2.3 (Section 2).

Theorem 1.1 Let {Xj}j≥1 be a strictly stationary sequence of nondegenerate
random variables such that EX1 = 0 and (DAN) holds. Let Sn =

∑n
i=1 Xi.

Suppose that φ(1) < 1/4 and the mixing coefficients satisfy (L). Then

(a)
Sn

An

d−→ N(0, 1) and (b)
Vn

Bn

P−→ 1.

An immediate consequence of the previous theorem is that if

(C) lim
n→∞

An

Bn
:= β exists in (0,∞),

then relation (3) holds. (It is also clear that if (3) holds for a certain constant
β > 0, then limn An/Bn exists in (0,∞) and has to be equal to β.)

Using standard techniques, it can be proved that condition (C) holds true if
the mixing coefficients satisfy the following “polynomial rate” condition:

(P)
∑

n≥1

φ1/2(n) < ∞

(see [2] for details). Proving that condition (C) holds true in the case of a φ-
mixing sequence whose coefficients have infinite variance and satisfy (L) remains
an open problem, which we do not attempt to solve in the present paper.

The next example shows how to construct a sequence {Xj}j≥1 with infinite
variance which satisfies the conditions of Theorem 1.1, and for which (C) holds,
but (P) fails.

Example. Let {Yj}j≥1 be a sequence which satisfies the conditions of The-
orem 1.1, {εj}j≥1 be an independent sequence of i.i.d. random variables with
P (ε1 = 1) = P (ε1 = −1) = 1/2, and Xj = εjYj, j ≥ 1. Then the sequence
{Xj}j≥1 also satisfies the conditions of Theorem 1.1 (see Theorem 5.2.(d), [7]).
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With {ηj}j≥1 given by (4), let X̂j = XjI{|Xj |≤ηj} and Ŷj = YjI{|Yj |≤ηj}. Then

X̂j = εj Ŷj , and hence EX̂j = E(εj Ŷj) = (Eεj)EŶj = 0 for all j, and

E(X̂iX̂j) = E(εiεj ŶiŶj) = (Eεi)(Eεj)E(ŶiŶj) = 0 for all i 6= j.

Therefore A2
n = E(

∑n
j=1 X̂j)

2 =
∑n

j=1 EX̂2
j = B2

n, and (C) holds (with β = 1).
We are now ready to state our main result.

Theorem 1.2 Let {Xj}j≥1 be a sequence of random variables satisfying the con-
ditions of Theorem 1.1. If (C) holds, then without changing its distribution, we
can redefine the sequence {Xj}j≥1 on a larger probability space together with a
standard Brownian motion W = {W (t)}t≥0 such that for some suitable constants
s2
k we have

sup
t∈[0,1]

∣

∣

∣

∣

∣

S[nt]

βVn
−

W (s2
[nt])

sn

∣

∣

∣

∣

∣

= oP (1).

The remaining part of the paper is dedicated to the proof of Theorem 1.2.
The argument is based on the idea of replacing the original sequence with

the truncated sequence {X̂j}j≥1, approximating the random variable V 2
n by B2

n,
establishing the weak invariance principle for the sequence {X̂j/Bn}j=1,...,n and
then proving that βBn ∼ sn. Indeed, we have the following decomposition:

max
k≤n

∣

∣

∣

∣

∣

Sk

βVn
− W (s2

k)

sn

∣

∣

∣

∣

∣

≤ max
k≤n

∣

∣

∣

∣

∣

Sk

βVn
− Ŝk − EŜk

βVn

∣

∣

∣

∣

∣

+max
k≤n

∣

∣

∣

∣

∣

Ŝk − EŜk

βVn
− Ŝk − EŜk

βBn

∣

∣

∣

∣

∣

+

max
k≤n

∣

∣

∣

∣

∣

Ŝk − EŜk

βBn
− W (s2

k)

βBn

∣

∣

∣

∣

∣

+max
k≤n

∣

∣

∣

∣

∣

W (s2
k)

βBn
− W (s2

k)

sn

∣

∣

∣

∣

∣

:= J1(n)+J2(n)+J3(n)+J4(n).

In the next three sections we treat separately each of the four terms. We should
point out that condition (C) is used only for proving that the last term is negli-
gible.

Remark on Notation: Throughout this article, we write an ∼ bn if limn an/bn =
1. We denote by |S| the cardinality of the set S, and by [x] the integer part of
the real number x. We denote by C a generic constant that may be different in
each of its appearances. We let ‖ X ‖= (EX2)1/2, for a random variable X.

