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Abstract

This paper studies asymptotic properties of a nonparametric kernel
estimator of the conditional variance in a random design model with para-
metric mean and heteroscedastic errors, for a class of long memory errors
and predictors. We establish small and large bandwidths asymptotics,
which show a different behaviour compared to that of kernel estimators of
the conditional mean. We distinguish between an oracle case (i.e., where
the errors are directly observed) and a non-oracle case (where the errors
are replaced with residuals), and show non-equivalence between the oracle
and non-oracle case. We also discuss a practical problem of bandwidth
choice. Theoretical results are justified by simulation studies. We apply
our theory to DJA and FTSE indices.

1 Introduction

Consider the random design regression model,

Yi = β0 + β1Xi + σ(Xi)εi, i = 1, . . . , n, (1.1)

with intercept β0 and slope β1. We will study the model (1.1) in the presence
of long memory behaviour of the errors and/or predictors. Our goal is to esti-
mate the conditional variance σ2(·) in a nonparametric way. To do so, we first
estimate β0 and β1 by usual least squares estimators. Then, we estimate σ2(·)
by smoothing residuals with a kernel K and a bandwidth h:

σ̂2(x) = σ̂2
h(x) =

1

nhf̂h(x)

n∑

i=1

(Yi − β̂0 − β̂1Xi)2K
(

x−Xi

h

)
, (1.2)
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where

f̂h(x) = f̂h,X(x) =
1

nh

n∑

i=1

K

(
x−Xi

h

)
. (1.3)

The problem of nonparametric estimation of the conditional variance received a
lot of attention in the past decade. Most of the work focuses on a fixed design
regression model Yi = m(xi) + σ(xi)εi, where xi = i/n and εi, i = 1, . . . , n, are
i.i.d. In this set-up it was shown in Wang et al. (2008) that if m(·) is differ-
entiable, then there is no influence of the estimation of m(·) on the minimax
rates of convergence for estimation of σ(·). In case of random design regression,
a similar lack of influence was proven in Fan and Yao (1998) for weakly depen-
dent data. However, very little is known in case of long memory errors and/or
predictors. In case of long memory predictors and i.i.d. errors, it was shown in
Zhao and Wu (2008) that there is no influence of estimating the mean, however,
this is basically due to their imposed conditions on the bandwidth choice: for a
small bandwidth nonparametric estimation behaves as if data were independent.
On the other hand, in Guo and Koul (2008) the authors studied the model (1.1)
and established a large bandwidth behaviour, i.e. when h → 0 sufficiently slow.

The goal of this paper is to present the full asymptotic theory for the con-
ditional variance estimation in the model (1.1), when errors and/or predictors
have long memory. Such situations are very often encountered in financial time
series. We will distinguish between an oracle and a non-oracle case. In the first
situation, we assume that β0 and β1 are known, which amounts to estimation
of σ(·) from direct observations σ2(Xi)ε2

i . In other words, the oracle estimator
is defined as

σ̂2
oracle(x) =

1

nhf̂h(x)

n∑

i=1

σ2(Xi)ε2
i K

(
x−Xi

h

)
. (1.4)

By applying log-transformation, we may see that the problem is similar to non-
parametric estimation of a conditional mean. In the latter situation, we refer
to Mielniczuk and Wu (2004) for the most general results. One has to mention
that the rates of convergence for the conditional variance differ when compared
to the conditional mean, see Remark 3.4. The results for the oracle case are
given in Section 3.1.

In Section 3.2 we state the results which show the influence of estimating β0

and β1 on estimation of σ(·). If the errors εi, i ≥ 1, are i.i.d., the oracle and
non-oracle case are the same, regardless whether the predictors are LRD. This
agrees with the findings in Fan and Yao (1998). There, the predictors and errors
are weakly dependent, and conditional mean is estimated in a nonparametric
way. However, if the errors are LRD, there are two additional terms which may
contribute to the limiting behavior of the conditional variance estimator. The
first one comes from estimating β1 and disappears if E[σ(X1)(X1−µ)] = 0. The
second one comes from estimating β0 and always contributes.
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In Section 3.3 we discuss problem of bandwidth choice. We note that ”large”
bandwidths are not ”practical”, since they lead to a complicated LRD-type be-
haviour. Therefore, it is of practical interest to verify if a chosen bandwidth (for
example, by implementing the plug-in method) leads to i.i.d. type behaviour.

We extend results in Guo and Koul (2008) in several directions. First, we
establish a ”practical”, small bandwidth asymptotics. Furthermore, we allow
predictors to be follow an EGARCH-type model. This allow us to implement
our theory to ”typical” financial time series (see Section 4), which cannot be
modeled by linear LRD processes. In particular, we apply our theory do Dow
Jones Composite Average and FTSE Indices, which have a ”typical” behaviour:
log-returns are uncorrelated, but residuals have long memory.

We would like to mention that our theory is further developed in Kulik
and Wichelhaus (2011). There, we study the limiting behaviour of σ̂2

h, when
the conditional mean is estimated in a nonparametric way. Furthermore, we
estimate the error density.

2 Preliminaries

2.1 Predictors and the error sequence

Throughout the paper it is assumed that the predictors Xi, i ≥ 1, are inde-
pendent of the errors εi, i ≥ 1. We consider the following assumptions on the
predictors Xi, i ≥ 1:

(P1) Xi, i ≥ 1, are i.i.d. random variables with EX1 = µ < ∞ and VarX1 = 1.

(P2) Xi, i ≥ 1, is EGARCH model defined as Xi = Ziϕ(Ui), i ≥ 1. Here, Zi

is a centered sequence of random variables, ϕ(·) is a real valued function
and Ui, i ≥ 1, is a sequence of standard Gaussian random variables with
covariance E(U1Uk+1) = k−αU L(k), where αU ∈ (0, 1) and L is slowly
varying at infinity. Then Ui can be written as

∑∞
k=1 c̃kζi−k. We will

assume that (ζi, Zi), i ≥ 1, are i.i.d., with VarZ1 = Varϕ(U1) = 1.
In particular, random variables Zi can be degenerated with total mass at
1; in this case Xi = ϕ(Ui) is a subordinated Gaussian sequence.

We shall consider similar assumptions on the error sequence:

(E1) εi, i ≥ 1, is a sequence of centered i.i.d. random variables with Eε2
1 = 1.

