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1 Introduction

The aim of this paper is to study dependence orderings for functionals of station-
ary multivariate point processes. Especially, we consider the supermodular ordering
which is positive dependence ordering in the sense of Joe [12]. It implies positive or-
thant orderings, concordance ordering and hence comparison of covariance functions,
minima and maxima. Moreover, we consider the directionally convex ordering. Note
that it is not a dependence ordering, being not closed under increasing transforms
and weak convergence, but have some similar properties as supermodular ordering.

Point processes can be viewed in several ways. We can consider them as se-
quences of interpoint distances, as random measures or as piecewise deterministic
step functions. Each notion requires its own definition of stochastic ordering. There-
fore we introduce appropriate definitions motivated by Kwieciński and Szekli [15].
In contrary to strong stochastic ordering (Rolski and Szekli [29]) a little is known
about dependence orderings of point processes. We refer to Müller and Stoyan [26]
for a review.

In many stochastic models (queues, ruin theory, shock models) some character-
istics can be represented as functionals on point processes. Such models require
stationarity (and ergodicity) of input stream. Therefore we study sufficient condi-
tions (in terms of the ordering of base point processes) for the comparison of general
functionals on stationary multivariate point processes. These results allow to obtain
bounds for stochastic models with stationary (not necessary renewal) input stream.
They extend results for example of Li and Xu [17], [18]. As a byproduct we ob-
tain regularity properties of sequences of stationary random variables which extend
results for the iid case (Ross [30], Makowski and Philips [20]).

The paper is organized as follows. In section 2 we describe multivariate point
processes, classes of functions and define stochastic orderings for point processes. In
section 3 we present our main results which are illustrated by several special cases
(section 4). The proofs are given in section 5. From the proofs we get some regularity
properties in section 6. In section 7 we apply our results to some stochastic models,
including workload in queues and multivariate shock models. We mention some
possible extensions in section 8 and present properties of the classes of functions
and stochastic orderings in the Appendix.

2 Preliminaries

2.1 Multivariate point processes

A simple description of a k-variate (k ≤ ∞) point process is the one given by a
sequence Φ ≡ {(T 1

n , . . . , T
k
n )}∞n=−∞ of random variables defined on a probability

space (Ω,F , IP), such that T i
0 ≤ 0 < T i

1, T
i
n < T i

n+1, i = 1, . . . , k, n ∈ ZZ and
limn→±∞ T i

n = ±∞ (Φ is nonexplosive). Denote by {Xi
n}∞n=−∞ a sequence of inter-

point distances, i.e. Xi
n = T i

n − T i
n−1 (the interval Xi

1 contains 0). Then a k-variate
point process Φ can be seen as a random element assuming its values in (IR∞+ )k.

Let N be a set of locally finite integer valued measures on IR. Equivalently,
we view Φ as a random measure Φ : Ω → N k with the coordinate functions Φ =
(Φ1, . . . ,Φk), Φi : Ω → N . Then for all Borel sets B, N i

Φ(B) := Φi(B) is the
corresponding counting variable. However, if it is clear which point process do we
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mean we shall write shortly N i instead of N i
Φ. The corresponding counting processes

(N i(t), t ≥ 0), i = 1, . . . , k are given by N i(t) := N i((0, t]). We shall assume that Φ
is (time) stationary, i.e. the distribution of

(N1(B1
1 + t), . . . , N1(B1

r1
+ t), . . . , . . . , Nk(Bk

1 + t), . . . , N1(Bk
rk

+ t))

is independent of t ∈ IR, for any natural numbers ri ≥ 1, i = 1, . . . , k and all Borel
sets Bi

j , j = 1, . . . , ri. We denote by λi := IE[N i(1)] the intensity of Φi.
We assume that we have another point process Ψ with the corresponding points

{(T 1
n , . . . , T k

n )}n≥1, k ≤ ∞ and interpoint distances U i
n = T i

n − T i
n−1, i = 1, . . . , k.

We shall denote realizations (in N k) of Φ by ν and realizations of Ψ by µ.
The corresponding realizations of counting measures (counting functions) of Φ and
sequences of interpoint distances of Ψ we denote by ni(ν)(·) (ni(ν)(t)) and {ui

n(µ)},
respectively.

In the case k = 1 we shall write Tn (Xn, N , λ) and Tn (Un) instead of writing
these quantities with the superscript 1.

We say that sequences {U i
n}n≥1, (or, shortly {U i

n}), i = 1, . . . , k are jointly
stationary if for any ni ≥ 1, i = 1, . . . , k, m ≥ 1,

((U1
1 , . . . , U

1
n1

), . . . , (Uk
1 , . . . , U

k
nk

)) d= ((U1
1+m, . . . , U

1
n1+m), . . . , (Uk

1+m, . . . , U
k
nk+m)) .

In the sequel we shall write (Y i
1 , . . . , Y

i
ri
, i = 1, . . . , k) for a vector

(Y 1
1 , . . . , Y

1
r1
, . . . , Y k

1 , . . . , Y
k
rk

) .

We assume that all random elements with tilde (for instance Ψ̃, Φ̃) are defined on
a possibly different probability space (Ω̃, F̃ , ĨP).

2.2 Classes of functions

We denote by Li (Lcx, Licx) the class of increasing (convex, increasing and convex)
functions f : IR → IR.

Define for 1 ≤ l ≤ m, ε > 0 and arbitrary function ϕ : IRm → IR the difference
operator ∆ε

l by

∆ε
lϕ(u1, . . . , um) = ϕ(u1, . . . , ul−1, ul + ε, ul+1, . . . , um)− ϕ (u1, . . . , um)

for given u1, . . . , um.
We denote arbitrary m-dimensional intervals by J ⊆ IRm, i.e. J = I1×· · ·×Im,

where Ij is a (possibly infinite ended) interval on IR for j = 1, . . . ,m. A function
ϕ : IRm → IR is supermodular on J if for all 1 ≤ l < j ≤ m, εl, εj > 0 and
u = (u1, . . . , um) ∈ J such that (u1, . . . , ul−1, ul + εl, ul+1, . . . , um) ∈ J we have

∆εl
l ∆εj

j ϕ(u) ≥ 0 .

A function ϕ : IRm → IR is directionally convex on J if it is supermodular on J and
convex w.r.t. each coordinate on Ij , j = 1, . . . ,m or, equivalently

∆εl
l ∆εj

j ϕ(u) ≥ 0
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for all 1 ≤ l ≤ j ≤ m. We denote by Lsm(J ) (Ldcx(J )) the class of all supermodular
(directionally convex) functions on J . Moreover, we denote the class of increasing
directionally convex functions on J by Lidcx(J ) and symmetric supermodular func-
tions on J by Lssm(J ). We skip J in this notation if J = IRm. We collect needed
closure and regularity properties of these classes in the Appendix.

Definition 2.1 For a fixed c ∈ IR, let J̄ = {Jm}m≥1 be a sequence of intervals,
Jm ⊆ IRm, such that for all m ≥ 1 and (u1, . . . , um) ∈ Jm, (u1, . . . , um, c) ∈ Jm+1.
We say that a sequence {f (m)}m≥1 of functions f (m) : IRm → IR is extendable on J̄
with parameter c ∈ IR if

f (m+1)(u1, . . . , um, c) = f (m) (u1, . . . , um) , for all m ≥ 1 and (u1, . . . , um) ∈ Jm .

We denote by Ec(J̄ ) the class of all sequences which are extendable on J̄ with
parameter c.

Example 2.2 We give some examples of sequences of symmetric supermodular
functions {f (m)} such that f (m) ∈ Lssm(Jm) and {f (m)}m≥1 ∈ Ec(J̄ ) for some
J̄ , c.

1. {f (m)(u1, . . . , um) = h(min{u1, . . . , um})}m≥1 ∈ Ec(J̄ ), Jm = (−∞, c]m, for
all c ∈ IR and increasing h;

2. {f (m)(u1, . . . , um) = h(max{u1, . . . , um})}m≥1 ∈ Ec(J̄ ), Jm = [c,∞)m, for all
c ∈ IR and decreasing h;

3. {f (m)(u1, . . . , um) = ϕ(
∏m

n=1 u
d
n)}m≥1 ∈ E1(J̄ ), Jm = [0,∞)m, for d ≥ 0 and

all increasing convex ϕ;

4. {f (m)(u1, . . . , um) =
∏m

n=1 II(−∞,t](un)}m≥1 ∈ Ec(J̄ ), Jm = IRm, for all c ≤ t,
t ∈ IR;

5. {f (m)(u1, . . . , um) =
∏m

n=1 II[t,∞)(un)}m≥1 ∈ Ec(J̄ ), Jm = IRm, for all c ≥ t,
t ∈ IR;

6. {f (m)(u1, . . . , um) = ϕ(
∑m

n=1 un)}m≥1 ∈ E0(J̄ ), Jm = IRm, for all convex ϕ.

The functions defined in 3 and 6 are directionally convex for d ≥ 1. Note, that
for cn ≥ 0, n ≥ 1, the sequence {f (m)(u1, . . . , um) =

∑m
n=1 cnun}m≥1 ∈ E0(J̄ ),

Jm = IRm, consists of nonsymmetric functions if {cn} is not a constant sequence.

2.3 Stochastic ordering

For arbitrary random vectors (Y1, . . . , Yn), (Ỹ1, . . . , Ỹn) defined on probability spaces
(Ω,F , IP) and (Ω̃, F̃ , ĨP) respectively, we write (Y1, . . . , Yn) <a (Ỹ1, . . . , Ỹn) if IE[ϕ(Y1, . . . , Yn)] ≤
ĨE[ϕ(Ỹ1, . . . , Ỹn)] for all ϕ : IRn → IR such that ϕ ∈ La, where La denotes one of
the classes Lsm, Lssm, Ldcx, Lidcx. Similarly, for random sequences {Yn}n≥1 and
{Ỹn}n≥1 we write {Yn} <a {Ỹn} if for all n ≥ 1, (Y1, . . . , Yn) <a (Ỹ1, . . . , Ỹn).

