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Abstract

In this paper we establish asymptotic normality of trimmed sums
for long range dependent moving averages. Our results extend those
of Ho and Hsing [12]
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1 Introduction

Let {εi, i ≥ 1} be a centered sequence of i.i.d. random variables. Consider
the class of stationary linear processes

Xi =
∞∑

k=0

ckεi−k, i ≥ 1. (1)

We assume that the sequence ck, k ≥ 0, is regularly varying with index
−β, β ∈ (1/2, 1). This means that ck ∼ k−βL0(k) as k → ∞, where L0

is a slowly varying function at infinity. We shall refer to all such mod-
els as long range dependent (LRD) linear processes. In particular, if the
variance exists (which is assumed throughout the whole paper), then the
covariances ρk := EX0Xk decay at the hyperbolic rate, ρk = k−(2β−1)L(k),
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where limk→∞ L(k)/L2
0(k) = B(2β−1, 1−β) and B(·, ·) is the beta-function.

Consequently, the covariances are not summable (cf. [9]).
Assume that X1 has a continuous distribution function F . For y ∈ (0, 1)

define Q(y) = inf{x : F (x) ≥ y} = inf{x : F (x) = y}, the corresponding
(continuous) quantile function. Given the ordered sample X1:n ≤ · · · ≤ Xn:n

of X1, . . . , Xn, let Fn(x) = n−1 ∑n
i=1 1{Xi≤x} be the empirical distribution

function and Qn(·) be the corresponding left-continuous sample quantile
function, i.e. Qn(y) = Xk:n for k−1

n < y ≤ k
n . Define Ui = F (Xi) and

En(x) = n−1 ∑n
i=1 1{Ui≤x}, the associated uniform empirical distribution

function. Denote by Un(·) the corresponding uniform sample quantile func-
tion.

Let r be an integer and define

Yn,r =
n∑

i=1

∑
1≤j1<···≤jr

r∏
s=1

cjsεi−js , n ≥ 1,

so that Yn,0 = n, and Yn,1 =
∑n

i=1Xi. If p < (2β − 1)−1, then

σ2
n,p := Var(Yn,p) ∼ n2−p(2β−1)L2p

0 (n). (2)

Define now the general empirical, the uniform empirical, the general
quantile and the uniform quantile processes respectively as follows:

βn(x) = σ−1
n,1n(Fn(x)− F (x)), x ∈ IR,

αn(y) = σ−1
n,1n(En(y)− y), y ∈ (0, 1),

qn(y) = σ−1
n,1n(Q(y)−Qn(y)), y ∈ (0, 1),

un(y) = σ−1
n,1n(y − Un(y)), y ∈ (0, 1).

The aim of this paper is to study the asymptotic behavior of trimmed sums
based on the ordered sample X1:n ≤ · · · ≤ Xn:n coming from the long range
dependent sequence defined by (1).

Let Tn(m, k) =
∑n−k

i=m+1Xi:n and note that (see below for a convention
concerning integrals)

Tn(m, k) = n

∫ 1−k/n

m/n
Qn(y)dy. (3)
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Ho and Hsing observed in [12] that, under appropriate conditions on F ,

sup
y∈[y0,y1]

∣∣∣∣∣qn(y) + σ−1
n,1

n∑
i=1

Xi

∣∣∣∣∣ = oP (1), (4)

where 0 < y0 < y1 < 1. Equation (4) means in principle that the quantile
process can be approximated by the partial sum, independently of y. This ob-
servation, together with (3), yield the asymptotic normality of the trimmed
means in case of heavy trimming m = mn = [δ1n], k = kn = [δ2n], where
0 < δ1 < δ2 < 1 and [·] is the integer part, see [12, Corollary 5.2]. This
agrees with the i.i.d. situation, see [18].

However, the representation (3) requires some additional assumptions on
F . In order to avoid them, we may study asymptotics for the trimmed sums
via the integrals of the form

∫
αn(y)dQ(y). This approach was initiated in

two beautiful papers by M. Csörgő, S. Csörgő, Horváth and Mason, [2], [3].
Then, S. Csörgő, Haeusler, Horváth and Mason took this route to provide
the full description of the weak asymptotic behavior of the trimmed sums
in the i.i.d. case. We refer to [4] for an extensive up-to-date discussion and
the survey of results.