(E2) εi, i ≥ 1, is an infinite order moving average

εi =
∞∑

k=0

ckηi−k, with c0 = 1,

where ηi, −∞ < i < ∞, is a sequence of centered i.i.d. random variables
with a finite fourth moment, E[ε2

1] = 1, and for some αε ∈ (0, 1), ck ∼
C0k

−(αε+1)/2 as k →∞.
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According to different assumptions, we will apply different techniques. If (E1)
and (P2) hold, then we will exploit martingale structure of particular sequences.
In this case the normality assumption in (P2) is not necessary in fact. If (E2)
and (P1) hold, we will decompose random quantities involved into a martingale
part and a long memory part. Under (P2) and (E2), we will exploit normality
and Hermite expansions. These different techniques seem to be most efficient.

2.2 Assumptions on bandwidths and functions

Let κi =
∫

uiK(u)du. It is assumed that K(·) is symmetric and positive, and
has a bounded support, such that κ0 = 1, κ1 = 0, κ2 6= 0. It is also assumed
that K(·) is bounded and continuous. Denote for future use Kh(·) := K(·/h).

For a given random variable V , let fV denotes its density. Consider the
following assumptions on f = fX , σ and the bandwidth h.

(D1) f, σ are defined on R with f, σ ∈ C2(I) for some finite interval I, where C2

is the class of twice-differentiable functions, with bounded and continuous
second order derivatives. Also, infx∈I f(x) > 0.

(D2) σ(x) > 0 for all x ∈ R and E[σ4(X)] < ∞.

(D3) h +
√

nhh2 → 0, nh →∞.

2.3 Long memory Gaussian sequences

To introduce further assumptions, let us recall some facts on LRD sequences and
Hermite coefficients. A function G(·) in L2(φ), φ(x) = (2π)−1/2 exp(−x2/2),
such that E[G(U1)] = 0, can be expanded as

G(·) =
∞∑

m=1

Jm

m!
Hm(·),

where Jm = E(G(U1)Hm(U1)) and Hm(·) is the mth Hermite polynomial. The
smallest q ≥ 1 such that Jq 6= 0 is called the Hermite rank of G. In particular,
let Jm(x) = E[1{ϕ(U1)≤x}Hm(U1)]. Then

1{ϕ(·)≤x} − F (x) =
∞∑

m=q(x)

Jm(x)
Hm(·)

m!
,

with some q(x) ∈ N. Let q be the Hermite rank of class of functions 1{ϕ(·)≤x}−
F (x), x ∈ R, i.e.

q = min{q(x) : Jq(x)(x) 6= 0 for some x ∈ R}. (2.1)

The corresponding coefficient is denoted by Jq(x). We shall assume that

(J1) J ′q(·) is uniformly bounded and uniformly continuous.
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(J2) The following function is in L2(φ):

e(·;x) → 1
ϕ(·)fZ

(
x

ϕ(·)
)

. (2.2)

Remark 2.1. Condition (J1) is related to the Gaussian sequence Ui and the
function ϕ. It is imposed in Csörgő and Mielniczuk (1995) in case of density
estimation for subordinated Gaussian sequences. It is fulfilled for example when
ϕ(u) = u, since then q = 1, J1(x) =

∫ x

−∞ sφ(s)ds, and J ′1(x) = xφ(x).
Assumption (J2) links the Gaussian sequence Ui, the function ϕ and random

variables Zi. In particular, (J2) implies that quantities

J∗m(x) := E
[
J ′m

(
x

Z1

)
1
Z1

]

are well defined for all m ≥ q.
It is clearly fulfilled if fZ is degenerated, i.e. Xi is subordinated Gaussian

sequence. Furthermore, if ϕ(u) = u and fZ does not vanish at 0, then (2.2) is
equivalent to E[U−2] < ∞. However, the latter is not true. Thus, x = 0 has
to be excluded from our analysis. On the other hand, if fZ is bounded with
bounded support, say, (−M, M), then for x ∈ (−M,M) \ {0},

E
[
U−2f2

Z

( x

U

)]
≤ C

1
x2M2

≤ C

M4
.

Furthermore, if fZ is the standard normal density, then (J2) is fulfilled. Indeed,
as u → 0, u−2f2

Z(x/u) ∼ Cu−2 exp(−(x/u)4/2) → 0, so that u−2f2
Z(x/u)φ(u)

is integrable.
Further comments on (J2) and its relation to (J1) are given in Appendix.

Let us also recall that for if qαU < 1,

1
an,q

n∑

j=1

1
q!

Hq(Ui)
d→ Lq , (2.3)

where a2
n,q ∼ n2−qαU Lq(n)/C2(q, αU ), C(q, αU ) =

√
(1− qαU )(2− qαU )/(2q!),

Lq = (q!(1− qαU )−1/2Zq(1) (2.4)

and Zq(t) is the so-called Hermite or Rosenblatt process of order q, defined as
a q-fold stochastic integral

Zq(t) =
∫ ∞

−∞
. . .

∫ ∞

−∞

eit(x1+···+xq) − 1
x1 + · · ·+ xq

q∏

i=1

x
(1−αU )/2
i W (dx1) . . . W (dxq) ,

where W is an independently scattered Gaussian random measure with Lebesgue
control measure. If qαU > 1, then

∑n
i=1 Hq(Ui) = OP (

√
n).

For more details on Gaussian LRD sequences the reader is referred to Taqqu
(2003).
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2.4 Limit theorems for long memory linear processes

First, let us introduce the following σ-fields: let Xi be the σ-field generated
by (Zi, ζi−1, Zi−1, ζi−2 . . .) and let Hi = σ(ηi, ηi−1, . . .). Under the assumption
(E2) we have

b2
n := Var

(
n∑

i=1

εi

)
∼ C2

1n2−αε , αε ∈ (0, 1), (2.5)

with

C2
1 =

2C2
0

(1− αε)(2− αε)

∫ ∞

0

(x + x2)−(αε+1)/2 dx. (2.6)

Furthermore, (see Davydov (1970))

b−1
n

n∑

i=1

εi
d→ N (0, 1). (2.7)

Let ξi = ε2
i − E[ε2

i ] = ε2
i − 1. One can verify that with some C > 0,

Cov(ξ0, ξi) ∼ C2Cov2(ε0, εj), (2.8)

see e.g. Guo and Koul (2008, Lemma 4.1). Thus, for d2
n := Var (

∑n
i=1 ξi), we

have

d2
n ∼

{
C2

2n2(1−αε), if αε < 1/2,
C2

3n, if αε > 1/2,
(2.9)

with some constants C2, C3. Also,

Var

(
n∑

i=1

ε2
i

)
∼

{
C2

2n2(1−αε), if αε < 1/2,
C2

4n, if αε > 1/2,
(2.10)

with a possibly different constant C4. Moreover, (see Avram and Taqqu (1987,
Theorem 2),

d−1
n

n∑

i=1

ξi
d→ Z2(1), d−1

n

n∑

i=1

E[ξi|Hi−1]
d→ Z2(1), if αε < 1/2, (2.11)

where H2 is a Hermite-Rosenblatt random variable. If αε > 1/2, then the above
limits are standard normal with

√
n-normalization.