Let Ψ (Ψ̃) be a k-variate stationary point process with the corresponding inter-
point distances {U i

n} ({Ũ i
n}), i = 1, . . . , k. We write

• Ψ <h−a−∞ Ψ̃ if (U i
1, . . . , U

i
n) <a (Ũ i

1, . . . , Ũ
i
n), i = 1, . . . , k, n ∈ IN ,
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• Ψ <v−a−∞ Ψ̃ if (U1
n, . . . , U

k
n) <a (Ũ1

n, . . . , Ũ
k
n), n ≥ 1 ,

• Ψ <m−a−∞ Ψ̃ if ({U1
n}, . . . , {Uk

n}) <a ({Ũ1
n}, . . . , {Ũk

n}), i.e. if for all n ≥ 1,
k ≥ 1 ,(

(U1
1 , . . . , U

1
n), . . . , (Uk

1 , . . . , U
k
n)
)
<a

((
Ũ1

1 , . . . , Ũ
1
n

)
, . . . ,

(
Ũk

1 , . . . , Ũ
k
n

))
.

Let Φ (Φ) be a k-variate point process with the corresponding counting measures
N i (Ñ i), i = 1, . . . , k. We write

• Φ <v−a−D Φ̃ if for all t ≥ 0,

(N1(t), . . . , Nk(t)) <a (Ñ1(t), . . . , Ñk(t)) ,

• Φ <h−a−D Φ̃ if for all 0 ≤ t1 < t2 < · · · < tr, r ≥ 1,

(N i(t1), . . . , N i(tr)) <a (Ñ i(t1), . . . , Ñ i(tr)) ,

i = 1, . . . , k,

• Φ <m−a−D Φ̃ if for all 0 ≤ t1 < t2 < · · · < tr, r ≥ 1,

(N i(t1), . . . , N i(tr), i = 1, . . . , k) <a (Ñ i(t1), . . . , Ñ i(tr), i = 1, . . . , k) .

Let I = {In}n≥1 be a partition of IR+ such that Ir, r ≥ 1 have the same length.
We write

• Φ <v−a−N Φ̃ if for all r ≥ 1,

(N1(Ir), . . . , Nk(Ir)) <a (Ñ1(Ir), . . . , Ñk(Ir)) ,

• Φ <h−a−N Φ̃ if for all (I1, . . . , Ir), r ≥ 1,

(N i(I1), . . . , N i(Ir)) <a (Ñ i(I1), . . . , Ñ i(Ir)) ,

i = 1, . . . , k,

• Φ <m−a−N Φ̃ if for all (I1, . . . , Ir), r ≥ 1,

(N i(I1), . . . , N i(Ir), i = 1, . . . , k) <a (Ñ i(I1), . . . , Ñ i(Ir), i = 1, . . . , k) .

Here, <v−a−· (<h−a−·, <m−a−·) means ”vertical” (”horizontal”, ”matrix”) or-
dering. On the other hand, <·−·−∞ (<·−·−N , <·−·−D) stands for the comparison
of point processes considered as random elements of (IR∞+ )k, (N k, (D([0,∞)))k),
where D([0,∞)) is the space of right-hand-side continuous functions with left-hand-
side limits.

Of course, if {Xi
n}n≥1 is independent of {Xj

n}n≥1 and {X̃i
n}n≥1 is independent

of {X̃j
n}n≥1, 1 ≤ i < j ≤ k then Φ <m−a−∞ Φ̃ is equivalent to Φ <h−a−∞ Φ̃

and if {(X1
n, . . . , X

k
n)}n≥1, {(X̃1

n, . . . , X̃
k
n)}n≥1 are sequences of independent random

vectors then Φ <m−a−∞ Φ̃ is equivalent to Φ <v−a−∞ Φ̃. The same relationships
hold for stochastic orderings of counting measures.
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For 1-variate point processes (k = 1) we shall omit subscript 1. Then for station-
ary processes <a−D (<a−N , <a−∞) is exactly <h−a−D (<h−a−N , <1−a−∞), whereas
<v−a−N is equivalent to <v−a−D and means that for all t ≥ 0, N(t) <a Ñ(t). Note
that for 1-variate point processes definitions for <h−st−N and <h−st−D coincide with
<st−N and <st−D orderings defined in Kwieciński and Szekli [15].

A number of examples of sequences comparable in a :=<sm, <idcx orderings,
including Markov-renewal sequences, stochastically monotone Markov chains can be
found in Bäuerle [3, 4], Bäuerle and Rolski [5], Frostig [9], Hu and Pan [10], Li and
Xu [17, 18, 19], Kulik and Szekli [13, 14], Meester and Shanthikumar [22], Müller
[23], Müller and Scarsini [25], Müller and Pflug [24], Shaked and Shanthikumar [31],
Szekli et al. [35].

3 Main results

For i = 1, . . . , k denote arbitrary sequences of functions {f (m)
i : IRm → IRdi}m≥1,

1 ≤ di,m <∞ by f ≡ ({f (m)
1 }m≥1, . . . , {f (m)

k }m≥1). We write shortly f (m)
i ({ui

n}) for
f

(m)
i (ui

1, . . . , u
i
m). For Borel sets B1, . . . , Br define a functional Hf (·, ·)(B1, . . . , Br) :

N k ×N k → IRr·d1 × · · · × IRr·dk in the following way:

Hf (µ, ν)(B1, . . . , Br) ≡ (f (ni(ν)(B1))
i ({ui

n(µ)}), . . . , f (ni(ν)(Br))
i ({ui

n(µ)}), i = 1, . . . , k) .

We write shortly Hf (µ, ν)(B) for the above expression, and in particular, we write
Hf (µ, ν)(t) and Hf (µ, ν)(I) for Bj = (0, tj ] and Bj = Ij , j = 1, . . . , r, respectively.
Here, t = (t1, . . . , tr) ≥ 0, I = (I1, . . . , Ir) and I = {In}n≥1 is the previously defined
partition of IR+. For the case r = 1 we shall write Hf (µ, ν)(t) and Hf (µ, ν)(I) in-
stead of writing t = (t1), I = (I1), respectively.

Our aim is to compare Hf (Ψ,Φ)(B1, . . . , Br), with Hf (Ψ̃, Φ̃)(B1, . . . , Br), in the
supermodular and increasing directionally convex order under suitable assumptions
on f

(m)
i . In order to do this we need to formalize a notion of monotonicity of

sequences {f (m)
i }m≥1, i = 1, . . . , k. Denote by ≤ the coordinatewise ordering on IRd,

1 ≤ d ≤ ∞. We say that a sequence {f (m) : IRm → IRd}m≥1 is increasing w.r.t. m if
m ≤ m′ implies f (m)(u1, . . . , um) ≤ f (m′)(u1, . . . , um′) for all sequences {un}∞n=1. We
say that a function f (m) : IRm → IRd is increasing w.r.t. {un} if {un}m

n=1 ≤ {ũn}m
n=1

implies f (m)({un}) ≤ f (m)({ũn}). Analogously we define decreasingness. We say
that a function is monotone if it is increasing or decreasing. Moreover, functions
g1, . . . , gk are monotone in the same direction if all are either increasing or decreasing.
Now, we state our main results. The proofs are given in Section 5.

Proposition 3.1 Assume that

(i) Φ, Φ̃ are stationary, Φ is independent of Ψ and Φ̃ is independent of Ψ̃,

(ii) Φ <m−sm−D Φ̃ (Φ <m−sm−N Φ̃),

(iii) {(U1
n, . . . , U

k
n)}n≥1, {(Ũ1

n, . . . , Ũ
k
n)}n≥1 are sequences of independent random

vectors,
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(iv) Ψ <v−sm−∞ Ψ̃,

(v) The sequences {f (m)
i : IRm → IRdi}m≥1, i = 1, . . . , k, are monotone in the

same direction w.r.t. m,

(vi) The functions f (m)
i , m ≥ 1, i = 1, . . . , k are increasing w.r.t. {ui

n}.

Then for all t ≥ 0, (I)

Hf (Ψ,Φ)(t) <sm Hf (Ψ̃, Φ̃)(t) ,

(Hf (Ψ,Φ)(I) <sm Hf (Ψ̃, Φ̃)(I)) .

Let J̄ = {Jm}m≥1 be a sequence ofm-dimensional intervals andKi
m := supp(U i

1, . . . , U
i
m) ⊆

Jm be the support of (U i
1, . . . , U

i
m), i = 1, . . . , k.

Proposition 3.2 Assume that

(i) Φ, Φ̃ are stationary, Φ is independent of Ψ and Φ̃ is independent of Ψ̃,

(ii) Φ <v−idcx−D Φ̃ (Φ <v−idcx−N Φ̃),

(iii) For some c ∈ IR and J̄ the sequences {f (m)
i : IRm → IR}m≥1 ∈ Ec(J̄ ), i =

1, . . . , k and are increasing w.r.t. m,

(iv) For all i = 1, . . . , k, {U i
n}n≥1 ({Ũ i

n}n≥1) is a stationary sequence independent
of {U j

n}n≥1 ({Ũ j
n}n≥1), j 6= i, such that supn,i U

i
n ≤ c or infn,i U

i
n ≥ c,

(v) Ψ <h−idcx−∞ Ψ̃,

(vi) The functions f (m)
i ∈ Lidcx(Jm), i = 1, . . . , k, m ≥ 1 are symmetric on Jm

and increasing w.r.t. {ui
n}.

Then for all t ≥ 0, (I)

Hf (Ψ,Φ)(t) <idcx Hf (Ψ̃, Φ̃)(t) ,

(Hf (Ψ,Φ)(I) <idcx Hf (Ψ̃, Φ̃)(I)) .

Remark 3.3 (i) If in Proposition 3.1 we have Ψ = Ψ̃ then we can relax inde-
pendence assumption and monotonicity of functions w.r.t. {ui

n}. On the other
hand, if Φ = Φ̃ then we can relax monotonicity of functions w.r.t. m.