In the LRD case, instead of using the Brownian bridge approximation,
we can use the reduction principle for the general empirical processes as
studied in [9], [12], [13] or [19], see Lemma 7 below. We can use then the
similar approach as the above mentioned authors to establish the asymp-
totic normality in case of moderate trimming, complementing Ho and Hsing
results in the heavy trimming case. The results are similar to the i.i.d case.
In case os sums of extreme values, however, we can have some interesting
phenomena, for which we refer to [14].

We will use the following convention concerning integrals. If −∞ <
a < b < ∞ and h, g are left-continuous and right-continuous functions,
respectively, then∫ b

a
gdh =

∫
[a,b)

gdh and
∫ b

a
hdg =

∫
(a,b]

hdg,

whenever these integrals make sense as Lebesgue-Stjeltjes integrals. The
integration by parts formula yields∫ b

a
gdh+

∫ b

a
hdg = h(b)h(b)− f(a)g(a).

We shall write g ∈ RVα (g ∈ SV ) if g is regularly varying at infinity with
index α (slowly varying at infinity).
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In what follows C will denote a generic constant which may be different
at each of its appearances. Also, for any sequences an and bn, we write
an ∼ bn if limn→∞ an/bn = 1. Further, let `(n) be a slowly varying function,
possibly different at each place it appears. On the other hand, L(·), L0(·),
L1(·), etc., are slowly varying functions, fixed form the time they appear.
Moreover, g(k) denotes the kth order derivative of a function g and Z is a
standard normal random variable. For any stationary sequence {Vi, i ≥ 1},
we will denote by V the random variable with the same distribution as V1.

2 Statement of results and discussion

Let Fε be the marginal distribution function of the centered i.i.d. sequence
{εi, i ≥ 1}. Also, for a given integer p, the derivatives F (1)

ε , . . . , F
(p+3)
ε of

Fε are assumed to be bounded and integrable. Note that these properties
are inherited by the distribution F as well (cf. [12] or [19]). Furthermore,
assume that Eε41 < ∞. These conditions are needed to establish the reduc-
tion principle for the empirical process and will be assumed throughout the
paper.

We need to impose some conditions on F . The first assumption is that
the right tail of the distribution F satisfies the following Von-Mises condi-
tion:

lim
x→∞

xf(x)
1− F (x)

= α > 0. (5)

The condition (5) together with its counterpart for the left tail will be re-
ferred to as X ∈MDA(Φα), since, in particular, (5) implies that X belongs
to the maximal domain of attraction of the Fréchet distribution with index
α. Then

Q(1− y) = y−1/αL1(y−1) as y → 0 (6)

and the density-quantile function fQ(y) = f(Q(y)) satisfies

fQ(1− y) = y1+1/αL2(y−1) as y → 0, (7)

where L2(u) = α(L1(u))−1.

The second type of assumption is that F belongs to the maximal do-
main of attraction of the double exponential Gumbel distribution. Then the
corresponding Von-Mises condition implies

lim
y→0

fQ(1− y)
∫ 1
1−y(1− u)/fQ(u)du

y2
= 1. (8)
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Thus, with L3(y−1) =
(
y−1

∫ 1
1−y(1− u)/fQ(u)du

)−1
one has

fQ(1− y) = yL3(y−1)

and L3 is slowly varying at infinity. The above assumption, together with
its left-tailed counterpart will be referred to as X ∈MDA(Λ).

Recall that Qn(y) = inf{x : Fn(x) ≥ y} = Xk:n if k−1
n < y ≤ k

n . Let
Tn(m, k) =

∑n−k
i=m+1Xi:n and

µn(m, k) = n

∫ 1−k/n

m/n
Q(y)dy.

The main result of this paper is the following theorem.