3 Results

3.1 Conditional variance: oracle case

Here, we consider behaviour of the oracle estimator defined in (1.4).
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Proposition 3.1. Assume (E1) and either (P2) or (P1). Suppose that assump-
tions of Section 2.2 and (J1)-(J2) are fulfilled. Then

√
nhf(x)

(
σ̂2

oracle(x)− σ2(x)
) d→ N

(
0, σ4(x)

(
E[(ε2

1 − 1)2]
) ∫

K2

)
. (3.1)

Proposition 3.2. Assume (E2) and either (P2) or (P1). Suppose that assump-
tions of Section 2.2 and (J1)-(J2) are fulfilled. We have:

• If hn(1−2αε) → 0, then (3.1) holds.

• If hn(1−2αε) →∞, then

nαε
(
σ̂2

oracle(x)− σ2(x)
) d→ C2σ

2(x)Z2(1), (3.2)

where the constant C2 and random variable Z2(1) are defined in (2.10)
and (2.11), respectively.

Remark 3.3. In Proposition 3.1 there is no influence of LRD in predictors.
It is in contrast with results in Guo and Koul (2008). The reason for this is
that we consider f̂h in the definition of σ̂2

h instead of f (or f̃ , i.e. Gaussian
density with estimated mean and variance). This effect is explained in details
in Remark 5.2.

Remark 3.4. If αε ∈ (1/2, 1) there is no influence of LRD in errors on the
rates of convergence, which is basically due to (2.9) below. If αε ∈ (0, 1/2) and
h is small (i.e., when hn(1−2αε) → 0 holds), then there is still no influence of
LRD. However, if h is big (i.e., when hn(1−2αε) → ∞ holds), LRD influences
the limit. Note further that the meaning of small and big bandwidth is different
than in case of estimating conditional mean in a nonparametric way. Namely,
in the model Yi = m(Xi) + σ(Xi)εi, for the standard kernel estimator of m(·),
we have

√
nh or nαε/2 rate of convergence if, respectively, hn(1−αε) → 0 or

hn(1−αε) →∞. We refer to Mielniczuk and Wu (2004) for more details.

3.2 Conditional variance: non-oracle case

In the non-oracle case, i.e., when β0, β1 are unknown and have to be estimated,
the conditional variance is estimated using the kernel estimator (1.2). We will
focus on cases (E1) and (E2)+(P1), to show an influence of LRD in the errors.
The case of (E2)+(P2) is skipped here. It is a subject of Kulik and Wichelhaus
(2011) in a more general context of nonparametric conditional mean.

Theorem 3.5. Assume (E1) and either (P2) or (P1). Suppose that assumptions
of Section 2.2 and (J1)-(J2) are fulfilled. Then

√
nhf(x)

(
σ̂2(x)− σ2(x)

) d→ N
(

0, σ4(x)
(
E[(ε2

1 − 1)2]
) ∫

K2

)
. (3.3)
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Theorem 3.6. Assume (E2) and (P1). Suppose that assumptions of Section
2.2 and (J1)-(J2) are fulfilled.

• If hn(1−2αε) → 0, then (3.3) holds.

• If hn(1−2αε) →∞, then

nαε
(
σ̂2(x)− σ2(x)]

) d→ C2σ
2(x)Z2(1) (3.4)

+ C2
1

(
E2[σ(X1)(X1 − µ)](x− µ)2 − 2σ(x)(x− µ)E[σ(X1)(X1 − µ)]

)
χ2(1)

+ C2
1

(
E2[σ(X1)]− 2σ(x)E[σ(X1)]

)
χ2(1),

where χ2(1) is χ2 random variable with 1 degree of freedom.

Remark 3.7. Comparing with Proposition 3.2, Theorem 3.6 reveals the influ-
ence of estimation of the linear regression parameters, when errors are LRD. If
αε > 1/2, then there is no difference between oracle and non-oracle case, and in
fact the results are as in the case of i.i.d. errors. Second, there are two additional
OP (n−αε) terms in (3.4). The first one comes from estimating β1 and vanishes
if E[σ(X1)(X1 − µ)] = 0. The second one comes from estimating β0.

Remark 3.8. Once again, let us compare Theorem 3.6 with Guo and Koul
(2008, Theorem 3.1), by setting αX = 1 there. Part (a) there is not applicable.
Results in Part (b) there agree with (3.4) of Theorem 3.6.

Remark 3.9. The results of Propositions 3.1, 3.2 and Theorems 3.5, 3.6 can
be formulated in a multivariate set-up. In case of (3.1) the limiting distribution
of (σ̂2(xi) − σ2(xi), i = 1, . . . , m) is asymptotically multivariate normal with
independent components (it follows using the Cramer-Wold device). In case of
(3.2) the limiting distribution is degenerate,

C2(σ2(xi), i = 1, . . . , m)Z2(1),

in case of (3.4) the limiting distribution is also degenerate.

3.3 Bandwidth choice

Let us note first that from a practical point of view ”large” bandwidths are
not desirable. Indeed, in the context of (3.4) it is completely not clear how to
estimate percentiles of the limiting distribution, since e.g. bootstrap does not
work (see Lahiri (2003, Chapter 10)). Therefore, results in LRD zone (i.e., the
results in (3.2) and (3.4)) are not practical and may serve as a warning against
inappropriate choice of h.

In Kulik and Lorek (2011) the authors studied the problem of bandwidth
choice for the conditional mean estimation. It was proven there that cross-
validation may not be a valid procedure in case of long memory errors, and
plug-in methods are preferable. In Section 4 we justify the latter statement
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Table 1: Bandwidth choice for σ(·)
dε q0.05 q0.25 q0.5 q0.75 q0.95

0 ĥ 0.1108 0.1725 0.2346 0.2639 0.2960

0.1 ĥ 0.1124 0.1725 0.2336 0.2660 0.2990

0.2 ĥ 0.1014 0.1828 0.2332 0.2666 0.3037

0.3 ĥ 0.1141 0.1750 0.2318 0.2633 0.2980

0.4 ĥ 0.1025 0.1754 0.2307 0.2613 0.2952

based on simulation studies. It is shown that there is little influence of LRD in
errors on the plug-in bandwidth choice. Thus, in our implementation in Section
4 we apply the procedure:

• Estimate h using the plug-in method. Solve n−δ = h. Compare the
obtained δ with 1 − 2α̂ε, where α̂ε is an estimator of αε; for example
method from Guo and Koul (2008) leads to a consistent estimator. Verify
if hn1−2αε → 0 holds. In particular, there is nothing to verify if αε > 1/2.