(ii) If in Proposition 3.2 we have Ψ = Ψ̃ we can assume that functions are
symmetric and supermodular instead of directionally convex and increasing
w.r.t. {ui

n}. On the other hand, if Φ = Φ̃ then we can relax independence
assumptions, monotonicity w.r.t. m, extendability and symmetry of func-
tions. In this case we can assume that Ψ <m−idcx−∞ Ψ̃ in order to obtain
Hf (Ψ,Φ)(t) <idcx Hf (Ψ̃, Φ̃)(t) and Hf (Ψ,Φ)(I) <idcx Hf (Ψ̃, Φ̃)(I).

(iii) Assume in Proposition 3.2 that Φ and Φ̃ are synchronized, i.e. Φi = Φ, Φ̃i = Φ̃,
i = 1, . . . , k. Then we can relax independence assumptions by assuming that
{U i

n}n≥1, i = 1, . . . , k or {Ũ i
n}n≥1, i = 1, . . . , k are jointly stationary with

Ψ <m−idcx−∞ Ψ̃ and Φ <cx−N Φ̃. Observe, however, that synchronized k-
variate point process is not a simple point process.
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(iv) Assume in Proposition 3.2 that Ψ = Ψ̃ and {U i
n}n≥1, i = 1, . . . , k are mutually

independent renewal sequences. Then we can assume Φ <m−idcx−N Φ̃ in
order to obtain Hf (Ψ,Φ)(I) <idcx Hf (Ψ̃, Φ̃)(I). As before, in the case of
synchronization we do not need to assume that {U i

n}n≥1 is independent of
{U j

n}n≥1, j 6= i.

(v) Obviously, we can assume <sm-order in Proposition 3.2 instead of <idcx. How-
ever, under stationarity assumptions, it is not possible to obtain

Hf (Ψ,Φ)(t) <sm Hf (Ψ̃, Φ̃)(t) .

(vi) If in Proposition 3.2, f (m)
i ({ui

n}) =
∑m

n=1 u
i
n then it is still valid with <idcx

replaced by <dcx.

(vii) In the special case, if f (m)
i , i = 1, . . . , k have the form

f
(m)
i ({ui

n}) = (h(m)
i (ui

1), . . . , h
(m)
i (ui

m))

for some functions h(m)
i : IR → IR, i = 1, . . . , k, m ≥ 1, then we say that these

functions are u-valued. For instance f (m)
i can be of the form

• f
(m)
i ({ui

n}) = ui
m

• f
(m)
i ({ui

n}) = (ui
1, u

i
m)

Because <sm is closed w.r.t. pointwise increasing transforms and <idcx is
closed w.r.t. pointwise increasing convex transforms we have in Propositions
3.1 and 3.2 with Φ = Φ̃ that Ψ <m−sm−∞ Ψ̃ (Ψ <m−idcx−∞ Ψ̃) implies
Hf (Ψ,Φ)(B) <sm Hf (Ψ̃, Φ̃)(B) (Hf (Ψ,Φ)(B) <idcx Hf (Ψ̃, Φ̃)(B)) for in-
creasing (increasing and convex) functions h(m)

i , where either B = t or B = I.

4 Special cases

Recall firstly that Φ, Φ̃ are stationary, Φ is independent of Ψ and Φ̃ is independent of
Ψ̃. In this section we present some special cases of our results 3.1 and 3.2. However,
if we compare Hf (Ψ,Φ)(B1, . . . , Br) with Hf (Ψ̃,Φ)(B1, . . . , Br) (or Hf (Ψ,Φ)(B)
with Hf (Ψ, Φ̃)(B)) we use foregoing remarks.

Example 4.1 (Comparison of multivariate sums and products) The follow-
ing result is an easy consequence of Remark 3.3 (i) when f (m)

i ({ui
n}) =

∑m
n=1 u

i
n or

f
(m)
i ({ui

n}) =
∏m

n=1(u
i
n)d. For r = 1 the result in (1) below was obtained in Denuit

et al. [8].

Corollary 4.2 Assume that for stationary Φ, Φ̃ we have Φ <m−sm−N Φ̃ (Φ <m−sm−D

Φ̃) and Ψ = Ψ̃.
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(i) If {U i
n}n≥1, {Ũ i

n}n≥1, i = 1, . . . , k are sequences of nonnegative random vari-
ables then either for all Bj = Ij (Bj = (0, tj ]), j = 1, . . . , r, r ≥ 1N i(B1)∑

n=1

U i
n, . . . ,

N i(Br)∑
n=1

U i
n, i = 1, . . . , k

 <sm

Ñ i(B1)∑
n=1

Ũ i
n, . . . ,

Ñ i(Br)∑
n=1

Ũ i
n, i = 1, . . . , k

 . (1)

(ii) If {U i
n}n≥1, {Ũ i

n}n≥1, i = 1, . . . , k are sequences of random variables bounded
below by 1, then for all d > 0 and either for all Bj = Ij (Bj = (0, tj ]),
j = 1, . . . , r, r ≥ 1N i(B1)∏

n=1

(U i
n)d, . . . ,

N i(Br)∏
n=1

(U i
n)d, i = 1, . . . , k

 <sm

Ñ i(B1)∏
n=1

(Ũ i
n)d, . . . ,

Ñk(Br)∏
n=1

(Ũ i
n)d, i = 1, . . . , k

 .

Remark 4.3 All the results below can be formulated, as in Corollary 4.2, not only
for f

(m)
i ({ui

n}) =
∑m

n=1 u
i
n , but for f

(m)
i ({ui

n}) =
∏m

n=1(u
i
n)d as well. More-

over, Corollaries 4.2 and 4.4 can be formulated for example for f
(m)
i ({ui

n}) =
h(min{ui

1, . . . , u
i
m}) and other functions (see Example 2.2).

In order to get in Corollary 4.2 more general comparison result we have to make
some additional assumptions on Ψ and Ψ̃, as in Proposition 3.1.

Corollary 4.4 Assume that for stationary Φ, Φ̃ we have Φ <m−sm−N Φ̃ (Φ <m−sm−D

Φ̃) and Ψ <v−sm−∞ Ψ̃.
If {(U1

n, . . . , U
k
n)}n≥1 and {(Ũ1

n, . . . , Ũ
k
n)}n≥1 are sequences of independent nonneg-

ative random variables then either for all Bj = Ij or Bj = (0, tj ], j = 1, . . . , r,
r ≥ 1 N i(B1)∑

n=1

U i
n, . . . ,

N i(Br)∑
n=1

U i
n, i = 1, . . . , k

 <sm

Ñ i(B1)∑
n=1

Ũ i
n, . . . ,

Ñ i(Br)∑
n=1

Ũ i
n, i = 1, . . . , k

 . (2)

The above result (with Bj = (0, tj ]) was also obtained in Li and Xu [18]. Note, how-
ever, that we do not require boundness of supermodular functions. On the other
hand, it follows from Müller and Stoyan [26] that it is sufficient to consider bounded
supermodular functions in order to obtain <sm-order.

Because the function f (m)
i ({ui

n}) =
∑m

n=1 u
i
n fulfills conditions of Proposition 3.2

and bearing in mind Remark 3.3 (vi) we have the following result.
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Corollary 4.5 Assume that Ψ <h−dcx−∞ Ψ̃, Φ <v−dcx−N Φ̃ and for all i =
1, . . . , k, {U i

n}n≥1 ({Ũ i
n}n≥1) is a stationary sequence independent of {U j

n}n≥1 ({Ũ j
n}n≥1),

j 6= i.
If all random variables are nonnegative, then for all t ≥ 0N1(t)∑

n=1

U1
n, . . . ,

Nk(t)∑
n=1

Uk
n

 <dcx

Ñ1(t)∑
n=1

Ũ1
n, . . . ,

Ñk(t)∑
n=1

Ũk
n

 .

Bearing in mind the Remark 3.3 (iii) we have the next corollary.

Corollary 4.6 Assume that Φ and Φ̃ are synchronized point processes such that
Φ <v−cx−N Φ̃. If {U i

n}n≥1, i = 1, . . . , k or {Ũ i
n}n≥1, i = 1, . . . , k are jointly station-

ary and Ψ <m−dcx−∞ Ψ̃ then for all t ≥ 0N(t)∑
n=1

U1
n, . . . ,

N(t)∑
n=1

Uk
n

 <dcx

Ñ(t)∑
n=1

Ũ1
n, . . . ,

Ñ(t)∑
n=1

Ũk
n

 .

The following result is not a direct corollary from Propositions 3.1 and 3.2. However,
it will be useful in our applications (Section 7) and require a similar method of the
proof.

Define for a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ar < br such that bj − aj = bl − al, l 6= j,
the intervals Ij = (aj , bj ], j = 1, . . . , r.

Proposition 4.7 Assume that one of the following holds.

(i) Φ <m−idcx−N Φ̃, Ψ = Ψ̃ and Ψ consists of mutually independent iid nonneg-
ative sequences,
or

(ii) Ψ <m−idcx−∞ Ψ̃ and Φ = Φ̃.

Then for all r ≥ 1 N i(b1)∑
n=N i(a1)+1

U i
n, . . . ,

N i(br)∑
n=N i(ar)+1

U i
n, i = 1, . . . , k

 <idcx

 Ñ i(b1)∑
n=Ñ i(a1)+1

Ũ i
n, . . . ,

Ñ i(br)∑
n=Ñ i(ar)+1

Ũ i
n, i = 1, . . . , k

 .

Example 4.8 (Thinning of point processes) Our main results used with f (m)
i ({ui

n}) =∑m
n=1 u

i
n can be applied to compare thinned point processes. Assume that {U i

n}n≥1,
i = 1, . . . , k are stationary 0 − 1 valued sequences of random variables such that
{U i

n}n≥1 is independent of {U j
n}n≥1 for all i 6= j. Note that this sequence can be

seen as a realization of a discrete time k-variate point process. However, the re-
sults for random sums can be applied. Thinning of a point process Φ with counting
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measures N i, i = 1, . . . , k is a point process Φ∗ which counting measures N i
Φ∗

,
i = 1, . . . , k can be represented for all Borel sets B as

(N1
Φ∗(B), . . . , Nk

Φ∗(B)) =

N1(B)∑
n=1

U1
n, . . . ,

Nk(B)∑
n=1

Uk
n

 .