Theorem 1 (Moderate trimming) Let p be the smallest positive integer
such that (p+1)(2β−1) > 1 and assume that for r = 1, . . . , p,

∫ 1
0 F

(r)(Q(y))dQ(y) <
∞. Let kn = nξ, ξ ∈ (0, 1). Assume that either F ∈ MDA(Λ) or F ∈
MDA(Φα) for some α <∞ such that{

α > 1−ξ
1−β if β ≥ 3

4 ,

α ≥ 4 if β ∈ (1
2 ,

3
4).

. (9)

Then
σ−1

n,1(Tn(kn, kn)− µn(kn, kn)) d→ Z.

2.1 Remarks

Remark 2 Let us discuss condition (9) of Theorem 1. Recall that the
main assumption is Eε41 < ∞ which implies EX4

1 < ∞ and thus α ≥ 4,
in particular. If β is close to 3

4 then there is no additional restriction on
moments. However, the restriction on α is very sensitive for β close to 1

2 or
1.

The condition Eε41 < ∞ appeared since we used the reduction principle
from [19]. This moment restriction can be weakened to E|ε1|2+δ, δ > 0, as
indicated in [9]. However, in this case the rates in the reduction principle
are not as good as in [19], which is crucial in our method. If one can improve
those rates, one can have less restrictive conditions on α.

Remark 3 The conditions
∫ 1
1/2 F

(r)(Q(y))dQ(y) < ∞, r = 1, . . . , p, are
not restrictive at all, since they are fulfilled for most distributions with a
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regularly varying density-quantile function f(Q(1 − y)), for which we refer
to [16]. Consider for example the Pareto case, Q(y) = C(1 − y)−1/α for all
y such that 0 < y1 < y < 1, where y1 is fixed. Then for r ≥ 1 and all x
exceeding some value x0, F (r)(x) = Cx−(α+r). Thus, we have∫ 1

1/2∨x0

F (r)(Q(y))dQ(y) =
∫ 1

1/2∨x0

(1− y)(r−1)/αdy <∞.

If, additionally, we impose the following Csörgő-Révész-type conditions (cf.
also [1, Theorem 3.2.1]):

(CsR1) f exists on (a, b), where a = sup{x : F (x) = 0}, b = inf{x : F (x), x =
1}, −∞ ≤ a < b ≤ ∞,

(CsR2) infx∈(a,b) f(x) > 0,

then in view of (CsR2) and the assumed boundness of derivatives F (r)(·),
the integral

∫ 1
1/2 F

(r)(Q(y))dQ(y) is finite.
The condition is trivially fulfilled for the exponential right-tail. Consider

the standard normal distribution. Then F (r)(x) = f(x)W(r−1)(x), where
W(r−1)(·) is a polynomial of order r− 1. Consequently, the finiteness of the
integral is equivalent to

∫ 1
1/2Q

r−1(y)dy <∞, which is the case.

Remark 4 It is well-known that σ−1
n,1(Tn(0, 0)− µn(0, 0)) = σ−1

n,1Tn(0, 0) d→
Z. Combining this with Theorem 1 we see that the extreme sum

∑n
i=n−kn+1Xi:n

is oP (σn,1)-negligible, namely

σ−1
n,1

 n∑
i=n−kn+1

Xi:n − n

∫ 1

1−kn/n
Q(y)dy

 = oP (1).

Moreover, we have
∑n

i=n−kn+1Xi:n = oP (σn,1) as long as

σ−1
n,1n

∫ 1

1−kn/n
Q(y)dy = o(1). (10)

In other words ∑n
i=n−kn+1Xi:n∑n

i=1Xi
= oP (1), (11)

the cumulated extremes have negligible contribution to the whole partial
sum.
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Remark 5 In the similar vein as in Theorem 1, we may consider partial
sums