In this way the estimator of αε is not used to construct confidence intervals,
rather to justify if we can use (3.1) to construct confidence intervals.

4 Numerical studies and data examples

4.1 Simulation studies

• We simulate n = 1000 observations from the models Yi = 0+2Xi+σ(Xi)εi,
with σ(x) =

√
x2 + 1 the predictors Xi are i.i.d. Gaussian and the errors

εi are Gaussian FARIMA(0,dε,0). Here, dε = (1− αε)/2 ∈ (0, 1/2).

• We estimate β0 and β1 by LSE estimators. We compute the estimator
σ̂2

ĥ
(·) with ĥ selected by the plug-in method.

• This procedure is repeated M = 500 times.

• Table 1 contains statistics for the bandwidth h selected by the plug-in
method. There is little influence of the memory parameter.

4.2 Data Analysis

We study regression relationship between Dow Jones Composite Average (Y )
and FTSE Index (predictor) from 1 January 2000 to 1 January 2010 (source:
Yahoo Finance). From figure below we conclude that there is no correlation in
log-returns, however, there is a strong correlation in squared log-returns. The
memory parameter for the latter is estimated to be d = 0.17. Also, normality
of the predictor can be assumed. Finally, the conditional variance is plotted.
The bandwidth for the conditional variance was chosen using plug-in method.
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Also, there is a little memory in residuals. This means that pointwise confidence
intervals can be constructed using (3.1).

5 Proofs

5.1 Density estimation for SV models

Asymptotic behaviour of the kernel density estimator is well known in case
of subordinated Gaussian or linear processes with LRD, see e.g. Csörgő and
Mielniczuk (1995), Wu and Mielniczuk (2002). Here, we establish it under
(P2). Consistency is needed later.

Lemma 5.1. Suppose that assumptions of Section 2.2 and (J1)-(J2) are fulfilled.

• If h a2
n,q/n → 0, then

√
nh

(
f̂h(x)− f(x)

)
d→ N

(
0, f(x)

∫
K2(u) du

)
.

• If h a2
n,q/n →∞, then

n

an,q

(
f̂h(x)− f(x)

)
d→ J∗q (x)Lq.

Proof. We decompose

1
nh

n∑

i=1

{Kh(x−Xi)− f(x)} =
{
h−1E[Kh(x−X1)]− f(x)

}

+
1

nh

n∑

i=1

{Kh(x−Xi)− E [Kh(x−Xi)|Xi−1]}+

+
1

nh

n∑

i=1

{E [Kh(x−Xi)|Xi−1]− E [Kh(x−Xi)]} =: A1 + A2 + A3. (5.1)

The first part in the above decomposition is the bias and is of order h2, due
to assumptions on K and f . The second part is a martingale, so that from
martingale CLT (see Appendix) we conclude

√
nhA2

d→ N
(

0, f(x)
∫

K2(u) du

)

It remains to deal with LRD part A3. Since K is bounded, a function

(·) →
∫

Kk(x− zϕ(·))fZ(z) dz
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is in L2(φ). Applying the Hermite expansion,

1
nh

n∑

i=1

{E [Kh(x−Xi)|Xi−1]− E [Kh(x−Xi)]} (5.2)

=
∫

1
nh

n∑

i=1

{Kh(x− zϕ(Ui))− E[Kh(x− zϕ(Ui))]} fZ(z) dz

=:
∫

A3(x; z)fZ(z) dz.

The next few steps are similar to Csörgő and Mielniczuk (1995). Let F̂n(·) be the
empirical distribution function associated with random variables ϕ(U1), . . . , ϕ(Un).
Define the corresponding empirical processes

tn(y) =
n

an,q
(F̂n(y)− F (y)) , t̃n(y) = tn(y)− Jq(y)

1
an,q

n∑

i=1

1
m!

Hm(Ui).

Then

n

an,q
A3(x; z) =

1
h

∫
K

(
x− zy

h

)
dtn(y) =

z

h2

∫
tn(y)K ′

(
x− zy

h

)
dy

=
1
h

∫
t̃n

(
x− hu

z

)
K ′(u) du +

1
h

1
an,q

n∑

i=1

Hq(Ui)
q!

∫
Jq

(
x− hu

z

)
K ′ (u) du.

As in Csörgő and Mielniczuk (1995), the first part converges almost surely to 0
(uniformly in z, x). Thus

sup
x

∣∣∣∣
n

an,q

∫
A3(x; z)fZ(z) dv

− 1
an,q

n∑

i=1

Hq(Ui)
q!

1
h

∫∫
Jq

(
x− hu

z

)
K ′ (u) fZ(z) du dz

∣∣∣∣∣ = oP (1).

Noting that

1
h

∫∫
Jq

(
x− hu

z

)
K ′(u)fZ(z) du dz

=
1
h

∫
K(u)J ′q

(
x− hu

z

)
fZ(z) du dz ∼

∫
1
z
J ′q(x/z)fZ(z) dz = J∗q (x),

the result follows by (2.3) and assumption (J2). ¤
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5.2 Decomposition of the conditional variance estimator

For i ≥ 1, let ∆i =
(
β̂0 − β0

)
+

(
β̂1 − β1

)
Xi =: ∆0 + ∆1,i. Decompose

{
σ̂2(x)− σ2(x)

}
=

(
1

nhf̂h(x)

n∑

i=1

σ2(Xi)Kh(x−Xi)− σ2(x)

)

+
1

nhf̂h(x)

n∑

i=1

σ2(Xi)Kh(x−Xi)
(
ε2

i − 1
)

− 2

nhf̂h(x)

n∑

i=1

∆iσ(Xi)Kh(x−Xi)εi +
1

nhf̂h(x)

n∑

i=1

∆2
i Kh(x−Xi)

=: M1 + M2 −M3 + M4. (5.3)

In the oracle case, ∆i = 0 and thus, M3 = M4 ≡ 0. Therefore, for the oracle
estimator we have the following decomposition:

{
σ̂2

oracle(x)− σ2(x)
}

= M1 + M2. (5.4)

It will be shown that under assumption (D3),
√

nhM1 = oP (1). (5.5)

Then, we will deal with the term M2. Under (E1), it behaves as follows:

√
nhf(x)M2

d→ N
(

0, σ4(x)E[ξ2
1 ]

∫
K2

)
. (5.6)

Under (E2), (5.6) holds if hn(1−2αε) → 0. If however (E2)+(P1) holds and
hn(1−2αε) →∞,

nαεM2
d→ C2σ

2(x)Z2(1). (5.7)

If (E2)+(P2) holds and hn(1−2αε) →∞,

nαεM2
d→ C2σ

2(x)
J∗0 (x)
f(x)

Z2(1). (5.8)

The decomposition (5.4) together with asymptotic results (5.5)-(5.8) yield Propo-
sitions 3.1-3.2.