2 The first two terms

In this section we treat the terms J1(n) and J2(n), using some properties of the
“tail” variables:

X̄j = XjI{|Xj |>ηj}, S̄n =
n
∑

j=1

X̄j .

Lemma 2.1 Under the conditions of Theorem 1.1,
∑n

j=1 E|X̄j | = o(ηn).
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Proof: We write
n
∑

j=1

E|X̄j | = nE|X1|1{|X1 |>ηn} +
n
∑

j=1

E|X1|1{ηj<|Xj |≤ηn}.

We have nE|X1|1{|X1|>ηn} ≤ Cη2
nL−1(ηn)E|X1|1{|X1|>ηn} = o(ηn), by Lemma

1.(c), [8], and
∑n

j=1 E|X1|1{ηj<|X1|≤ηn} = o(ηn), by relation (20) of [8]. 2

Lemma 2.2 Under the conditions of Theorem 1.1, B2
n ∼ η2

n.

Proof: We write

B2
n =

n
∑

j=1

(EX̂2
j − (EX̄j)

2) =
n
∑

j=1

L(ηj) −
n
∑

j=1

(EX̄j)
2.

We have
∑n

j=1 L(ηj) ∼ nL(ηn) by relation (9) of [8], and
∑n

j=1(EX̄j)
2 ≤ (

∑n
j=1 |EX̄j |)2 ≤

(
∑n

j=1 E|X̄j |)2 = o(η2
n) by Lemma 2.1. 2

Proposition 2.3 Under the conditions of Theorem 1.1, we have

V 2
n

B2
n

P−→ 1.

Proof: Note that

V 2
n

B2
n

− 1 =
1

B2
n

n
∑

j=1

(X̂2
j − EX̂2

j ) +
1

B2
n

n
∑

j=1

X̄2
j +

1

B2
n

n
∑

j=1

(EX̄j)
2.

By Lemma 2.1 and Lemma 2.2, it suffices to prove that

1

η2
n

n
∑

j=1

(X̂2
j − EX̂2

j )
L2

−→ 0.

For this, we note that {X̂2
j − EX̂2

j }j≥1 is a φ-mixing sequence with mixing coef-

ficient φ̂(n) ≤ φ(n). Using Lemma 2.3, [18] and Lemma 1.(d), [8], we get

1

η4
n

E





n
∑

j=1

(X̂2
j − EX̂2

j )





2

≤ C
n

η4
n

max
j≤n

E(X̂2
j − EX̂2

j )2 ≤ C
n

η4
n

EX̂4
n = o(1)

2

By Lemma 2.1, Lemma 2.2 and Proposition 2.3 we get

J1(n) =
1

βVn
max
k≤n

|S̄k − ES̄k| ≤
Bn

Vn
· 1

βBn

n
∑

j=1

(|X̄j | − E|X̄j |) = oP (1).

We have

J2(n) =

∣

∣

∣

∣

Bn

Vn
− 1

∣

∣

∣

∣

max
k≤n

|Ŝk − EŜk|
βBn

≤
∣

∣

∣

∣

Bn

Vn
− 1

∣

∣

∣

∣

(

J3(n) + J4(n) + max
k≤n

|W (s2
k)|

sn

)

and hence J2(n) = oP (1), provided that J3(n) = op(1) and J4(n) = oP (1). This
will be proved in Section 3, respectively Section 4.
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3 The third term

To treat the term J3(n), we use the blocking technique of [18]. More precisely,
let a ∈ (1/2, 1) be fixed and H1, I1,H2, I2, . . . be consecutive blocks of integers
such that

|Hi| = [aia−1 exp(ia)] and |Ii| = [aia−1 exp(ia/2)].

We denote with ui and vi the sums of the (centered) truncated variables over the
block Hi, respectively Ii, i.e.

ui =
∑

j∈Hi

(X̂j − EX̂j), vi =
∑

j∈Ii

(X̂j − EX̂j).

Let Nm =
∑m

i=1 |Hi ∪ Ii| ∼ exp(ma). Clearly, for each n there exists a unique mn

such that Nmn ≤ n < Nmn+1; we have mn ∼ (log n)a. Note that

Ŝk − EŜk =
mk
∑

i=1

ui +
mk
∑

i=1

vi +
k
∑

j=Nmk
+1

(X̂j − EX̂j). (5)

Let

σ∗2
i = Eu2

i , s∗2m =
m
∑

i=1

σ∗2
i , s2

n = s∗2mn
.