In the same way define a point process Φ̃∗. From Propositions 3.1, 3.2 and Remark
3.3 (vi) we have the following result.

Proposition 4.9 (i) Assume that {U i
n}n≥1, i = 1, . . . , k is independent of {U j

n}n≥1

for all i 6= j. If Φ <v−dcx−D Φ̃ (Φ <v−dcx−N Φ̃) and Ψ <h−dcx−∞ Ψ̃ then
Φ∗ <v−dcx−D Φ̃∗ (Φ∗ <v−dcx−N Φ̃∗).

(ii) Assume that {(U1
n, . . . , U

k
n)}n≥1, {(Ũ1

n, . . . , Ũ
k
n)}n≥1 are sequences of indepen-

dent random vectors. If Φ <m−sm−D Φ̃ (Φ <m−sm−N Φ̃) and Ψ <v−sm−∞ Ψ̃
then Φ∗ <m−sm−D Φ̃∗ (Φ∗ <m−sm−N Φ̃∗).

The Remark 3.3 (iii) can be applied to compare markings of 1-variate point processes.
Precisely, let Φ and Φ̃ be 1-variate point processes with counting measures N and Ñ ,
respectively. Consider a stationary sequence {Vn}n≥1 of random variables with val-
ues in {1, . . . , k}. Define U i

n = II(Vn = i), n ≥ 1, i = 1, . . . , k. Then {U1
n}, . . . , {Uk

n}
are jointly stationary. Define k-variate point processes Φ∗, Φ̃∗ by their counting mea-
sures N i

Φ∗ , N i
Φ̃∗ , i = 1, . . . , k in the following way: N i

Φ∗(B) =
∑N(B)

n=1 U i
n, i = 1, . . . , k

and N i
Φ̃∗(B) =

∑Ñ(B)
n=1 U i

n, i = 1, . . . , k. If Φ <cx−N Φ̃ then Φ∗ <v−dcx−N Φ̃∗.

The above results show how to increase (or hold) dependence and variability
in arrival processes. Either multivariate arrivals are the same and, after suitable
thinning, they can be compared in <sm or <idcx or 1-variate point processes are
ordered and after the same marking k-variate point processes are ordered as well.
Proposition 4.9 shows also that ordered arrivals are, after suitable thinning, ordered
as well.

Example 4.10 (Comparison of multivariate arrival processes) The models in
the previous example can be rewritten for multivariate batch arrival processes.
Precisely, let Φ, Φ̃ be point processes representing arrivals of the batches and
{(U1

n, . . . , U
k
n)}n≥1, {(Ũ1

n, . . . , Ũ
k
n)}n≥1 be sequences representing the size of the batches,

i.e. U i
n is the size of the nth batch in queue i, n ≥ 1, i = 1, . . . , k. Then we define

batch arrival processes Φ‘, Φ̃‘ by their counting measures N i
Φ‘ , N i

Φ̃‘ , i = 1, . . . , k in

the following way: N i
Φ‘(B) =

∑N i(B)
n=1 U i

n, i = 1, . . . , k and N i
Φ̃‘(B) =

∑Ñ i(B)
n=1 Ũ i

n,
i = 1, . . . , k. The similar model was considered in Li and Xu [17]. Using the similar
comment as in the previous example, dependence and variability in batch arrival
process can be increased by dependence in batches or by dependence in non-batch
arrival process.

5 Proofs of the main results

In this section we prove the main results. The proofs consist mainly of some techni-
cal lemmas. Subsequently, some regularity properties are easy consequence of these
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lemmas.

The proof of the first lemma follows directly from the definition of supermodular
functions (see for instance Denuit et al. [8] where functions f (n)

i are given in the
special form).

Lemma 5.1 Let {U i
n}n≥1, i = 1, . . . , k be sequences of random variables and {f (m)

i :
IRm → IRdi}m≥1, 1 ≤ di <∞, i = 1, . . . , k be increasing (decreasing) w.r.t. m. Then
for all functions ϕ ∈ Lsm

ψ((n1,1, . . . , n1,r1), . . . , (nk,1, . . . , nk,rk
)) =

IE
[
ϕ

(
(f (n1,1)

1 ({U1
n}), . . . , f

(n1,r1 )
1 ({U1

n})), . . . , (f
(nk,1)
k ({Uk

n}), . . . , f
(nk,rk

)

k ({Uk
n}))

)]
is supermodular on INr1+···+rk .

Recall now that Ec(J̄ ) is the class of all extendable functions on J̄ (see Definition
2.1) and Km := supp(U1, . . . , Um) ⊆ Jm is the support of (U1, . . . , Um).

Lemma 5.2 For a fixed c, let {Un}n≥1 be a stationary sequence such that supn Un ≤
c or infn Un ≥ c. If {f (m) : IRm → IR}m≥1 ∈ Ec(J̄ ) and for all m, f (m) ∈ Lssm(Jm),
then

φ(m) = IE[f (m)(U1, . . . , Um)]

is convex on IN.

Proof.

φ(m+ 1) + φ(m− 1)− 2φ(m)
= IE[f (m+1)(U1, . . . , Um+1)] + IE[f (m−1)(U1, . . . , Um−1)]− 2IE[f (m)(U1, . . . , Um)]
= IE[f (m+1)(U1, . . . , Um+1)] + IE[f (m+1)(c, U1, . . . , Um−1, c)]

−IE[f (m+1)(c, U1, . . . , Um)]− IE[f (m+1)(U1, . . . , Um, c)]
= IE[f (m+1)(U1, . . . , Um+1)] + IE[f (m+1)(c, U2, . . . , Um, c)]

−IE[f (m+1)(c, U2, . . . , Um+1)]− IE[f (m+1)(U1, . . . , Um, c)]
≥ 0 .

In the second equation we used extendability and symmetry property, whereas in
the third we applied stationarity. Inequality follows from the fact that f (m+1) is
supermodular. Indeed, if supn Un ≤ c then

(U1, . . . , Um+1) = (min{c, U1}, U2, . . . , Um,min{c, Um+1})

and
(c, U2, . . . , Um, c) = (max{c, U1}, U2, . . . , Um,max{c, Um+1}) .

Analogously, in the case infn Un ≥ c we have to interchange min with max in the
above expressions.

2

Combining ideas of Lemmas 5.1 and 5.2 we obtain the next result.
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Lemma 5.3 For a fixed c, let {U i
n}n≥1, i = 1, . . . , k be stationary sequences such

that for all i 6= j, {U i
n}n≥1 is independent of {U j

n}n≥1 and supn,i U
i
n ≤ c or infn,i U

i
n ≥

c. If

(i) {f (m)
i : IRm → IR}m≥1 ∈ Ec(J̄ ), i = 1, . . . , k are monotone (increasing or

decreasing) w.r.t m and increasing w.r.t. {ui
n}

and

(ii) for all i = 1, . . . , k and m ≥ 1, f (m)
i ∈ Lssm(Jm),

then for all functions ϕ ∈ Lidcx

ψ(n1, . . . , nk) = IE
[
ϕ
(
f

(n1)
1 (U1

1 , . . . , U
1
n1

), . . . , f (nk)
k (Uk

1 , . . . , U
k
nk

)
)]

is monotone (increasing or decreasing) and directionally convex on INk.

Proof. First, we can apply Lemma 5.1 in order to obtain that ψ is supermodular. We
need only to show that ψ is convex w.r.t. ni, i = 1, . . . , k. Let Ui

ni
= (U i

1, . . . , U
i
ni

)
and denote θUi

ni
= (U i

2, . . . , U
i
ni+1). Then by independence assumption

ψ(n1 + 1, n2, . . . , nk) + ψ(n1 − 1, n2, . . . , nk)− 2ψ(n1, . . . , nk) =

= IE
[
ϕ
(
f

(n1+1)
1 (U1

n1+1), f
(n2)
2 (U2

n2
), . . . , f (nk)

k (Uk
nk

)
)]

+IE
[
ϕ
(
f

(n1−1)
1 (U1

n1−1), f
(n2)
2 (U2

n2
), . . . , f (nk)

k (Uk
nk

)
)]

−2IE
[
ϕ
(
f

(n1)
1 (U1

n1
), f (n2)

2 (U2
n2

), . . . , f (nk)
k (Uk

nk
)
)]

= IE
[
ϕ
(
f

(n1+1)
1 (U1

n1+1), f
(n2)
2 (U2

n2
), . . . , f (nk)

k (Uk
nk

)
)]

+IE
[
ϕ
(
f

(n1+1)
1 (c, U1

1 , . . . , U
1
n1−1, c), f

(n2)
2 (U2

n2
), . . . , f (nk)

k (Uk
nk

)
)]

−IE
[
ϕ
(
f

(n1+1)
1 (c, U1

1 , . . . , U
1
n1

), f (n2)
2 (U2

n2
), . . . , f (nk)

k (Uk
nk

)
)]

−IE
[
ϕ
(
f

(n1+1)
1 (U1

1 , . . . , U
1
n1
, c), f (n2)

2 (U2
n2

), . . . , f (nk)
k (Uk

nk
)
)]

= IE
[
ϕ
(
f

(n1+1)
1 (U1

n1+1), f
(n2)
2 (U2

n2
), . . . , f (nk)

k (Uk
nk

)
)]

+IE
[
ϕ
(
f

(n1+1)
1 (c, U1

2 , . . . , U
1
n1
, c), f (n2)

2 (U2
n2

), . . . , f (nk)
k (Uk

nk
)
)]

−IE
[
ϕ
(
f

(n1+1)
1 (c, U1

2 , . . . , U
1
n1+1), f

(n2)
2 (U2

n2
), . . . , f (nk)

k (Uk
nk

)
)]

−IE
[
ϕ
(
f

(n1+1)
1 (U1

1 , . . . , U
1
n1
, c), f (n2)

2 (U2
n2

), . . . , f (nk)
k (Uk

nk
)
)]

.