In the non-oracle case, under (E1) (for both (P1) and (P2)) the terms M3

and M4 are negligible. Under (E2) and (P1), we show that they contribute as
follows:

nαεM3
d→ 2C2

1σ(x)
(

E[σ(X1)(X1 − µ)](x− µ) + E[σ(X1)]
)
× χ2(1), (5.9)

nαεM4
d→ C2

1E2[σ(X1)]χ2(1) + (x− µ)2ω2χ2(1), (5.10)

12



where ω2 := C2
1E2[σ(X1)(X1 − µ)]. Since the convergence in (5.9) and (5.10) is

joint, these together with (5.5)-(5.8) and the decomposition (5.3) of the variance
estimator, will imply the results of Theorem 3.5 and Theorem 3.6.

It is worth to point out that asymptotic behaviour of terms M1,M2,M3,M4

is not of particular use, unless we consider them as part of decompositions
(5.3)-(5.4). The same apply to terms in different decompositions below.

5.3 Proof of Propositions 3.1 and 3.2

As noted above (see (5.4)), in order to prove Propositions 3.1 and 3.2 it is enough
to deal with terms M1 and M2 (see (5.5) and (5.6), respectively). Write M1 as

M1 =

(
1

f̂h(x)
− 1

f(x)

)
1

nh

n∑

i=1

(
σ2(Xi)− σ2(x)

)
Kh(x−Xi)

+
1

nhf(x)

n∑

i=1

(
σ2(Xi)− σ2(x)

)
Kh(x−Xi) :=

(
1

f̂h(x)
− 1

f(x)

)
M11 + M11.

By Lemma 5.1, f̂h is consistent estimator of f . Therefore, the first part in the
expression above is dominated by the second one. Since (D1) holds, we have
E|M11| = O(h2). Therefore,

√
nhM1 = oP (1) by (D3) and (5.5) follows.

Next, we deal with M2. We will prove (5.6), (5.7) and (5.8) under different
sets of assumptions. In order to do this, we consider f̂h replaced with f . This
is allowed, since f̂h is the weakly consistent estimator of f , and K has finite
support.

Under (E1), M2 is a martingale w.r.t. Gn, n ≥ 1, where Gn is a sigma
field generated by (Zi, ηi, ζi−1, Zi−1, ηi−1, . . .). Hence, from martingale CLT
(see Appendix) we conclude that (5.6) holds.

Assume now (E2) and (P1). Recall that ξi = ε2
i − 1 and define Hi to be a

sigma field generated by (ηi, ηi−1, . . .). Decompose M2 as

M2 =
1

nhf(x)

n∑

i=1

{
Kh(x−Xi)σ2(Xi)ξi − E[Kh(x−Xi)σ2(Xi)ξi|Gi−1]

}

+
1

nhf(x)
E[σ2(X1)Kh(x−X1)]

n∑

i=1

E[ξi|Hi−1] =: M21 + M22. (5.11)

Using the martingale CLT once again, we conclude that

√
nhf(x)M21

d→ N
(

0, σ4(x)E[ξ2
1 ]

∫
K2

)
. (5.12)

Moreover, E[M22] = 0 and with dn defined in (2.9),

M22 = σ2(x)
dn

n
d−1

n

n∑

i=1

E[ξi|Hi−1] + O(h)
dn

n
d−1

n

n∑

i=1

E[ξi|Hi−1].
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If αε < 1/2 we use (2.9) and (2.11) to get

nαεM22
d→ C2σ

2(x)Z2(1). (5.13)

Comparing (5.12) with (5.13) we note that either M21 or M22 dominates, ac-
cording to the respective assumptions on h, as stated in the Proposition 3.2.
If hn(1−2αε) → 0 then M21 is of the higher order than M22 and the lim-
iting behaviour of

{
σ̂2

oracle(x)− σ2(x)
}

is determined by M21. Otherwise, if
hn(1−2αε) →∞, then M22 determines the limiting behaviour of the oracle esti-
mator. On the other hand, if αε > 1/2, M22 = OP (n−1/2) (see (2.10)), so that
M22 is negligible w.r.t. M21.

Under (E2) and (P2) we start once again with the following martingale
decomposition (recall M21 from (5.11)):

M21 +
1

nhf(x)

n∑

i=1

E[Kh(x−Xi)σ2(Xi)ξi|Gi−1] (5.14)

= M21 +
1

nhf(x)

n∑

i=1

E[ξi|Hi−1]
∫

Kh(x− zϕ(Ui))σ2(zϕ(Ui))fZ(z) dv.

Again, a function Λ(·; x) → ∫
Kh(x − zϕ(·))σ2(zϕ(·)))fZ(z) dz is in L2(φ).

Indeed, its L2(φ) norm can be bounded by supx |K2(x)|E[σ2(X)], which is finite
on account of (D2). Furthermore, let us assume that its centered version has
Hermite rank q′ ≥ 1. Let J̃∗m,h(x), m ≥ q′, be the corresponding Hermite
coefficients, i.e.

J̃∗m,h(x) = E [Hm(U1)Λ(U1;x)] ,

where U1 is standard normal. Put Ψ(εi) := E[ξi|Hi−1]. With this notation we
can re-write the second part in (5.14) as

M23 :=
1

nhf(x)

n∑

i=1

E[ξi|Hi−1]Λ(Ui; x)

=
∫

1
nh

E[Kh(x− zϕ(U1))σ2(vϕ(U1))]fZ(z) dz
1

f(x)

n∑

i=1

Ψ(εi)

+
1

nhf(x)

n∑

i=1

Ψ(εi)
∞∑

m=q′
J̃∗m,h(x)

Hm(Ui)
m!