∑n
i=1G(Xi), where G is a measurable function. Assuming for example

that Xi, i ≥ 1 is a Gaussian sequence and that G has the Hermite rank
τ , using the strong reduction principle for the empirical process based on
subordinated random variables Yi = G(Xi) (see [7]) one can state the corre-
sponding results, replacing σn,1 and Z by σn,τ and Zτ respectively, where Zτ

is a (possibly non-Gaussian) random variable defined as the τ -fold integral
with respect to a Brownian motion, see [11]. In the context of Theorem
1, however, one needs to assume that G(X1) is in the appropriate domain
of attraction. For example, if G(x) = log(x+)α and X ∈ MDA(Φα), then
G(X) ∈MDA(Λ). The result of Theorem 1 is still valid, since the Hermite
rank of G is 1. On the other hand, if G(x) = x2 − 1 or G(x) = |x|, then the
Hermite is 2 and the maximal domains of attraction for G(X) can be easily
characterized by those of X.

Remark 6 Note that L-statistics can be written as integrals of the form∫ 1
0 J(y)Qn(y)dy with some function J . Therefore, our approach can be also

applied to establish asymptotic results for L-statistics.

3 Proofs

Let p be a positive integer and let

Sn,p(x) =
n∑

i=1

(1{Xi≤x} − F (x)) +
p∑

r=1

(−1)r−1F (r)(x)Yn,r

=:
n∑

i=1

(1{Xi≤x} − F (x)) + Vn,p(x),

where F (r) is the rth order derivative of F . Setting Ui = F (Xi) and x = Q(y)
in the definition of Sn(·) we arrive at its uniform version,

S̃n,p(y) =
n∑

i=1

(1{Ui≤y} − y) +
p∑

r=1

(−1)r−1F (r)(Q(y))Yn,r

=:
n∑

i=1

(1{Ui≤y} − y) + Ṽn,p(y).

Denote

dn,p =

{
n−(1−β)L−1

0 (n)(log n)5/2(log log n)3/4, (p+ 1)(2β − 1) ≥ 1
n−p(β− 1

2
)Lp

0(n)(log n)1/2(log log n)3/4, (p+ 1)(2β − 1) < 1
.

We shall need the following lemma.
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Lemma 7 ([19]) Let p be a positive integer. Then, as n→∞,

E sup
x∈IR

∣∣∣∣∣
n∑

i=1

(1{Xi≤x} − F (x)) +
p∑

r=1

(−1)r−1F (r)(x)Yn,r

∣∣∣∣∣
2

= O(Ξn + n(log n)2),

where

Ξn =

{
O(n), (p+ 1)(2β − 1) > 1
O(n2−(p+1)(2β−1)L

2(p+1)
0 (n)), (p+ 1)(2β − 1) < 1

.

Using Lemma 7 we obtain (cf. [6])

σ−1
n,p sup

x∈IR
|Sn(x)|

=

{
Oa.s(n−( 1

2
−p(β− 1

2
))L−p

0 (n)(log n)5/2(log log n)3/4), (p+ 1)(2β − 1) > 1
Oa.s(n−(β− 1

2
)L0(n)(log n)1/2(log log n)3/4), (p+ 1)(2β − 1) < 1

.

Since (see (2))
σn,p

σn,1
∼ n−(β− 1

2
)(p−1)Lp−1

0 (n)

we obtain

sup
x∈IR

|βn(x) + σ−1
n,1Vn,p(x)| =

=
σn,p

σn,1
sup
x∈IR

∣∣∣∣∣σ−1
n,p

n∑
i=1

(1{Xi≤x} − F (x)) + σ−1
n,pVn,p(x)

∣∣∣∣∣ = oa.s(dn,p).

Consequently, via {αn(y), y ∈ (0, 1)} = {βn(Q(y)), y ∈ (0, 1)},

sup
y∈(0,1)

|αn(y) + σ−1
n,1Ṽn,p(y)| = Oa.s(dn,p). (12)

By (12), the next lemma is obvious.

Lemma 8 Let p be a positive integer. Assume that for r = 1, . . . , p,
∫ 1
0 F

(r)(Q(y))dQ(y) <
∞. Then for any 0 < an such that an →∞, an = o(n),

σ−1
n,1

∫ 1−an/n

an/n
Ṽn,p(y)dQ(y) d→ Z.
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3.1 Integral functionals of the empirical process

Let ψµ(y) = (y(1− y))µ, y ∈ [0, 1], µ > 0.