In the second equality we used extendability and symmetry properties of f (ni)
i ,

whereas in the third we used stationarity. Write the above equation in the form

ψ(n1 + 1, n2, . . . , nk) + ψ(n1 − 1, n2, . . . , nk)− 2ψ(n1, . . . , nk) =

=
∫

IE
[
ϕ
(
f

(n1+1)
1 (U1

n1+1), f
(n2)
2 (u2

n2
), . . . , f (nk)

k (uk
nk

)
)]
dIPU1

(u1)

+
∫

IE
[
ϕ
(
f

(n1+1)
1 (c, U1

2 , . . . , U
1
n1
, c), f (n2)

2 (u2
n2

), . . . , f (nk)
k (uk

nk
)
)]
dIPU1

(u1)

−IE
[
ϕ
(
f

(n1+1)
1 (c, U1

2 , . . . , U
1
n1+1), f

(n2)
2 (u2

n2
), . . . , f (nk)

k (uk
nk

)
)]
dIPU1

(u1)

−IE
[
ϕ
(
f

(n1+1)
1 (U1

1 , . . . , U
1
n1
, c), f (n2)

2 (u2
n2

), . . . , f (nk)
k (uk

nk
)
)]
dIPU1

(u1)
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Here IPU1
denotes the distribution of (U2

n2
, . . . ,Uk

nk
) and u1 ≡ (u2

n2
, . . . ,uk

nk
).

Because for all n ≥ 1, f (n)
1 is supermodular and increasing w.r.t. {ui

n} and ϕ is
increasing and convex w.r.t. the first coordinate we obtain that

ϕ
(
f

(n1+1)
1 (u1

1, . . . , u
1
n1+1), f

(n2)
2 (u2

n2
), . . . , f (nk)

k (uk
nk

)
)

is supermodular w.r.t. (u1
1, . . . , u

1
n1+1). Therefore

ψ(n1 + 1, n2, . . . , nk) + ψ(n1 − 1, n2, . . . , nk)− 2ψ(n1, . . . , nk) ≥ 0

which ends the proof.
2

Using a similar technique as in Lemma 5.3 and observing that for ϕ ∈ Lidcx and
f

(m)
i : IRm → IR ∈ Lidcx, ψ defined by

ψ((u1
1, . . . , u

1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ
(
f

(n1)
1 (u1

1, . . . , u
1
n1

), . . . , f (nk)
k (uk

1, . . . , u
k
nk

)
)

is increasing and directionally convex (cf. Lemma 9.2) we obtain the following result.

Lemma 5.4 For a fixed c, let {U i
n}n≥1, i = 1, . . . , k be jointly stationary sequences

of random variables such that supn,i U
i
n ≤ c or infn,i U

i
n ≥ c. If

(i) {f (m)
i : IRm → IR}m≥1 ∈ Ec(J̄ ), i = 1, . . . , k,

and

(ii) for all i = 1, . . . , k and m ≥ 1, f (m)
i ∈ Lidcx(Jm) are symmetric on Jm and

increasing w.r.t. {ui
n},

then for all functions ϕ ∈ Lidcx

ψ(n) = IE
[
ϕ
(
f

(n)
1 (U1

1 , . . . , U
1
n), . . . , f (n)

k (Uk
1 , . . . , U

k
n)
)]

is convex on IN.

Now, we establish comparison properties w.r.t. {U1
n}, . . . , {Uk

n}. The first result
generalizes Theorem 2.7 in Li and Xu [17].

Lemma 5.5 Assume that {(U1
n, . . . , U

k
n)}n≥1, and {(Ũ1

n, . . . , Ũ
k
n)}n≥1 are sequences

of independent random vectors. If for all n ≥ 1, (U1
n, . . . , U

k
n) <sm (Ũ1

n, . . . , Ũ
k
n) and

f
(m)
i : IRm → IRdi, m ≥ 1, i = 1, . . . , k are monotone in the same direction w.r.t.
{ui

n} then for all n1, . . . , nk,

(f (n1)
1 ({U1

n}), . . . , f
(nk)
k ({Uk

n})) <sm (f (n1)
1 ({Ũ1

n}), . . . , f
(nk)
k ({Ũk

n})) .

Proof. Without loss of generality we can assume that {(U1
n, . . . , U

k
n)}n≥1 is indepen-

dent of {(Ũ1
n, . . . , Ũ

k
n)}n≥1. Clearly, the function ψ defined by

ψ((u1
1, . . . , u

1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ
(
f

(n1)
1 ({u1

n}), . . . , f
(nk)
k ({uk

n})
)

is supermodular as a function of (u1
j1
, . . . , uk

jk
), 1 ≤ ji ≤ ni, i = 1, . . . , k, if

ϕ ∈ Lsm and f
(ni)
i are monotone in the same direction w.r.t. {ui

n} (cf. Lemma
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9.1). From our assumptions we have that (U1
1 , . . . , U

k
1 ) <sm (Ũ1

1 , . . . , Ũ
k
1 ). Writ-

ing f (ni)
i (ũi

1, . . . , ũ
i
l, {ui

ni
}) for f (ni)

i (ũi
1, . . . , ũ

i
l, u

i
l+1, . . . , u

i
ni

), l = 0, . . . , ni − 1, i =
1, . . . , k we have

IE[ϕ(f (n1)
1 ({U1

n}), . . . , f
(nk)
k ({Uk

n})] =

=
∫

IE[ϕ(f (n1)
1 (U1

1 , {u1
n}), . . . , f

(nk)
k (Uk

1 , {uk
n}))]dIPU1(u1)

≤
∫

IE[ϕ(f (n1)
1 (Ũ1

1 , {u1
n}), . . . , f

(nk)
k (Ũk

1 , {uk
n}))]dIPU1(u1)

= IE[ϕ(f (n1)
1 (Ũ1

1 , {U1
n}), . . . , f

(nk)
k (Ũk

1 , {Uk
n}))]

=
∫

IE[ϕ(f (n1)(ũ1
1, U

1
2 , {u1

n}), . . . , f (nk)(ũk
1, U

k
2 , {uk

n}))]dIPU2(u2)

≤
∫

IE[ϕ(f (n1)
1 (ũ1

1, Ũ
1
2 , {u1

n}), . . . , f
(nk)
k (ũk

1, Ũ
k
2 , {uk

n}))]dIPU2(u2) .

Here IPUi denotes the distribution of ({U1
n}n6=i, . . . , {Uk

n}n6=i) and

u1 = ({u1
n}n≥2, . . . , {uk

n}n≥2) ,

u2 = (ũ1
1, {u1

n}n≥3, . . . , ũ
k
1, {uk

n}n≥3) .

The second inequality follows from (U1
2 , . . . , U

k
2 ) <sm (Ũ1

2 , . . . , Ũ
k
2 ). Now contin-

uation of this operation completes the proof.
2

Assume now ni ≥ max{ni,1, . . . , ni,r}, i = 1, . . . , k. As above, if ϕ is supermodular
and f (ni,j)

i are monotone in the same direction then ψ defined as

ψ((u1
1, . . . , u

1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ
(
f

(ni,1)
i ({ui

n}), . . . , f
(ni,r)
i ({ui

n}), i = 1, . . . , k
)

is supermodular as a function of all vectors of the form (u1
j1
, . . . , uk

jk
) . Therefore, we

have the following generalization of Lemma 5.5.

Lemma 5.6 Under assumptions of Lemma 5.5 we have

(f (ni,1)
i ({U i

n}), . . . , f
(ni,r)
i ({U i

n}), i = 1, . . . , k) <sm

(f (ni,1)
i ({Ũ i

n}), . . . , f
(ni,r)
i ({Ũ i

n}), i = 1, . . . , k) .

Since for ϕ ∈ Lidcx and f (m)
i : IRm → IR ∈ Lidcx ψ defined as

ψ((u1
1, . . . , u

1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ
(
f

(n1)
1 ({u1

n}), . . . , f
(nk)
k ({uk

n})
)

is increasing and directionally convex (cf. Lemma 9.2) and using closure of <idcx

under marginalization we have the following result.

Lemma 5.7 Assume that for all ni ≥ 1, i = 1, . . . , k,

((U1
1 , . . . , U

1
n1

), . . . , (Uk
1 , . . . , U

k
nk

)) <idcx ((Ũ1
1 , . . . , Ũ

1
n1

), . . . , (Ũk
1 , . . . , Ũ

k
nk

)) .
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(i) If f (m)
i : IRm → IR ∈ Lidcx, i = 1, . . . , k, m ≥ 1 are increasing w.r.t. {ui

n}.
Then

(f (n1)
1 (U1

1 , . . . , U
1
n1

), . . . , f (nk)
k (Uk

1 , . . . , U
k
nk

)) <idcx

(f (n1)
1 (Ũ1

1 , . . . , Ũ
1
n1

), . . . , f (nk)
k (Ũk

1 , . . . , Ũ
k
nk

)) .

(ii) If f (m)
i : IRm → IR ∈ Lidcx, i = 1, . . . , k, m ≥ 1 are increasing w.r.t. {ui

n}.
Then

(f (ni,1)
i (U i

1, . . . , U
i
ni,1

), . . . , f (ni,r−ni,r−1)
i (U i

ni,r−1+1, . . . , U
i
ni,r

), i = 1, . . . , k) <idcx

(f (ni,1)
i (Ũ i

1, . . . , Ũ
i
ni,1

), . . . , f (ni,r−ni,r−1)
i (Ũ i

ni,r−1+1, . . . , Ũ
i
ni,r

), i = 1, . . . , k) .

Now we are ready to prove our main results.
Proof of Proposition 3.1. Lemma 5.6 implies that for all ni,r, i = 1, . . . , k, r ≥ 1,

(f (ni,1)
i ({U i

n}), . . . , f
(ni,r)
i ({U i

n}), i = 1, . . . , k) <sm

(f (ni,1)
i ({Ũ i

n}), . . . , f
(ni,r)
i ({Ũ i

n}), i = 1, . . . , k) .

Bearing in mind that <sm is closed under mixture (cf. Lemma 9.4) we obtain that
for sets Bj = Ij (Bj = (0, tj ]), j = 1, . . . , r

(f (N i(B1))
i ({U i

n}), . . . , f
(N i(Br))
i ({U i

n}), i = 1, . . . , k) <sm

(f (N i(B1))
i ({Ũ i

n}), . . . , f
(N i(Br))
i ({Ũ i

n}), i = 1, . . . , k) .