.

The first integral in the expression for J23 is evaluated as
∫∫

Kh(x− zy)σ2(zy)fZ(z)fϕ(U)(y) dy dz

∼ hσ2(x)E
[
fϕ(U)

(
x

Z1

)
1
Z1

]
= hσ2(x)J∗0 (x).
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Therefore, by (2.11), the first part in M23 behaves like

σ2(x)J∗0 (x)
nf(x)

n∑

i=1

E[ξi|Hi−1] = OP

(
n−αε ∨ n−1/2

)
. (5.15)

Without loss of generality we may assume that E[UiUj ] < 1 for all i 6= j. With
help of Mehler’s formula and (2.8), the variance of M23 can be written as

Var

(
1

nhf(x)

n∑

i=1

Ψ(εi)Λ(Ui;x)

)

=
1

n2h2f2(x)

n∑

i,j=1

E[Ψ(εi)Ψ(εj)]E[Λ(Ui; x)Λ(Uj ; x)]

=
1

n2h2f2(x)

n∑

i,j=1

E[Ψ(εi)Ψ(εj)]
∞∑

m=q′

J̃∗2m,h(x)
m!

Em[UiUj ]

≤ ‖Λ(·; x)‖2L2(φ)

1
n2h2f2(x)

n∑

i,j=1

E[Ψ(εi)Ψ(εj)]|Eq′ [UiUj ]|

=
1

h2f2(x)
‖Λ(·;x)‖2L2(φ)O(n−1 ∨ n−(2αε+qαU )).

Applying (5.32) below, J̃∗2m,h(x) ∼ h2σ4(x)J∗2m (x), as h → 0. Therefore,

‖Λ(·;x)‖2L2(φ) = O(h2σ4(x))
∥∥∥∥

1
ϕ(·)fZ

(
x

ϕ(·)
)∥∥∥∥

2

L2(φ)

.

Consequently, we conclude that M23 = OP (n−1/2) if αε > 1/2. Otherwise, if
αε < 1/2 then the limiting behaviour of nαεM23 is the same as the term in
(5.15), i.e.

nαε
σ2(x)J∗0 (x)

nf(x)

n∑

i=1

E[ξi|Hi−1]
d→ C2σ

2(x)
J∗0 (x)
f(x)

Z2(1). (5.16)

Now, again, asymptotic behaviour of M2 in (5.8) is obtained by comparing M21

in (5.12) with (5.16) under the respective assumptions on h. ¤
Remark 5.2. If f is estimated by f̂h, then M1 becomes basically the stochastic
bias term. Consider for a moment the case of (P2) with Xi = Ui. Let us assume
that the density f is known. Then,

M̃1 :=

(
1

nhf(x)

n∑

i=1

σ2(Xi)Kh(x−Xi)− σ2(x)

)

can be decomposed in the analogous way as the kernel density estimator in
(5.1). Since now q = 1, we conclude that under (D3) the proper normalization
for M̃1 is either

√
nhf(x) if hn(1−αX) → 0, or nαX/2 if hn(1−αX) → ∞. This

explains difference between our results and those in Guo and Koul (2008). A
similar effect was also mentioned in Mielniczuk and Wu (2004).
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5.4 Proof of Theorems 3.5 and 3.6

Recall the decomposition (5.3). Asymptotic behaviour of M1 and M2 ((5.5)
and (5.6), respectively) was proven in Section 3.1. Thus, in order to prove
Theorem 3.5 (assuming that (E2) and either (P1) or (P2) holds) and Theorem
3.6 (assuming that (E2)+(P2) holds) it is enough to study M3 and M4. We
will show that in the first case

√
nh(M3 + M4) = oP (1), whereas in the second

case (5.9) and (5.10) hold. Specifically, the proof of theorems will be finished
given that we validate the following lemmas.

Lemma 5.3. Under the conditions of Theorem 3.5 we have
√

nhM3 = oP (1).
Under the conditions of Theorem 3.6, (5.9) holds.

Lemma 5.4. Under the conditions of Theorem 3.5 we have
√

nhM4 = oP (1).
Under the conditions of Theorem 3.6, (5.10) holds.

Least squares estimation of regression parameters leads to the following ex-
pressions:

β̂1 − β1 =
1
Sn


 1

n

n∑

j=1

Xjσ(Xj)εj − X̄V̄


 , β̂0 − β0 = V̄ − X̄(β̂1 − β1),(5.17)

where X̄ and V̄ are sample means based on X1, . . . , Xn and σ(X1)ε1, . . . , σ(Xn)εn,
respectively, and Sn = 1

n

∑n
j=1(Xj − X̄)2.

Proof of Lemma 5.3. Again, we may replace f̂h with f in the expression for
M3. Write

M3 = (β̂0 − β0)
2

nhf(x)

n∑

i=1

Kh(x−Xi)σ(Xi)εi

+(β̂1 − β1)
2

nhf(x)

n∑

i=1

Kh(x−Xi)Xiσ(Xi)εi

=: L3 + R3 =: (β̂0 − β0)L̃3 + (β̂1 − β1)R̃3.

Under (E1) (regardless whether (P1) or (P2) holds) both L̃3 and R̃3 are mar-
tingales so that both are OP ((nh)−1/2). Indeed, for example for L̃3 we have

Var(L̃3) =
1

n2h2f2(x)

n∑

i=1

Var (Kh(x−Xi)σ(Xi)εi)

≤ 1
nh2f2(x)

E[ε2]E[K2
h(x−X1)σ(X1)] = O

(
1

nh

)
.

Since β̂0 and β̂1 are consistent, we conclude that
√

nhM3 = oP (1).

For the case of (E2)+(P1), let us define the quantity

M̃3 :=
2

n2hf(x)

n∑

i=1

n∑

j=1

Kh(x−Xi)σ(Xi)σ(Xj)(Xi − µ)(Xj − µ)εiεj .
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We may decompose

M3 =
1
Sn

M̃3 + V̄ L̃3 − 1
Sn

(X̄ − µ)V̄ (R̃3 − µL̃3)− (X̄ − µ)(β̂1 − β1)L̃3. (5.18)

On account of Slutsky’s lemma, we may ignore Sn when studying asymptotic
of M3. Under (E2) and (P1), it will be shown below that

√
nhM̃3 = oP (1) if

E[σ(X1)(X1 − µ)] = 0 and

nαεM̃3
d→ (

2C2
1E[σ(X1)(X1 − µ)]σ(x)(x− µ)

)× χ2(1) (5.19)

otherwise. For the second term in (5.18) we will prove

nαε V̄ L̃3
d→ (

2C2
1σ(x)E[σ(X1)]

)× χ2(1). (5.20)

Furthermore, the third term is Op(n−1/2) = oP ((nh)−1/2), which is obvious
since X̄−µ = OP (n−1/2) and (R̃3−µL̃3) = OP (1) (the latter may be concluded
by showing that E[|R̃3|] < ∞ and E[|L̃3|] < ∞. Indeed, for |R̃3| we have

E
[
|R̃3|

]
≤ 2

nhf(x)
nE [|Kh(x−Xi)Xiσ(X1)|] E [|ε1|] = O(1).)

