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Abstract: In this paper we study the asymptotic behaviour of empirical processes
when parameters are estimated, assuming that the underlying sequence of random
variables is long-range dependent. We show completely different phenomena com-
pared to i.i.d. situation, as well as compared to ordinary empirical processes of
long range dependent sequences. Applications include Kolmogorov-Smirnov and

Cramer-Smirnov-von Mises goodness-of-fit statistics.
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1 Introduction and statement of results

Let {€;,7 > 1} be a centered sequence of i.i.d. random variables. Consider the

class of stationary linear processes
(o.9]
Xi=> cpeig, i>1 (1)
k=0

We assume that the sequence ci, k > 0, is regularly varying with index —(,
B € (1/2,1) (written as ¢; € RV_g). This means that ¢y ~ k™% Lo(k) as k — oo,
where L is a slowly varying function at infinity. We shall refer to all such
models as long range dependent (LRD) linear processes. In particular, if the
variance exists, then the covariances pi := EXgX} decay at the hyperbolic rate,
pr = LK)k~ 3D = L(k)k~P, where limy_.o, L(k)/L3(k) = B(28 — 1,1 — 3)
and B(-, ) is the beta-function. Consequently, the covariances are not summable
(cf. [10]).

Assume that X has a continuous distribution function F'. Given X1, ..., X,

let F(z) =n"t30, l{x,<z}) be the empirical distribution function.



Assume that Ee? < oo. Let r be an integer and define

n 7
Yor=> > Ileieii. n =1,

i=11<j1 < <jr s=1

so that Y, 0 =n, and Y, 1 = 31 X;. If p< (28 —1)71, then
o2 = Var(Y,,,) ~ n* PV LI (), (2)
From [12] we know that for p < (28 —1)~!, as n — oo,
U;;;Yn,p K Zp; (3)

where Z,, is a random variable which can be represented by appropriate multiple
Wiener-Ito integrals. In particular, Z; is standard normal.

In the present paper we study the asymptotic behaviour of empirical pro-
cesses when unknown parameters of the underlying distribution function are esti-
mated. The motivation to study such problems comes from Kolmogorov-Smirnov
type statistics. From [12] we know that, as n — oo,

o, nsup [Fy(e) — F(a)] | Z1] sup f(x), (4)

zeR zeR

where Z; is a standard normal random variable and f is the density function of F'.
The above result can be used, in principle, to test whether data Xi,...,X,, are
consistent with a given distribution F'. If however F' belongs to a one-parameter
family {F'(-,0),60 € R} say, then in order to use (4) one needs to know the value
of the parameter 6. A straightforward procedure would be to estimate it and use
the statistic

opqnsup |Fy(z) — F(; 0,)],
zeR

where F(x;0,) is the distribution function F(z) = F(x;6) in which the parameter
f has been replaced with its estimator én However, in the i.i.d. case, it is known
that such procedure changes a limiting process. To be more specific, assume for
a while that Xy,..., X, are i.i.d. random variables and consider
Vvnsup |F,(x) — F(x)|.
zeR
As it is well-known, the above supremum converges in distribution to the supre-

mum of a Brownian bridge on [0,1]. On the other hand, for a large class of



estimators,
VlF,(z) — F(a; én)|a

converges weakly to a Gaussian process, but no longer to a Brownian bridge.

The corresponding comments apply to the Cramér-Smirnov-von Mises statistic

Vi [ (Fuw) = F(@)*dF (@)

and its ’estimated’ version
Vi [ (Fal@) = F(a:,)2dF (@:0,).
R

We refer to [6], [9], [13] and [2] for more details.

Coming back to LRD sequences, the similar problems have been studied in
[1] and [11] (See Remark 1.6 for the comparison of results in those papers and
in the current one). Here, we will focus on a location family of distributions.
We shall assume that Y; = X; + pu, where X; is given by (1). Clearly, if F' is
the distribution of X; and H is the distribution of Y7, then H(z) = F (x — p).

Moreover, the empirical processes
Bu(x) = opin(Fo(z) = F(z)), 2€R

and
n(z) = ffﬁn(Hn(:B) — H(x)), zeR

associated with X; and Y}, respectively, are related by

() = B (& = 1) ()

From [12], 8, (z)= f(z)Z1, so that v,(x)=f(z — p)Z1. Here and in the sequel,
= denotes weak convergence in D((—o0,00)). On the contrary, if 6, is an ap-

propriate sequence of estimators of the mean p, we will show that, as n — oo,
An(x) = o in(Hy(z) = H(z:0n)),  z€R

converges in probability to 0. Choosing a different scaling one can obtain weak
convergence, however the limiting process depends on the choice of the estimator.
In particular, using 6, = Y, (the sample mean of Y3,...,Y},) or 6, = M, (M-

estimator), we can obtain different limits, depending on the so-called second-order



M-rank of the estimator M,, introduced in [14]. Also, the scaling and the limiting
process depend on whether 8 > 3/4 or < 3/4. In particular, if 3 > 3/4, then we
obtain +/n-consistency of a modified Kolmogorov-Smirnov type statistics. The
appropriate results are stated in Theorems 1.2 and 1.4.