We start with following results, which may be of independent interest.
Let εn = n−κ, κ > 0 and consider the following class of functions:

L0 = L0(µ) =
{
K : K : [0, 1] → IR,nondecreasing,

∫ 1

0
ψµ(y)dK(y) <∞

}
.

Lemma 9 Fix κ > 0, p ∈ IN. Let µ > 0 be such that{
µ < 1−β

κ , if (p+ 1)(2β − 1) ≥ 1,

µ <
p(β− 1

2
)

κ , if (p+ 1)(2β − 1) < 1.
(13)

Then

sup
K∈L0

sup
εn<s<t<1−εn

∣∣∣∣∫ t

s

(
αn(y) + σ−1

n,1Ṽn,p(y)
)
dK(y)

∣∣∣∣ = oa.s(1). (14)

The most interesting case is K = Q.

Corollary 10 Assume that either E|X|α < ∞ for all α > 0 or (6) holds
with some α <∞ such that{

α > κ
1−β if β ≥ 3

4 ,

α ≥ 4 if β ∈ (1
2 ,

3
4).

Let p be the smallest positive integer such that (p+ 1)(2β − 1) > 1. Then

sup
1/nκ<s<t<1−1/nκ

∣∣∣∣∫ t

s

(
αn(y) + σ−1

n,1Ṽn,p(y)
)
dQ(y)

∣∣∣∣ = oa.s(1). (15)

Proof of Lemma 9. From (12) and the choice of µ,

sup
y∈(εn,1−εn)

|αn(y) + σ−1
n,1Ṽn,p(y)|

ψµ(y)
= Oa.s(1). (16)

We have for all εn < s < t < 1− εn and all K ∈ L0,∣∣∣∣∫ t

s

(
αn(y)− σ−1

n,1Ṽn,p(y)
)
dK(y)

∣∣∣∣
≤

∫ t

s
sup

y∈(εn,1−εn)

|αn(y)− σ−1
n,1Ṽn,p(y)|

ψµ(y)
ψµ(y)dK(y)

≤ oa.s(1)
∫ 1

0
ψµ(y)dK(y) = oa.s(1).
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�

Proof of Corollary 10. If β ≥ 3
4 , set p = 1 in (13). If F ∈ MDA(Φα), then

E|X|α−δ <∞ for all δ ∈ (0, α). Since we assumed α > κ/(1−β), choose δ ∈
(0, α) such that α−δ > κ/(1−β) still holds. Set µ = (α−δ)−1 < (1−β)/κ.
Then we have E|X|1/µ+δ/2 < ∞. The latter condition is sufficient for the
finiteness of

∫ 1
0 ψµ(y)dQ(y) (see [17, Remark 2.4]). Consequently, Q ∈ L0

and (14) applies.
If β < 3

4 and F ∈ MDA(Φα), then take in (13) the smallest integer p
such that (p+ 1)(2β− 1) > 1. Now, (1−β)−1 < 4. Further, since Eε41 <∞,
we have EX4

1 <∞ and thus α ≥ 4. Consequently, α > (1− β)−1. We may
choose δ ∈ (0, α) such that α−δ > (1−β)−1 and continue as in the previous
case.

Likewise, if E|X|α < ∞ for all α > 0 then choose α such big so that
α > (1 − β)−1. Consequently, we may continue as in the case of Q being
regularly varying. Therefore, (15) has been proved.

�

3.2 Proof of Theorem 1

Integration by parts yields

σ−1
n,1

 n−kn∑
i=kn+1

Xi − µn(kn, kn)

 = −
∫ 1−kn/n

kn/n
αn(y)dQ(y)

+σ−1
n,1n

∫ Ukn:n

kn/n
(En(y)− kn/n)dQ(y) +

σ−1
n,1n

∫ 1−kn/n

Un−kn:n

(En(y)− (1− kn/n))dQ(y) =: B1 +B2 +B3.