Also,
nαε/2V̄

d→ N (0, C2
1E2[σ(X1)]) (5.21)

so that V̄ = oP (1). Likewise, the fourth term is oP (n−1/2) = oP ((nh)−1/2).
Equations (5.19), (5.20) and the fact that the convergence in (5.19) and (5.20)
is joint (this follows from the proof below) imply (5.9).

Thus, let us deal with the contributing terms M̃3 and V̄ L̃3. Under (E2) and
(P1), define

Vh(x,Xi, Xj) := Kh(x−Xi)σ(Xi)σ(Xj)(Xi − µ)(Xj − µ). (5.22)

Let V̄h(x, Xi, Xj) := Vh(x,Xi, Xj) − E [Vh(x, Xi, Xj)]. Consider the following
decomposition

M̃3 =
2

n2hf(x)

n∑

i=1

ε2
i Vh(x,Xi, Xi) +

2
n2hf(x)

n∑
i,j=1
i 6=j

εiεjE [Vh(x,Xi, Xj)]

+
2

n2hf(x)

n∑
i,j=1
i 6=j

εiεj V̄h(x,Xi, Xj) =: M31 + M32 + M33.

We note that E [Vh(x,X1, X1)] is proportional to h. Indeed, using the first order
Taylor’s expansion,

E [Vh(x, X1, X1)] =
∫

Kh(x− s)σ2(s)(s− µ)2fX(s)ds ∼ hσ2(x)(x− µ)2fX(x),
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where fX is the density of X1. Therefore, the first term in M̃3 is of or-
der OP (1/n), so that

√
nhM31 = oP (1). In what follows, we will show that√

nhJ33 = oP (1) and the only part which may contribute is M32.

The second part, M32, is written as (recall the definition of b2
n in (2.5))

2E [Vh(x,X1, X2)] b2
n

n2hf(x)






b−1

n

n∑

j=1

εj




2

− b−2
n

n∑

j=1

ε2
j





. (5.23)

The second part in the brackets is negligible. Furthermore, note that

E[Vh(x,X1, X2)] = E [Kh(x−Xi)σ(Xi)σ(Xj)(Xi − µ)(Xj − µ)]

=
∫

Kh(x− s)σ(s)σ(t)(s− µ)(t− µ)f(s)f(t)dsdt

= h

∫
K(v)σ(x− vh)σ(t)(x− vh− µ)(t− µ)f(x− vh)f(t)dvdt

∼ hσ(x)(x− µ)f(x)E[σ(X1)(X1 − µ)]. (5.24)

Using (5.24) we obtain (5.19). If E[σ(X1)(X1−µ)] = 0, then E[Vh(x,X1, X2)] =
0 and M32 ≡ 0.

Next, we establish a bound on M33. We have

Var
( n∑

j,i=1
j 6=i

εiεj V̄h(x, Xi, Xj)
)
≤

n∑
i,j=1
j 6=i

E[ε2
i ε

2
j ]E[V̄ 2

h (x,Xi, Xj)]

+
n∑

i=1

n∑
j,j′=1

j′ 6=j,j 6=i,j′ 6=i

E[ε2
i εjεj′ ]E[V̄h(x,Xi, Xj)V̄h(x,Xi, Xj′)]

+
n∑

j=1

n∑
i,i′=1

i′ 6=i,i 6=j,i′ 6=j

E[ε2
jεiεi′ ]E[V̄h(x,Xi, Xj)V̄h(x,Xi′ , Xj)]

+
n∑

i=1

n∑
j,j′=1

i 6=j,j 6=j′

E[εiε
2
jεj′ ]E[V̄h(x,Xi, Xj)V̄h(x,Xj , Xj′)]

+
n∑

i,i′=1
i 6=j,i 6=i′

n∑

j=1

E[ε2
i εjεi′ ]E[V̄h(x,Xi, Xj)V̄h(x, Xi′ , Xi)]

+
∑

i,i′,j,j′
i 6=i′ 6=j 6=j′

E[εiεi′εjεj′ ]E[V̄h(x, Xi, Xj)V̄h(x,Xi′ , Xj′)]. (5.25)

The last part is equal to 0, since for different indices V̄h(x,Xi, Xj), V̄h(x,Xi′ , Xj′)
are independent (and centered). Next, straightforward computation shows that

E[V 2
h (x,Xi, Xj)] = O(h),
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E[Vh(x,Xi, Xj)Vh(x,Xi′ , Xj′)] = O(h2), i 6= i′,

and
E[Vh(x,Xi, Xj)Vh(x,Xi, Xj′)] = O(h), i 6= j.

Using the covariance bounds on the error sequence, we obtain that the variance
above is of the order O(hn3−αε + hn2). Consequently,

Var(M33) = O

(
n2h

n4h2
+

hn3−αε

n4h2

)
= O

(
1

n2h
+

1
hn1+αε

)
,

and so
√

nhM33 = oP (1).

The proof of (5.20) follows along the same lines as for (5.19). Furthermore,
we note that the convergence in (5.19) follows from the asymptotic expansion of
M̃3 with the dominating term as in (5.23). The same applies to the convergence
(5.20) - up to a deterministic constant, the term (5.23) appears in the asymptotic
expansion for V̄ L̃3. Therefore, the convergence in (5.19) and (5.20) is joint, so
that we may conclude (5.9). This finishes the proof of Lemma 5.3. ¤

Remark 5.5. Note that the second term in the decomposition (5.18) is the
effect of the estimation of the intercept β0 and contributes with rate n−αε . If
the model (1.1) is considered without intercept β0, then this term does not
appear, so that n−αε contribution appears only when E[σ(X1)(X1 − µ)] 6= 0.

To prove Lemma 5.4, we establish limiting behaviour if β̂1 in a particular
case.