The proofs of our results will be based on a reduction principle for long-
range dependent empirical processes (see Theorem 1.1 below), combined with
approximation method as in [2]. The fact, that we were able to use the latter,
Hungarian-like approach, shows its extreme power. The Hungarian construc-
tion approach was for example employed to obtain the Komlds-Major-Tusnady
(KMT) strong approximation of empirical processes. Then, this approach was
followed to establish a number of optimal or almost optimal results for func-
tionals of empirical and quantile processes, including the one in [2] for empirical
processes with parameters estimated (we refer to [3]). The KMT construction is
tailored for the i.i.d. situation. However, a lot of further developments based on
this kind of approach, can be applied to long-range dependent sequences. Very
recent examples of such an approach include [4], [5].

The reduction principle was obtained first in [7] in case of subordinated
Gaussian processes. In more generality, it was obtained in the landmark paper
[12]; see also [15] for related studies. The best available result along these lines
is due to Wu [17]. To state a particular version of his result, we shall introduce
the following assumptions, which will be valid throughout the paper. Let F,
be the distribution function of the centered i.i.d. sequence {¢;,7 > 1}. Assume
that for a given integer p, the derivatives Fe(l)7 e e(p +3) of F, are bounded and
integrable. Note that these properties are inherited by the distribution F' as well
(cf. [12] or [17]).

Theorem 1.1 Let p be a positive integer. Then, as n — oo,

n D 2
Esup > (Lix,<py — F(2) + D (-1 F(2)Y,,| =O(E, +n(logn)?),
z€R ;=1 r=1
where
_ ] om), (p+1)(28-1)>1
T 02 e LET )y (p1)(26 - 1) < 1

We will a require second-order expansion, thus in the above theorem, p = 2.



Let ¢ be a real-valued function of bounded variation such that E¢(Y; — pu) =

0. M-estimators are defined as
S ]R} .
Vo= [ o) w)dy.

Let k* = k*(8) = [1/(26 — 1)], where [-] denotes the integer part. The second-
order rank r3;(2) of the M-estimator is: rp;(2) = 2 if k* =1 (so that 8 > 3/4);
rv(2) =2 if k* > 1 and Ay # 0; 7pr(2) > 2 if £* > 1 and A2 = 0. We refer to

[14] for more details.

M =M, = argmin{ Zl/}(YJ —x)
j=1

For k=1,2, let

Let

-1

Ap = 0'n720'n71.

Now, we are ready to state our results. We start with the case 5 < 3/4.

Theorem 1.2 Assume that 0g = p and B < 3/4. Then, under the conditions of

Theorem 1.1, as n — oo, we have

° Ifén =Y, or én = M,, then

sup [9n(2)| = op(1). (6)
zeR
° Ifén =Y, then
ay, An(x) = o) yn(Ho(x) — H(x;0,))= Y (x = 1)V, (7)

where V = Zo + 1 Z3.
o If6, = M,, E6411v2k*(0) < oo and rp(2) > 2, then (7) holds.
° Ifén =M, E€411v2k*(0) < oo and ry(2) =2

@z (@) = o7 an(Ho () = H (w3 0))= [ (2 = ) V - ;jlif (z =) Vi,

(8)
where V is as in (7) and Vi = Z? + Zs.



Example 1.3 Assume that g = 0, f is symmetric and 1) is skew-symmetric. For
B < 3/4, rar(2) > 3 (cf. [14]) and the limiting behaviour is described by (7). If,
however, f is not symmetric, then Ay # 0 and (8) holds.

As for the case 5 > 3/4 we have the following theorem.

Theorem 1.4 Assume that 0y = p and > 3/4. Then, under the conditions of

Theorem 1.1, as n — oo, we have

° Ifén =Y, or én = M, then

sup [9n(z)| = op(1).
zeR

° Ifén =Y, then
\/ﬁan,lnil%z(x) = Vn(Hy(z) — H(a; én))jw (. —n), (9)
where W (-) is a Gaussian process.

o If 6, = M, Eezlwzk*(e) < o0, then
2
. o
Vo (@) = Vi(Hn(x) = H(w:00)=W (@ = p) + -2 (£ = 1) 21,
(10)
O’i is given by the formula (1.18) in [14].

An immediate corollary to Theorem 1.2 is the following Cramér-Smirnov-von

Mises test. An appropriate version can also be stated in terms of Theorem 1.4.