The idea is to approximate the sequence {ui}i≥1 by a sequence {Y ∗
i }i≥1 of

independent Gaussian random variables (with the same variance), and then to
prove that the remaining terms are negligible (in probability).

The desired approximation will be achieved in two steps, by using a classical
result of Berkes and Philipp [4], combined with a more recent result of Sakhanenko
[17].

Proposition 3.1 Under the hypothesis of Theorem 1.1, without changing its dis-
tribution, we can redefine the sequence {ui}i≥1 on a larger probability space to-
gether with a sequence {Yi}i≥1 of independent random variables such that Yi has
the same distribution as ui and for all m ≥ 1

|
m
∑

i=1

ui −
m
∑

i=1

Yi| ≤ C a.s. (6)

Proof: We apply Theorem 2, [4] with Xk = uk, Lk = σ(uk) and

φk := sup
A∈σ(u1,...uk−1);B∈σ(uk)

|P (B|A) − P (B)| ≤ φ(|Ik|) ≤ φ(eka/2).

We conclude that without changing its distribution, we can redefine the sequence
{uk}k≥1 together with a sequence {Yk}k≥1 of independent random variables such
that Yk has the same distribution as uk and for all k ≥ 1

P (|uk − Yk| ≥ 6φk) ≤ 6φk.
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Since (L) holds, nφ1/2(2n) = o(1), and in particular φ(2n) ≤ Cn−2. Hence
∑

k≥1

φk ≤
∑

k≥1

φ(eka/2) ≤
∑

k≥1

φ(2ka/2) ≤ C
∑

k≥1

k−2a < ∞,

since a > 1/2. By the Borel-Cantelli lemma, we conclude that

|uk − Yk| ≤ Cφk a.s.,

and hence |∑m
i=1 ui −

∑m
i=1 Yi| ≤

∑m
i=1 |ui − Yi| ≤ C

∑m
i=1 φi ≤ C a.s. 2

Theorem 3.2 (Theorem B, [20]) Without changing its distribution we can re-
define the sequence {Yi}i≥1 on a larger probability space together with a sequence
{Y ∗

i }i≥1 of independent normal random variables with EY ∗
i = 0, EY ∗2

i = σ∗2
i

such that for every M and for every x > 0, δ > 0

P

(

max
m≤M

|
m
∑

i=1

Yi −
m
∑

i=1

Y ∗
i | > x

)

≤ C
1

x2+δ

m
∑

i=1

E|Yi|2+δ . (7)

It is not difficult to see that, without changing its distribution we can redefine
the sequence {Y ∗

i }i≥1 on a larger probability space together with a standard
Brownian motion W = {W (t)}t≥0 such that W (s∗2m ) =

∑m
i=1 Y ∗

i for any m. In
particular

W (s2
k) = W (s∗2mk

) =
mk
∑

i=1

Y ∗
i . (8)

We are now ready to treat the term J3(n). Let ε > 0 be arbitrary. Using the
decomposition (5) and relation (8), we have

P (J3(n) > ε/β) = P

(

max
k≤n

|Ŝk − EŜk − W (s2
k)| > εBn

)

≤ P



 max
m≤mn

max
Nm≤k<Nm+1

|
m
∑

i=1

ui +
m
∑

i=1

vi +
k
∑

j=Nm+1

(X̂j − EX̂j) −
m
∑

i=1

Y ∗
i | > εBn





≤ P

(

max
m≤mn

|
m
∑

i=1

ui −
m
∑

i=1

Yi| >
εBn

4

)

+ P

(

max
m≤mn

|
m
∑

i=1

vi| >
εBn

4

)

+

P



 max
m≤mn

max
Nm≤k<Nm+1

|
k
∑

j=Nm+1

(X̂j − EX̂j)| >
εBn

4



+

P

(

max
m≤mn

|
m
∑

i=1

Yi −
m
∑

i=1

Y ∗
i | >

εBn

4

)

:= P1(n) + P2(n) + P3(n) + P4(n).

Using (6), we have P1(n) = 0 for n large. The following results will show that
limn→∞ Pi(n) = 0 for i = 2, 3, 4. This will conclude the proof of J3(n) = oP (1).