Now, using Lemma 5.1 and the assumption Φ <m−sm−N Φ̃ (Φ <m−sm−D Φ̃) we
obtain required result.

2

The proof of Proposition 3.2 is similar (we use Lemma 5.7 (i) and then Lemma
5.3). Remark 3.3 (ii) in case Ψ = Ψ̃ follows directly from Lemma 5.3, whereas the
case Φ = Φ̃ from Lemma 5.7 (ii). For the Remark 3.3 (iii) we use Lemma 5.7 (i)
and then Lemma 5.4.

2

6 Regularity properties

From technical Lemmas 5.1, 5.2, 5.3 and 5.4 we can easily get some regularity prop-
erties w.r.t. (n1, . . . , nk).

Lemma 5.1, by taking sequences of functions {f (m)
i ({ui

n}) =
∑m

n=1 u
i
nII(ui

n ≥
0)}m≥1 ({f (m)

i ({ui
n}) =

∏m
n=1(u

i
n)dII(ui

n ≥ 1)}m≥1, {f (m)
i ({ui

n}) = minn=1,...,m ui
n}m≥1),

i = 1, . . . , k, implies the following results. The first one was obtained in Denuit et
al. [8].
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Corollary 6.1 (i) Let {U i
n}n≥1, i = 1, . . . , k be sequences of nonnegative random

variables. Then for all functions ϕ ∈ Lsm

ψ(n1, . . . , nk) = IE

[
ϕ

(
n1∑

n=1

U1
n, . . . ,

nk∑
n=1

Uk
n

)]

is supermodular on INk.

(ii) Let {U i
n}n≥1, i = 1, . . . , k be sequences of random variables bounded below by

1. Then for all functions ϕ ∈ Lsm

ψ(n1, . . . , nk) = IE

[
ϕ

(
n1∏

n=1

(U1
n)d, . . . ,

nk∏
n=1

(Uk
n)d

)]

is supermodular on INk for d > 0.

(iii) Let {U i
n}n≥1, i = 1, . . . , k be sequences of random variables. Then for all

functions ϕ ∈ Lsm

ψ(n1, . . . , nk) = IE
[
ϕ
(
min{U1

1 , . . . , U
1
n1
}, . . . ,min{Uk

1 , . . . , U
k
nk
}
)]

is supermodular on INk.

Observing that {f (m)({un}) = ψ(
∏m

n=1 u
d
n)}m≥1, {f (m)({un}) = h(minn=1,...,m un)}m≥1

and {f (m)({un}) = ϕ(
∑m

n=1 un)}m≥1, ϕ ∈ Lcx, ψ ∈ Licx, h ∈ Li, d ≥ 0 are extend-
able sequences of symmetric and supermodular functions and using Lemma 5.2 we
have the next result.

Corollary 6.2 (i) Let {Un}n≥1 be a stationary sequence of nonnegative random
variables. Then for all convex functions ϕ

φ1(m) = IE

[
ϕ

(
m∑

n=1

Un

)]

is convex on IN.

(ii) Let {Un}n≥1 be a stationary sequence of random variables bounded below by 1.
Then for all increasing convex functions ψ and d ≥ 0

φ2(m) = IE

[
ψ

(
m∏

n=1

(Un)d

)]

is convex on IN.

(iii) Let {Un}n≥1 be a stationary sequence of random variables bounded above by a
constant c and h an increasing function. Then

φ3(m) = IE [h(min{U1, . . . , Um})]

is convex on IN.
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(iv) Let {Un}n≥1 be a stationary sequence of random variables bounded below by a
constant c and h a decreasing function. Then

φ4(m) = IE [h(max{U1, . . . , Um})]

is convex on IN.

The convexity of φ1 was proved in Ross [30, p. 278], in the case of {Un}n≥1 iid
nonnegative random variables. Jean-Marie and Liu [11] showed it in the case of
{Un}n≥1 - nonstationary sequences of independent nonnegative random variables
such that IE[ϕ(Un)] ≤ IE[ϕ(Un+1)] for all ϕ ∈ Lcx (ϕ ∈ Licx). Makowski and
Phillips [20] showed that for iid nonnegative random variables {Un}n≥1, the func-
tion φ̃1(m) = ψ1(m)/m is increasing.

From Lemma 5.3 we obtain the following result.

Corollary 6.3 Let {U i
n}n≥1, i = 1, . . . , k be stationary sequences such that for all

i 6= j, {U i
n}n≥1 is independent of {U j

n}n≥1.

(i) If {U i
n}n≥1, i = 1, . . . , k are sequences of nonnegative random variables then

for all functions ϕ ∈ Lidcx

ψ(n1, . . . , nk) = IE

[
ϕ

(
n1∑

n=1

U1
n, . . . ,

nk∑
n=1

Uk
n

)]

is increasing and directionally convex on INk.

(ii) If {U i
n}n≥1, i = 1, . . . , k sequences of random variables bounded below by 1.

Then for all functions ϕ ∈ Lidcx and d > 0

ψ(n1, . . . , nk) = IE

[
ϕ

(
n1∏

n=1

(U1
n)d, . . . ,

nk∏
n=1

(Uk
n)d

)]

is increasing and directionally convex on INk.

The first result was obtained in Rolski [28] in the case of iid mutually independent
sequences of nonnegative random variables.

7 Applied examples

In this section we present some applications of Propositions 3.1 and 3.2 to stochastic
models.

Example 7.1 (Workload in parallel queues) Consider a queueing system of k
parallel G/G/1 FIFO queues. The input is generated by k-variate point processes
Φ (interarrival times) and Ψ (service times), independent of Φ. For t ≥ 0 and
I = (a, b] define

M i(t) =
N i(t)∑
n=1

U i
n, i = 1, . . . , k
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and

M i(I) =
N i(b)∑

n=N i(a)+1

U i
n, i = 1, . . . , k .

Call M i, i = 1, . . . , k cumulative processes. Denote by

V(t) ≡ (V 1(t), . . . , V k(t))

the vector of transient workloads, which is known to fulfill

V i(t) = max
0≤u≤t

(0,M i(t)−M i(u)− (t− u))

(Borovkov [6, p. 23]). Similarly, for k-variate point processes Φ̃, Ψ̃ define

M̃ i(t) =
Ñi(t)∑
n=1

Ũ i
n, i = 1, . . . , k

and as above M̃ i(I) and Ṽ(t).

Using a similar argument as in Meester and Shanthikumar [22] we obtain the
following Lemma.

Lemma 7.2 Assume that for all r ≥ 1,

(M i(I1), . . . ,M i(Ir), i = 1, . . . , k) <idcx (M̃ i(I1), . . . , M̃ i(Ir), i = 1, . . . , k) . (3)

If for every t ≥ 0, IP(M i(t) < ∞) = ĨP(M̃ i(t) < ∞) = 1, i = 1, . . . , k and for all
t > 0, IP(M i is discontinuous at t) = ĨP(M̃ i is discontinuous at t) = 0 then for all
0 < t1 < · · · < tr,

(V(t1), . . . ,V(tr)) <idcx (Ṽ(t1), . . . , Ṽ(tr)) .

Proposition 7.3 (i) Assume that Φ <m−idcx−N Φ̃, Ψ = Ψ̃ and Ψ consists of
mutually independent iid sequences. Then for all 0 < t1 < · · · < tr,

(V(t1), . . . ,V(tr)) <idcx (Ṽ(t1), . . . , Ṽ(tr)) .

(ii) Assume that Ψ <m−idcx−∞ Ψ̃, Φ = Φ̃. Then for all 0 < t1 < · · · < tr,

(V(t1), . . . ,V(tr)) <idcx (Ṽ(t1), . . . , Ṽ(tr)) .

Proof. In both cases we have from Proposition 4.7 that for all r ≥ 1 and disjoint
intervals I1, . . . , Ir of equal lengths,

(M i(I1), . . . ,M i(Ir), i = 1, . . . , k) <idcx

(M̃ i(I1), . . . , M̃ i(Ir), i = 1, . . . , k)

which means that (3) holds. Now, the result follows from Lemma 7.2.
2
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Example 7.4 (Workload in batch queues) Consider a queueing system of k par-
allel G/GI/1 FIFO queues. The input is generated by k-variate point processes Φ
(arrival times) and Ψ (batch sizes), independent of Φ. For t ≥ 0 and I = (a, b]
define

Ki(t) =
N i(t)∑
n=1

U i
n, i = 1, . . . , k ,

and

Ki(I) =
N i(b)∑

n=N i(a)+1

U i
n, i = 1, . . . , k .

Here, Ki(t) represents the number of jobs brought to a queue i up to time t. For
{Si

n}n≥1, i = 1, . . . , k, iid mutually independent service times, independent of Φ and
Ψ define cumulative processes

M i(t) =
Ki(t)∑
n=1

Si
n, i = 1, . . . , k ,

and

M i(I) =
Ki(b)∑

n=Ki(a)+1

Si
n, i = 1, . . . , k .

Then the transient workload is given by

V i(t) = max
0≤u≤t

(0,M i(t)−M i(u)− (t− u)) .

Denote by
V(t) ≡ (V 1(t), . . . , V k(t))

the vector of transient workload. Similarly, having arrival process Φ̃ = Φ, batch size
process Ψ̃ and the same service times, we define K̃i(t), K̃i(I), M̃ i(t), M̃ i(I), Ṽ i(t)
and Ṽ(t).

Proposition 7.5 Assume that {(U1
n, . . . , U

k
n)}n≥1, {(Ũ1

n, . . . , Ũ
k
n)}n≥1 are sequences

of independent random variables such that for all n ≥ 1, (U1
n, . . . , U

k
n) <sm (Ũ1

n, . . . , Ũ
k
n).

Then for all 0 < t1 < · · · < tr,

(V(t1), . . . ,V(tr)) <idcx (Ṽ(t1), . . . , Ṽ(tr)) .