Note that F ∈ MDA(Λ) implies that E|X|α < ∞ for all α > 0 (see [8, p.
148]). Corollary 10 applied with κ = 1 − ξ, together with Lemma 8 yields
the asymptotic normality for B1. It suffices to show that B3 = oP (1). The
term B2 is treated in the same way.

Lemma 11 For any kn →∞, kn = o(n)

Un−kn:n

1− kn/n

p→ 1.
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Proof. In view of (12) one obtains

sup
y∈(0,1)

|un(y)| = sup
y∈(0,1)

|αn(y)| = OP (1).

Consequently,

sup
y∈(0,1)

|y − Un(y)| = sup
y∈(0,1)

σn,1n
−1|un(y)| = sup

y∈(0,1)
σn,1n

−1|αn(y)|

= OP (σn,1n
−1).

Thus, the result follows by noting that Un(1− kn/n) = Un−kn:n.
�

An easy consequence of (12) is the following result.

Lemma 12 For any kn → 0,

sup
y∈(1−kn/n,1)

|αn(y)| = Oa.s.(dn,p) +OP (f(Q(1− kn/n))).

To prove that B3 = oP (1), let y be in the interval with the endpoints Un−kn:n

and 1− kn/n. Then∣∣∣∣1− En(y)− kn

n

∣∣∣∣ ≤ |En(1− kn/n)− (1− kn/n)|.

Case 1, Y ∈MDA(Φα): By Lemma 11 we have

Q(1− kn/n)/Q(Un−kn:n)
p→ 1. (17)

Thus, by (17) and Lemma 12

B3 ≤ σ−1
n,1Q(1− kn/n)|αn(1− kn/n)| |Q(1− kn/n)−Q(Un−kn:n)|

Q(1− kn/n)
= σ−1

n,1Q(1− kn/n)αn(1− kn/n)op(1)

= op

(
σ−1

n,1Q(1− kn/n)fQ(1− kn/n)
)

+ op

(
σ−1

n,1Q(1− kn/n)dn,p

)
= oP (1).

Case 2, X ∈MDA(Λ): Let

Tn(λ) = σ−1
n,1|αn(1− kn/n)|

∣∣Q(r+n (λ))−Q(r−n (λ))
∣∣ ,

where r+n (λ) = 1− kn
λn , r−n (λ) = 1− kn

λn and 1 < λ <∞ is arbitrary. Applying
the argument as in the proof of Theorem 1 in [5] we have

lim inf
n→∞

P (|B3| < |Tn(λ)|) ≥ lim inf
n→∞

P (r−n (λ) ≤ Un−kn:n ≤ r+n (λ)).
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In view of Lemma 11, the lower bound is 1. Thus, limn→∞ P (|B3| <
|Tn(λ)|) = 1. Further, by Lemma 4 in [15]

lim
n→∞

(Q(r+n (λ))−Q(r−n (λ)))L3(n/kn) = − log λ.

Thus, for large n

Tn(λ) = σ−1
n,1|αn(1− kn/n)|(L3(n/kn))−1|Q(r+n (λ))−Q(r−n (λ))|L3(n/kn)

≤ C1

σ−1
n,1

L3(n/kn)
fQ(1− kn/n)(log λ) + C2

σ−1
n,1

L3(n/kn)
dn,p log λ

almost surely with some constants C1, C2. The both terms, for arbitrary
λ, converges to 0. Thus, we have for sufficiently large n, Tn(λ) ≤ C1 log λ
almost surely. Thus, limn→∞ P (|Tn(λ)| ≤ C1 log λ) = 1. Consequently,

lim
n→∞

P (|B3| > C1 log λ) =

= lim
n→∞

P (|B3| > C1 log λ, |Tn(λ)| ≤ C1 log λ) + lim
n→∞

P (|Tn(λ)| > C1 log λ)

≤ lim
n→∞

P (|B3| > |Tn(λ)|) + 0 = 0

and thus B3 = oP (1).
�
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[2] Csörgő, M., Csörgő, S, Horváth, L., Mason, D. M. (1986). Weighted
empirical and quantile processes. Ann. Probab. 14, 31–85.
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