Lemma 3.3 Under the conditions of Theorem 1.1,

P2(n) := P

(

max
m≤mn

|
m
∑

i=1

vi| >
εBn

4

)

→ 0 as n → ∞.
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Proof: Note that
∑mn

i=1 |Ii| ≤ Cn1/2. Using Lemma 2.3, [18], for every m ≤ mn,

m
∑

i=1

Ev2
i ≤ C

m
∑

i=1

|Ii| max
j∈Ii

EX̂2
j ≤ CL(ηn)

m
∑

i=1

|Ii| ≤ CL(ηn)n1/2 (9)

and E (
∑m

i=1 vi)
2 ≤ m

∑m
i=1 Ev2

i ≤ CmnL(ηn)n1/2.
Note that the sequence {vi}i≥1 is φ-mixing with coefficient φ(v)(n) ≤ φ(ena

).
Using Proposition 3.2 [12], we get

E max
m≤mn

(

m
∑

i=1

vi

)2

≤ C max
m≤mn

E(
m
∑

i=1

vi)
2 ≤ CmnL(ηn)n1/2 = o(η2

n). (10)

The result follows by the Chebyshev’s inequality. 2

Lemma 3.4 Under the conditions of Theorem 1.1,

P3(n) := P



 max
m≤mn

max
Nm<k≤Nm+1

|
k
∑

j=Nm+1

(X̂j − EX̂j)| >
εBn

4



 −→ 0 as n → ∞.

Proof: By Markov’s inequality we get: for any δ > 0

P3(n) ≤
mn
∑

m=1

P



 max
Nm<k≤Nm+1

|
k
∑

j=Nm+1

(X̂j − EX̂j)| >
εBn

4





≤ C

η2+δ
n

mn
∑

m=1

E



 max
Nm<k≤Nm+1

|
k
∑

j=Nm+1

(X̂j − EX̂j)|




2+δ

.

By Proposition 3.2, [12], Lemma 2.3, [18] and Lemma 1.(d), [8], for every m ≤ mn

E



 max
Nm<k≤Nm+1

|
k
∑

j=Nm+1

(X̂j − EX̂j)|




2+δ

≤ C max
Nm<k≤Nm+1

E

∣

∣

∣

∣

∣

∣

k
∑

j=Nm+1

(X̂j − EX̂j)

∣

∣

∣

∣

∣

∣

2+δ

≤ C{(Nm+1 − Nm)1+δ/2L(ηNm)1+δ/2 + (Nm+1 − Nm)o(ηδ
Nm

L(ηNm))}
≤ C{2|Hm|1+δ/2L(ηNm)1+δ/2 + 2|Hm|o(ηδ

Nm
L(ηNm))}.

Hence

P3(n) ≤ CL(ηn)1+δ/2

η2+δ
n

mn
∑

m=1

|Hm|1+δ/2+
C

η2+δ
n

mn
∑

m=1

|Hm|o(ηδ
Nm

L(ηNm)) := P ′
3(n)+P ′′

3 (n).

Note that

mn
∑

m=1

|Hm|1+δ/2 ≤ C
mn
∑

m=1

m(a−1)(2+δ)/2e(2+δ)ma/2

=
mn
∑

m=1

o(ma−1e(2+δ)ma/2) = o(e(2+δ)ma
n/2) = o(n1+δ/2)
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and hence P ′
3(n) = o(1). For the second part we use

∑mn

i=1 |Hi| ≤ Cn. Hence

P ′′
3 (n) ≤ C

η2+δ
n

o(ηδ
Nmn

L(ηNmn
))

mn
∑

m=1

|Hm| = o(η−2
n L(ηn)) n = o(1).

This concludes the proof of the lemma. 2

Lemma 3.5 Under the conditions of Theorem 1.1,
∑mn

i=1 E|ui|2+δ = o(η2+δ
n ) for

any δ > 0 and hence

P4(n) := P

(

max
m≤mn

|
m
∑

i=1

Yi −
m
∑

i=1

Y ∗
i | >

εBn

4

)

−→ 0 as n → ∞.

Proof: Using Lemma 2.3, [18] we obtain that

mn
∑

i=1

E|ui|2+δ ≤ C
mn
∑

i=1

|Hi|1+δ/2 max
j∈Hi

(EX̂2
j )1+δ/2 + C

mn
∑

i=1

|Hi|max
j∈Hi

E|X̂j |2+δ

:= T1(n) + T2(n).

We treat separately the two terms. Note that for every i ≤ mn, we have
maxj∈Hi

(EX̂2
j )1+δ/2 ≤ L(ηn)1+δ/2. Using (11) we get

T1(n) ≤ CL(ηn)1+δ/2
mn
∑

i=1

|Hi|1+δ/2 ≤ CL(ηn)1+δ/2o(n1+δ/2) = o(η2+δ
n ).

For the second term, note that by Lemma 1.(d), [8], for every i ≤ mn

max
j∈Hi

E|X̂j |2+δ ≤ E|X̂Nmn
|2+δ = o(ηδ

Nmn
L(ηNmn

)) = o(ηδ
nL(ηn)).