Proof. Note that from assumption we have (cf. Lemma 5.5 with functions f (ni)
i ({ui

n}) =
(ui

1, . . . , u
i
ni

), i = 1, . . . , k) Ψ <m−sm−∞ Ψ̃ and hence Ψ <m−idcx−∞ Ψ̃ . From
Proposition 4.7 we have

(Ki(I1), . . . ,Ki(Ir), i = 1, . . . , k) <idcx (K̃i(I1), . . . , K̃i(Ir), i = 1, . . . , k) .

Replacing in Proposition 4.7 N by K and U by S we obtain

(M i(I1), . . . ,M i(Ir), i = 1, . . . , k) <idcx (M̃ i(I1), . . . , M̃ i(Ir), i = 1, . . . , k) .

The conclusion follows from Lemma 7.2.
2
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Example 7.6 (Workload in synchronized queues) Let Φ, Φ̃ be k-variate ar-
rival processes with interarrival times Xi

n, X̃i
n, i = 1, . . . , k. If {X1

n, . . . , X
k
n}n≥1 and

{X̃1
n, . . . , X̃

k
n}n≥1 are sequences of independent random vectors and for all n ≥ 1,

(X1
n, . . . , X

k
n) <sm (X̃1

n, . . . , X̃
k
n), (i.e. Φ <v−sm−∞ Φ̃) then Φ <m−sm−N Φ̃ (Li and

Xu [17]). Assume that Xn
d= Xi

n
d= Xj

n, i, j = 1, . . . , k, n ≥ 1. From Lorentz in-
equality (cf. Lemma 9.5) we obtain that (X1

n, . . . , X
k
n) <sm (Xn, . . . , Xn). Therefore,

synchronization give the upper bound (in <sm and hence in <idcx-order) for arrival
processes and hence, using previous results, for workload in parallel queues.

Example 7.7 (Multivariate shock models) The results for random sums can
be used to compare multivariate shock models. Precisely, consider two multicom-
ponent systems in which k components of each system are subject to shocks. Let
M = (M1, . . . ,Mk) be a vector of random number of shocks until failure of the
components. Interarrival between shocks are described by k-variate point process
Ψ. Since the vector of lifetimes Z = (Z1, . . . , Zk) is defined by

Z =

M1∑
n=1

U1
n, . . . ,

Mk∑
n=1

Uk
n

 ,

we have the following result (cf. Corollaries 4.2, 4.4, 4.5, 4.6).

Proposition 7.8 (i) If M <sm M̃ and Ψ d= Ψ̃ then Z <sm Z̃.

(ii) If M <sm M̃ and {(U1
n, . . . , U

k
n)}n≥1, {(Ũ1

n, . . . , Ũ
k
n)}n≥1 are sequences of in-

dependent random variables such that Ψ <v−sm−∞ Ψ̃ then Z <sm Z̃.

(iii) If M <dcx M̃, Ψ <h−dcx−∞ Ψ̃ and for all i = 1, . . . , k, {U i
n}n≥1 ({Ũ i

n}n≥1) is a
stationary sequence independent of {U j

n}n≥1 ({Ũ j
n}n≥1), j 6= i then Z <dcx Z̃.

(iv) If M = (M0, . . . ,M0), M̃ = (M̃0, . . . , M̃0) and M0 <cx M̃0 then for jointly
stationary sequences {U i

n}n≥1, {Ũ i
n}n≥1 we have Z <dcx Z̃.

Pellerey [27] considered sequences of nonnegative random {U i
n}n≥1 such that:

(i) {U i
n}n≥1 are sequences of independent random variables, i = 1, . . . , k;

(ii) U i
n <a U

i
n+1 for all n ≥ 1, i = 1, . . . , k;

(iii) {U i
n}n≥1 is independent of {U j

n}n≥1, i 6= j.

It was stated that Ψ = Ψ̃ and M <a M̃ implies Z <b Z̃, where <a and <b are
the following pairs of orderings: <icx and <icx, <cx and <ccx, <icx and <iccx, <cx

and <symcx or <icx and <symcx, where <ccx, <iccx, <symcx are coordinatewise con-
vex, increasing coordinatewise convex and symmetric convex orderings, respectively.
However, it was mentioned in Li and Xu [19] that these results are inaccurate, since
it was really proved a closure property of directionally convex order. On the other
hand, Pellerey showed that for M <uo (<lo)M̃ and for sequences of arbitrary non-
negative random sequences Z <uo (<lo)Z̃ holds. This case was also considered in Li
and Xu [18]. The similar models was considered in Wong [36].
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Another shock model was considered in Shanthikumar and Sumita [33]. Let
Φ and Ψ be 1-variate point processes such that {(Xn, Un)}n≥1 is an iid sequence.
Observe that in their case Φ is not independent of Ψ. They considered

Z(t) = max{U1, . . . , UN(t)}

and
z(t) = min{U1, . . . , UN(t)} .

Their aim was to established properties of Z(t) and z(t). We modify this model
in the following way. We assume that Φ and Ψ are independent and consist of
stationary sequences. Using Corollary 6.2 we have the following result.

Proposition 7.9 If Ψ <1−sm−∞ Ψ̃ and Φ <v−cx−N Φ̃ then

z(t) <st z̃(t)

and
Z(t) <st Z̃(t) .

Example 7.10 (Premium calculation principle) In many actuarial applications
it is important to consider so called stop-loss and stop-excess orders, i.e. V <sl Ṽ
(V <se Ṽ ) if for all x > 0, IE[V − x]+ ≤ IE[Ṽ − x]+ (IE[x − V ]+ ≤ IE[x − Ṽ ]+).
It is easy to observe that <cx-order for random variables V and Ṽ implies both of
the above orderings. In many cases there are known results for a stop-loss order for
partial sums, i.e.

∑n
n=1 Ui <sl

∑n
n=1 Ũi (see e.g. Müller [23]). Our results can be

applied for comparison of partial random sums in stop-loss and stop-excess orders
as well.

Consider a premium H[.] which assigns premium amount H[V ] to a risk V . We
will assume that H[.] preserves stop-loss or stop-excess order, i.e.

V <sl Ṽ =⇒ H[V ] ≤ H[Ũ ] V <se Ṽ =⇒ H[V ] ≤ H[Ṽ ] .

Assume that risk process is described by 1-variate point processes Φ, Φ̃ (arrivals)
and Ψ, Ψ̃ (risks). The premium is calculated w.r.t. all risks up to time t. If for all
t, N(t) <cx Ñ(t) and {Un} <idcx {Ũn}, where {Un}n≥1 and {Ũn}n≥1 are stationary
sequences then using Proposition 3.2 with k = 1 and f (m)

1 ({un}) =
∑m

n=1 un,

H

N(t)∑
i=1

Ui

 ≤ H

Ñ(t)∑
i=1

Ũi

 ,
i.e. roughly speaking, more dependent claims and more dependent point process
give higher premiums (cf. Denuit et al. [7]).

8 Comments and extensions

Example 8.1 (Number of events in random intervals) LetN i, Ñ i, i = 1, . . . , k
be counting processes and let U i, Ũ i, i = 1, . . . , k be nonnegative random vari-
ables independent of N i and Ñ i, respectively. Denote N i(U i) = N i((0, U i]) and
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Ñ i(Ũ i) = Ñ i((0, Ũ i]). Observe that, conditionally on {T i
n} = {tin}, a function

g
(m)
i (ui) = max{n : tin < ui} does not depend on m and is monotone w.r.t. ui.

Observe that these functions are not the same as considered in Section 3. Indeed,
those functions, for given m, does not depend on realizations of Φ. They depend
only on Ψ. It is not the case for g(m)

i . However, the same technique as within the
proof of Proposition 3.1 can be applied and therefore we get the following result.

Proposition 8.2 Suppose that N i and Ñ i, i = 1, . . . , k are independent of U i and
Ũ i, i = 1, . . . , k, respectively. Assume that for all 0 < t1 ≤ · · · ≤ tk, (N1(t1), . . . , Nk(tk)) <sm

(Ñ1(t1), . . . , Ñk(tk)) and (U1, . . . , Uk) <sm (Ũ1, . . . , Ũk). Then

(N1(U1), . . . , Nk(Uk)) <sm (Ñ1(Ũ1), . . . , Ñk(Ũk))

From Baccelli and Brémaud [2, p. 231] we know that for all ϕ ∈ Lcx the function
φ(x) = IE[ϕ(N(x))] is convex. Hence N(U) <cx N(Ũ) provided U <cx Ũ . Condi-
tionally on Ũ , we have N(Ũ) <cx Ñ(Ũ). Unconditioning gives N(U) <cx Ñ(Ũ).
Shaked and Wong [32] got comparisons for N(U) and N(Ũ) under suitable assump-
tions on U and Ũ .

Comment 8.3 The results for the <sm-order can be rewritten for other dependence
orderings. Indeed, we can consider every ordering <a which has (MA), (ID), (MI),
(IN) and (IT) property (We refer for these properties to Appendix below). For
example, we can take concordance ordering <c, upper orthant ordering <uo or lower
orthant ordering <lo. The main result of Proposition 3.1 is still valid (with f

(m)
i

being increasing, not monotone). Moreover, Lemma 5.5 (with f (m)
i being increasing),

Corollaries 4.2, 4.4 and Proposition 8.2 can be rewritten using one of the above
orderings instead of <sm. The results concerning comparison of shock models and
arrival processes obtained in Li and Xu [17], [18] can be obtained using our results.

Comment 8.4 From the discussion in the previous comment the above mentioned
results can be rewritten in terms of positive (negative) dependence, i.e. orthant de-
pendence (PUOD, PLOD, NUOD, NLOD, more concordant dependence) or associa-
tion. For example, assuming that for all t ≥ 0, (N1(t), . . . , Nk(t)) and ({U1

n}, . . . , {Uk
n})

are associated then, under assumptions of Proposition 3.1 and for increasing function
f

(m)
i , i = 1, . . . , k, Hf (Ψ,Φ)(t) is associated. The similar results can be established

in Lemma 5.5 (with f (m)
i being increasing), Corollaries 4.2, 4.4 and Proposition 8.2.