Corollary 1.5 Let 6y = u and 0, = Y,. Under the conditions of Theorem 1.2,

U;é”/I{(Hn(ﬂf) — H(x;0,))*dH (x;0,,) LS §V2 /R (f(l) (x — ,u))2 f(z—p)de.

The above result should be compared with a regular situation of non-estimated
Cramer-Smirnov-von Mises statistics in [8]. The limiting distribution for the
model (1) in case of Gaussian errors ¢;, is a random variable Z? multiplied by a

deterministic function.

Remark 1.6 The results established in this paper correspond to the previous
research of Beran and Ghosh ([1]) and Ho ([11]). In the first paper it was as-

sumed that ¢;, ¢ > 1, are Gaussian. They considered the location-scale family



corresponding to a transformation Y; = oX; + p. If both ¢ and p are esti-
mated, then one can conclude from their Theorem 2 that for 5 > 2/3 (which
corresponds to the Hurst parameter 1/2 < H < 5/6), the estimated empirical
process converges at rate y/n. That result should be compared with our The-
orem 1.4. Estimating p only we obtain /n rate of convergence for § > 3/4.
Consequently, estimating both p and o, we obtain better rates than estimating
p only. In the Gaussian case, if y is estimated by Y, and o is either known or
estimated, then 3", H1((Y; — Y,,)/o) = 0 and the same holds if one replaces o
with its estimator. Thus, second-order Hermite’s polynomials describe asymp-
totic behaviour of estimated empirical process: > i | Ha(X;) growths at rate /n
or o;én according to § > 3/4 or § < 3/4. If both p and o are estimated, then
also 31 Ho((X; — X)/6y) = 0 (64, is a sample variance) and thus third-order
Hermite polynomials play major role in the asymptotics. Consequently, \/n-rate
is achieved for § > 2/3. On the other hand, if x is known and o is estimated,
then first-order Hermite polynomials do not vanish and the limiting behaviour
of the estimated empirical process is the same as of the non-estimated one.

Ho, [11], considered the limiting behaviour of
> K(Xi,0n) (11)

for a suitable class of functions K. In particular, if K(z,y) = 1{,<y), then from
his Equation (4.1), applied with J = 2 and f(I)(p) # 0, we obtain for § < 3/4,

Ty (Fa(Ya) — F(1) S f'(0) (22 — Z2/2).

If f'(u) = 0, then the limit and the scaling factor are different (see Example B
n [11]). The situation is somehow parallel to the i.i.d case: depending on f’(u)
the limiting distribution of F},(Y;) — F(u) can be different, although the scaling
remains the same (see [16]). Comparing this with our results, we see that in our
case the limiting behaviour of estimated empirical processes and corresponding
test statistics depend on a global reduction principle only, whereas for the limiting
behaviour of (11), a local regularity properties of the density f are crucial. In
a sense, the situation is comparable to kernel density estimation. The limiting
behaviour of Parzen-Rosenblatt estimator at point zp depends on how many

derivatives f(")(z() vanish (see Theorem 3 in [18]).



Furthermore, Example C in [11] shows that the limiting behaviour of }* ; |¥;—
Y,| and Y"1, |Y; — M,,|, where M, is a M-estimator of y, is the same. In case of

estimated empirical processes, using M, instead of Y;,, we can change the limit.

In what follows C will denote a generic constant which may be different at
each of its appearance. Also, for any sequences a,, and b,, we write a,, ~ b, if

lim;, o0 @ /by, = 1. Moreover, f (k) denotes the kth order derivative of f.

2 Proofs

Let p be a positive integer. Recall that

ap = ngcr;jLo(n),

P n_(l_ﬁ)Lal(n)(log n)5/2(10g log n)3/4, p+1)(26-1)>1
S n_p(ﬁ_%)Lg(n)(log n)2(loglogn)®*, (p+1)(28-1) <1

Note that dy, 2 = o(ay,) provided g < %,

Put
Sn,p(l') = Z(l{XZSx} - F(l‘)) + Z(_l)r_lF(r) (x)Yn,T
=1 r=1
= Y (Ix<ay — F2) + Vay(a).
=1

Using Theorem 1.1 we obtain
Opp SUD S p(2)] =
zeR

Ou.s.(n~G P2 [P (n)(logn)>*(loglog n)*/4), (p+1)(268—1) > 1
Oa.s.(n~=2) Ly(n) (log ) /2 (log log n)3/4), (p+1)28—-1) <1

Since (see (2))

Ine | p=B=2)E-D -1 (), (12)
On,1



we obtain

SUp |Bn () + 0, 1 Vi p()| = (13)
zeR

= Sllp n,p Z 1{X <z} T ( )) + U;;}JVR7P<$) = Oa-S-(dTLyP)'

On,1 z€R

For a function g(x;6) denote by Vjg(x;6y) its rth order derivative with
respect to #, evaluated at @ = 6. In particular, V = V1.