We conclude that

T2(n) ≤ o(ηδ
nL(ηn))

mn
∑

i=1

|Hi| = o(ηδ
nL(ηn)n) = o(η2+δ

n ).

The final statement of the lemma follows by (7). 2

4 The fourth term

Note that

J4(n) =

∣

∣

∣

∣

sn

βBn
− 1

∣

∣

∣

∣

max
k≤n

|W (s2
k)|

sn
.

Since maxk≤n |W (s2
k)|/sn = OP (1), the fact that J4(n) = oP (1) will follow from

the following lemma, which uses condition (C) in an essential way.

Lemma 4.1 Under the conditions of Theorem 1.2, we have s2
n ∼ β2B2

n.

9



Proof: Note that B2
n = B2

Nmn
+
∑n

j=Nmn+1 E(X̂j −EX̂j)
2 = B2

Nmn
+o(η2

n), since
∑n

j=Nmn+1 E(X̂j − EX̂j)
2 ≤ (n − Nmn)L(ηn) = o(n)L(ηn) = o(η2

n). By Lemma

2.2, it follows that B2
n ∼ B2

Nmn
. Hence, using condition (C), we get

A2
Nmn

∼ β2B2
Nmn

∼ β2B2
n ∼ A2

n. (11)

By the Minkowski inequality and (10), we get

∣

∣

∣

∣

∣

ANmn
− ‖

mn
∑

i=1

ui ‖
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

‖
mn
∑

i=1

(ui + vi)‖ − ‖
mn
∑

i=1

ui‖
∣

∣

∣

∣

∣

≤ ‖
mn
∑

i=1

vi‖ = o(ηn) = o(ANmn
).

(Note that for the last equality we used (11) and Lemma 2.2.) Therefore

A2
Nmn

∼ ‖
mn
∑

i=1

ui‖2. (12)

We note that a consequence of (12) is the fact that ‖∑mn

i=1 ui‖2 → ∞ as n → ∞.
Using the results of Section 3, we have

s2
n =

mn
∑

i=1

Eu2
i =

mn
∑

i=1

EY 2
i = ||

mn
∑

i=1

Yi||2

where {Yi}i≥1 is a sequence of independent random variables. Finally, by Minkowski’s
inequality and (6), we get

∣

∣

∣

∣

∣

||
mn
∑

i=1

ui|| − sn

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

||
mn
∑

i=1

ui|| − ||
mn
∑

i=1

Yi||
∣

∣

∣

∣

∣

≤ ||
mn
∑

i=1

(ui − Yi)|| ≤ C.

Therefore, ||∑mn

i=1 ui|| − sn = o(an) for any sequence {an}n of positive numbers
with an → ∞. In particular, this happens for an = sn and hence

||
mn
∑

i=1

ui||2 ∼ s2
n (13)

The conclusion of the lemma follows from (11), (12) and (13). 2

Appendix

Theorem 1 of [6] is proved using a slightly different truncation technique. More
precisely, this theorem states that under the conditions of Theorem 1.1,

Sn

Ân

d−→ N(0, 1), where Ân = Var(
n
∑

j=1

XjI{|Xj |≤ηn}).

The next lemma shows that the two truncations are essentially the same.

Lemma 4.2 Under the conditions of Theorem 1.1, we have Â2
n ∼ A2

n.
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Proof: We denote Sk(n) =
∑k

j=1 XjI{|Xj |≤ηn}. Without loss of generality we

will assume that X1 is symmetric. Hence Ân =‖ Ŝn(n) ‖ and An =‖ Ŝn ‖. Using
the Minkowski’s inequality and a well-known property of a mixing sequence (see
e.g. Proposition 3.1, [13]), we get

|Ân −An|2 =
∣

∣

∣‖ Ŝn(n) ‖ − ‖ Ŝn ‖
∣

∣

∣

2
≤‖ Ŝn(n)− Ŝn ‖2= E





n
∑

j=1

XjI{ηj<|Xj |≤ηn}





2

≤ C
n
∑

j=1

E(X2
j I{ηj<|Xj |≤ηn}) = C

n
∑

j=1

(L(ηn) − L(ηj)) = o(η2
n)

where the last equality follows by (20) of [8]. Hence Ân − An = o(ηn).
Finally, by relation (3.15) of [19], there exists some constants C0, D0 > 0 such

that C0η
2
n ≤ Â2

n ≤ D0η
2
n. This concludes the proof of the lemma. 2
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