Comment 8.5 Our results can be formulated not only for functions f (m)({un})
which are defined on the first m variables (u1, . . . , um), but also for functions which
depend on arbitrary subsequence of {un} of the length m, ur1 , . . . , urm , say.

9 Appendix

We recall some well known closure properties of supermodular and directionally
convex functions (Shaked and Shanthikumar [31], Meester and Shanthikumar [22],
Marshall and Olkin [21]). Additionally, we prove some needed new technical results.

Lemma 9.1 Let u = (u1, . . . , uk).
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(i) Assume that ϕ : IRk → IR ∈ Lsm and fi : IR → IR, i = 1, . . . , k are monotone
in the same direction. Then ψ(u) = ϕ(f1(u1), . . . , fk(uk)) is supermodular on
IRk.

(ii) Let ϕ : IRk → IR, f : IR → IR. If ϕ ∈ Lism and f ∈ Licx, then f ◦ ϕ ∈ Lism.

(iii) Let ϕ : IRk → IR ∈ Lsm. Assume that functions fi : IRni → IR, i = 1, . . . , k are
monotone in the same direction. Then ψ defined as

ψ((u1
1, . . . , u

1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ
(
f1(u1

1, . . . , u
1
n1

), . . . , fk(u1
1, . . . , u

1
nk

)
)

is supermodular w.r.t. all vectors of variables of the form (u1
j1
, . . . , uk

jk
), 1 ≤

ji ≤ ni, i = 1, . . . , k.

(iv) Let ϕ : IRk → IR ∈ Lsm. Assume that functions f (m)
i : IRm → IR are monotone

in the same direction w.r.t. m, 1 ≤ m ≤ ∞. Then ψ defined as

ψ(n1, . . . , nk) = ϕ(f (n1)
1 ({u1

n}
n1
n=1), . . . , f

(nk)
k ({uk

n}
nk
n=1))

is supermodular on INk.

Proof. The proof of (i)-(ii) can be found in Marshall and Olkin [21], (p. 151). In
order to obtain (iv) observe that

∆1
1∆

1
2ψ(n1, . . . , nk) = ϕ(f (n1+1)

1 ({u1
n}), f

(n2+1)
2 ({u2

n}) . . . , f
(nk)
k ({uk

n}))

+ϕ(f (n1)
1 ({u1

n}), f
(n2)
2 ({u2

n}) . . . , f
(nk)
k ({uk

n}))

−ϕ(f (n1+1)
1 ({u1

n}), f
(n2)
2 ({u2

n}) . . . , f
(nk)
k ({uk

n}))

−ϕ(f (n1)
1 ({u1

n}), f
(n2+1)
2 ({u2

n}) . . . , f
(nk)
k ({uk

n}))
≥ 0

because f (ni+1)
i ({ui

n}) ≥ (≤)f (ni)
i ({ui

n}). Here, we write shortly {ui
n} for {ui

n}
ni
n=1.

The (iii) result can be proved in a similar way.
2

Lemma 9.2 Let u = (u1, . . . , uk).

(i) Let ϕ : IRk → IR ∈ Lidcx and fi : IRk → IR ∈ Lidcx for all i = 1, . . . , k. Then ψ
defined as

ψ(u) = ϕ (f1(u), . . . , fk(u)) (4)

is increasing and directionally convex on IRk
+.

(ii) Let ϕ : IRk → IR ∈ Lidcx and fi : IRni → IR ∈ Lidcx for all i = 1, . . . , k. Then
ψ defined as

ψ((u1
1, . . . , u

1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ
(
f1(u1

1, . . . , u
1
n1

), . . . , fk(uk
1, . . . , u

k
nk

)
)

(5)
is increasing and directionally convex on IRn1+···+nk

+ .

(iii) Let ϕ : IRk → IR, f : IR → IR. If ϕ ∈ Lidcx and f ∈ Licx, then f ◦ ϕ ∈ Lidcx.
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(iv) Let f : IR → IR ∈ Lcx. Then ϕ : IRk → IR defined as

ϕ(u) = f

(
k∑

n=1

un

)

is directionally convex on IRk
+.

(v) Let ϕ : IRk → IR ∈ Ldcx and ui
j ≥ 0, 1 ≤ i ≤ k, 1 ≤ j ≤ ni. Then ψ defined as

ψ((u1
1, . . . , u

1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ

(
n1∑
l=1

u1
l , . . . ,

nk∑
l=1

uk
l

)

is directionally convex on IRn1+···+nk
+ .

Proof. The (i) result was obtained in Meester and Shanthikumar [22] and from this
we easily have (ii) and (iii). The (iv) result is taken from Marshall and Olkin [21,
p. 152]. In order to obtain (v) result we proceed as follows.

Let n = n1 + · · · + nk. We need to show that for all 1 ≤ j1 ≤ j2 ≤ n and
εj1 , εj2 > 0, ∆

εj1
j1

∆
εj2
j2
ψ ≥ 0. Observe that for 1 ≤ j1 ≤ j2 ≤ n1

∆
εj1
j1

∆
εj2
j2
ψ((u1

1, . . . , u
1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ

(
n1∑
l=1

u1
l + εj1 + εj2 , . . . ,

nk∑
l=1

uk
l

)

+ϕ

(
n1∑
l=1

u1
l , . . . ,

nk∑
l=1

uk
l

)

−ϕ
(

n1∑
l=1

u1
l + εj1 , . . . ,

nk∑
l=1

uk
l

)

−ϕ
(

n1∑
l=1

u1
l + εj2 , . . . ,

nk∑
l=1

uk
l

)
≥ 0

from the convexity of ϕ w.r.t. first coordinate. Similarly for n1 + · · ·+ nr−1 < j1 ≤
n1 + · · ·+ nr, n1 + · · ·+ ns−1 < j2 ≤ n1 + · · ·+ ns, r < s

∆
εj1
j1

∆
εj2
j2
ψ((u1

1, . . . , u
1
n1

), . . . , (uk
1, . . . , u

k
nk

)) = ϕ

(
. . . ,

nr∑
l=1

ur
l + εj1 , . . . ,

ns∑
l=1

us
l + εj2 , . . .

)

+ϕ

(
. . . ,

nr∑
l=1

ur
l , . . . ,

ns∑
l=1

us
l , . . .

)

−ϕ
(
. . . ,

nr∑
l=1

ur
l + εj1 , . . . ,

ns∑
l=1

us
l , . . .

)

−ϕ
(
. . . ,

nr∑
l=1

ur
l , . . . ,

ns∑
l=1

us
l + εj2 , . . .

)
≥ 0

from supermodularity of ϕ.
2
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Now, we recall needed closure properties of supermodular and directionally con-
vex orderings.

Definition 9.3 Let K = {k1, . . . , kn} ⊆ {1, . . . , n}. We write uK for the vector
(uk1 , . . . , ukn). A stochastic order <a has a property

(i) (MA - closure under marginalization): if (Y1, . . . , Yn) <a (Ỹ1, . . . , Ỹn) implies
YK ≤a ỸK for all K ⊆ {1, . . . , n};

(ii) (ID - closed under identical concatenation): if (Y1, . . . , Yn) <a (Ỹ1, . . . , Ỹn)
implies (YK ,YL) <a (ỸK , ỸL) for all K and L ⊆ {1, . . . , n};

(iii) (MI - closed under mixture): if [(Y1, . . . , Yn)|Θ = θ] <a [(Ỹ1, . . . , Ỹn)|Θ̃ = θ]
implies (Y1, . . . , Yn) <a (Ỹ1, . . . , Ỹn) where (Y1, . . . , Yn) and a random element
Θ ((Ỹ1, . . . , Ỹn) and Θ̃) are defined on the same probability space and Θ d= Θ̃;

(iv) (IT - closed under increasing transform): if (Y1, . . . , Yn) <a (Ỹ1, . . . , Ỹn) implies
(f1(Y1), . . . , fn(Yn)) <a (f1(Ỹ1), . . . , fn(Ỹn)) for all increasing functions fi :
IR → IR, i = 1, . . . , n;

The following lemma is a corollary of some results of Müller and Stoyan [26, chapter
3].

Lemma 9.4 (i) The orders <sm, <c, <uo and <lo have the properties (MA),
(ID), (MI) and (IT).

(ii) The orders <dcx and <idcx have the properties (MA), (ID), (MI).

Note however, that neither <dcx nor <idcx are closed under increasing transforms.

Lemma 9.5 (Lorentz inequality) Assume that U1
d= · · · d= Un. Then

(U1, . . . , Un) <sm (U1, . . . , U1)
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[5] N. Bäuerle and T. Rolski, A monotonicity result for the work-load in Markov-
modulated queues, J. Appl. Prob. 35 (1998), 741-747.

[6] A. A. Borovkov, ”Stochastic Processes in Queueing Theory”, Wiley, 1976.

[7] M. Denuit, J. Dhaene and C. Ribas, Does positive dependence between individ-
ual risks increase stop-loss premiums?, Insurance Math. Economics 28 (2001),
305-308.

[8] M. Denuit, C. Genest and E. Marceau, Criteria for the Stochastic Ordering of
Random Sums, with Actuarial Applications, Scand. Actuar. J., (2002), 3-16.

[9] E. Frostig, Ordering ruin probabilities for dependent claim streams, Insurance
Math. Economics 32 (2003), (93-114).

[10] T. Hu and X. Pan, Comparisons of dependence for stationary Markov processes,
Probab. Engrg. Inform. Sci. 14 (2000), 299-315.

[11] A. Jean-Marie and Z. Liu, Stochastic comparison for queueing models via ran-
dom sums and intervals, Adv. Appl. Prob. 24 (1992), 960-985.

[12] H. Joe, ”Multivariate Models and Dependence Concepts”, Chapman and Hall,
London, 1997.

[13] R. Kulik and R. Szekli, Sufficient conditions for long range count dependence of
stationary point processes on the real line, J. Appl. Prob. 38 (2001), 570-581.

[14] R. Kulik and R. Szekli, Comparison of sequences of dependent random variables
using supermodular order with applications, submitted.
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