Recall (5). For an arbitrary unknown parameter 6y and its estimator 0, we
have by (13)

(@) = n(2) +‘7;jn(H(x300) - H(mvén»
= Balx—p) + oy, 1n(H (x;60) — H(z:6,))
= 0p(dnz2) — 071Vn 2(x—p)+ ogin(eo — 0,)VgH (x;60)

“L1n(0p — 0,)>VZH (z;0) +

+Sonin Lomtn(0 — 0n)ViH (:67)

6 nln
= op(dn2) — n1f T—H ZX +Un1f(1 (. —p) Yoo

1
o 1100 — 0n)VoH (w5 60) + 503 1100 — 0n)* V3 H (; 00)
Soin(Bo — 8 VEH (2:63). (14)

with some 6% such that |0% — 0,,| < |0p — 07|.

If 8p = p, then
I
VH () = VLF (& — p) = (<1~ (o ). (15)
Also, if 0,, = Y,,, then
O — 0p = 0 X, (16)
Hence, using uniform boundness of f
() = op(dn2) — On, 1f ZX + o, 1f ( — ) Yoo +

=1

n 1 B _ B _
— 1) Z X+ §Un,11”f(1) (x —p) X2+ Op (ananf;) .
i=1



Since § < 3/4, note that 0,1Yn2 = o0p(1) (cf. (3)), J;&nf(% = op(1) and
agjnf(f{ = op(1). Thus, we conclude that sup, |3, (z)| 2 0 for 6, = ¥;,.

Further,
1 . (1) 1 2
a, " sup (fn(x) — fV (2 — p) [0, V02 + 2an1nX
x
= op(dnay ') + OP(aﬁlaﬁ,llani) = 0p(1) + Op(a, oy a0y 1)

= op(1).

Thus, (7) follows.
If 6,, = M,, then, as in (14) and (15),

An () op(dn,2) — nlf L ZX +0n1f ( — ) Yoo +
i=1

—oninl = V) (— ) — ~opin(T — M) (z — ) +

orgodn O o ) (1 = M) + Ol (i — M,)7)

- 1 1 G
= 0p(dn2) + 0, 1 W (2= p) Yoz =~ (Yo = M) f (z — )
1

+@Uﬁ&nf(l) (z — p) (1 — My)* + Op(oy, 1n(p — My)?).
From [14],
agjn(Mn —p) = 0;1171(3_/” — ) +op(1) 4, o7, (17)

and 05711?2(}7” — M,) = op(1). Thus, sup, |jn(z)| 2 0 for 6, = M,.

If rp7(2) > 2, then from [14, Theorem 1.1],
aglagjn(f/n — M,) = op(1),

thus in this case

_ . _ 1
az " sup | (2) = S (2 = p) |01 Vo2 + 5o anp - Mn)ﬂ
= op(dn2a,") +0p(1) + Op(a, o, 1n(n — Mp)?) = op(1).

Therefore, in view of (17), (7) follows.

10



If rpr(2) = 2, then a;la;&n is the proper scaling for (Y;, — M,,) and thus

2
1 R () . —1 M
@y sup | jn(z) — [ (2 — 1) [an,ly’ﬂ M

+ f(x—,u)(Yn—Mn)

O0n1

= Op(dn,Zagl) + OP(aﬁlaﬁn(# - Mn)g) =op(1),

and hence (8) follows using (17) and Corollary 1.1 in [14].

3 Proof of Corollary 1.5

Write

As for the second term, we have
/ A () 2V gh (5 80) (B,) — B0)dz + Ry,

where R,, = Op((én —0)?) = oP(én —0p). Thus, the second term is of a smaller
rate than the first one and the limiting behaviour of a;! [ 4, (x)2dH (z; 0,) is the
same as that of [ 4, (z)2h(z;0p)dx. Thus, Corollary 1.5 follows from Theorem
1.2.

O]

4 Proof of Theorem 1.4
Recall that § > 3/4. Then
Vignan” () = Vi o (= ) + Vi (F (@ = ) = F (2= p.6n))
. ﬁ(Fn(x—u)—F(w—u)+f(w—ﬂ)zn;Xi/n>

11



If 6y = p and 6, = Y,,, then via (16),

sup |11~ () = Wa (@ = 40)| = Op (vl = 6a)%) = op(1).

Thus, using [17, Theorem 3], we obtain (9).
If g = p and én = M, then

1A 1
SUII:){ ‘\/ﬁamln L (z) — Wy (z) + ;f (x — p) vVn(M, —Y,)| = op(1).
xe
If 3 > 3/4, then from [14, Theorem 1.1], vi(M, — ;) % N(0,03). Thus, (10)
follows.

©
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