Lemma 5.6. Assume (E2) and (P1). If E[σ(X1)(X1 − µ)] 6= 0 holds, then

nαε/2(β̂1 − β1)
d→ N (0, ω2). (5.26)

Proof of Lemma 5.6. Recall from (5.17) that

β̂1 − β1 =
1
Sn


 1

n

n∑

j=1

Xjσ(Xj)εj − X̄V̄


 ,

where S2
n is the sample variance associated with X1, . . . , Xn. Since Var[X2

1 ] = 1,
Sn

P→ 1. Thus, via Slutsky’s lemma, in order to show convergence of β̂1− β1, it
suffices to study

I1 − I2 :=
1
n

n∑

j=1

Xjσ(Xj)εj − X̄V̄ . (5.27)

Consider the sum 1
n

∑n
j=1 ν(Xj)εj , where ν(·) is a deterministic function. De-

compose this sum into:

1
n

n∑

i=1

(
ν(Xi)εi − E [ν(Xi)εi|Gi−1]

)
+ E[ν(X1)]

1
n

n∑

i=1

E [εi|Hi−1] . (5.28)
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The first part is a martingale. If E[ν(X1)] 6= 0, the second part is of order
OP (n−αε/2), and dominates the martingale part. In this case its convergence
follows from (2.5) and (2.7). Otherwise, if E[ν(X1)] = 0, the second part disap-
pears and the sum is OP (n−1/2).

Such decomposition is applied to I1 − I2:

I1 − I2 =
1
n

n∑

j=1

Xjσ(Xj)εj − I2 (5.29)

=
1
n

n∑

j=1

(Xjσ(Xj)εj − E [Xjσ(Xj)εj |Gj−1])

+E[X1σ(X1)]
1
n

n∑

j=1

E [εj |Hj−1]− I2 =: A1 + A2 − I2.

We have
√

nA1
d→ N (0, σ2

0). Convergence for A2 follows from (2.7). The term
I2 is OP (n−(1+αε)/2) (see (2.5)) so that it is negligible. ¤
Proof of Lemma 5.4: Using (5.17), we decompose M4 as follows:

M4 =
1

nhf(x)
(V̄ )2

n∑

i=1

Kh(x−Xi) +
1

nhf(x)
(β̂1 − β1)2

n∑

i=1

(Xi − X̄)2Kh(x−Xi)

+
2

nhf(x)
V̄ (β̂1 − β1)

n∑

i=1

(Xi − X̄)Kh(x−Xi) =: B1 + B2 + B3.

Under (E1), we have clearly M4 = OP (n−1), which clearly implies M4 =
OP ((nh)−1/2).

Under (E2) and (P1), we obtain via (5.21) that

nαεB1
d→ C2

1E2[σ(X1)]χ2(1). (5.30)

Note that B1 has a structure (V̄ )2 × Vn, where Vn = 1
nhf(x)

∑n
i=1 Kh(x −Xi).

We decompose the term as (V̄ )2E[Vn]+(V̄ )2(Vn−E[Vn]). Then the second term
is oP ((V̄ )2) and E[Vn] ∼ 1. Likewise, from Lemma 5.6,

nαεB2
d→ (x− µ)2ω2χ2(1) (5.31)

if E[σ(X1)(X1−µ)] 6= 0 and B2 = OP (n−1) otherwise. For the term B3 we have
clearly that (recall (P1)) (nh)−1

∑n
i=1(Xi− X̄)Kh(x−Xi) = OP ((nh)−1/2), so

that B3 = oP ((nh)−1/2). Furthermore, as in case of M3, the convergence in
(5.30) and (5.20) is concluded from the asymptotic expansions, so that it is
joint and (5.10) may be concluded. Furthermore, the convergence in (5.9) and
(5.10) is joint. ¤
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Appendix

Assumption (J2)

Let ζ be a real function. Consider a function

(·;x, h, ζ) →
∫

Kh(x− zϕ(·))ζ(zϕ(·))fZ(z) dz

and its corresponding Hermite coefficient J∗m,h(x; ζ). If ζ is in C2(I), then one
can evaluate

J∗m,h(x; ζ) ∼ hζ(x)J∗m(x) := hζ(x)E
[
J ′m

(
x

Z1

)
1
Z1

]
. (5.32)

Indeed, to see this assume for simplicity that ϕ is invertible. Then changing
variables u → s = (x− zϕ(u))/h and applying Taylor expansion,

J∗m,h(x) =
∫∫

Kh(x− zϕ(u))ζ(zϕ(u))fZ(z)φ(u)Hm(u) dz du

= h

∫ ∫
φ

(
ϕ−1

(
x− sh

z

))
Hm

(
ϕ−1

(
x− sh

z

))
1
z

K(s)ζ(x− sh)fZ(z)
ϕ′

(
ϕ−1

(
x−sh

z

)) dzds

∼ hζ(x)
∫

φ
(
ϕ−1

(x

z

))
Hm

(
ϕ−1

(x

z

)) 1
ϕ′

(
ϕ−1

(
x
z

)) 1
z
fZ(z) dz (5.33)

= hζ(x)
∫

J ′m
(x

z

) 1
z
fZ(z) dz = hζ(x)E

[
J ′m

(
x

Z1

)
1
Z1

]
.

Substituting further u = ϕ−1(x/z) we evaluate integral in (5.33) as
∫

φ(u)Hm(u)
1

ϕ(u)
fZ

(
x

ϕ(u)

)
du.

The latter expression can be recognized as mth Hermite coefficient of function
(·; x) → 1

ϕ(·)fZ

(
x

ϕ(·)
)
. Therefore, assumption (J2) guarantees that coefficients

J∗m(x) are well defined for each m. We can also see that if fZ is degenerated
(i.e. it has mass one at x = 1, say), then (J2) reduces to (J1).

Martingale CLT

Let us recall from Hall and Heyde (1980) the following martingale central limit
theorem.

Lemma 5.7. Assume that (Ri,Gi), i ≥ 1, is a martingale difference. Define
R̄i = Ri − E[Ri|Gi−1]. If

n∑

i=1

E
[
R̄2

i 1{|R̄i|>δ}
] → 0 for each δ > 0
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and
n∑

i=1

E[R̄2
i |Gi−1]

P→ 1,

then
n∑

i=1

Ri
d→ N(0, 1).

To obtain the limit theorem for the term J21 in (5.11) we consider

Ri = (nh)−1/2σ2(Xi)Kh(x−Xi)ξi/
√

f(x).

The proof is exactly the same as in Wu and Mielniczuk (2002, Lemma 2) and
therefore it is omitted.
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