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Abstract: This paper considers nonparametric regression models with
long memory errors and predictors. Unlike in weak dependence situations,
we show that the estimation of the conditional mean has influence on the
estimation of both, the conditional variance and the error density. In par-
ticular, the estimation of the conditional mean has a negative effect on
the asymptotic behaviour of the conditional variance estimator. On the
other hand, surprisingly, estimation of the conditional mean may reduce
convergence rates of the residual-based Parzen-Rosenblatt density estima-
tor, as compared to the errors-based one. Our asymptotic results reveal
small/large bandwidth dichotomous behaviour. In particular, we present a
method which guarantees that a chosen bandwidth implies standard weakly
dependent-type asymptotics. Our results are confirmed by an extensive sim-
ulation study. Furthermore, our theoretical lemmas may be used in different
problems related to nonparametric regression with long memory, like cross-
validation properties, bootstrap, goodness-of-fit or quadratic forms.
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1. Introduction: Random design regression with long memory errors

Consider the random design regression model

Yi = m(Xi) + σ(Xi)εi, i = 1, . . . , n. (1.1)
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We shall assume that the predictors Xi, i ≥ 1, are random variables with unit
variance and density f = fX , independent of εi, i ≥ 1. The error sequence is
assumed to be centered with unit variance and density fε.

The goal of this paper is two-fold. First, we study the asymptotic properties
of a nonparametric kernel estimator of σ2(·) in the model (1.1). We estimate
the conditional mean by the usual Nadaraya-Watson estimator

m̂(x) = m̂b(x) =
1

nbf̂b(x)

n∑

i=1

YiKb(x−Xi), (1.2)

where

f̂b(x) = f̂b,X(x) =
1

nb

n∑

i=1

Kb(x−Xi) (1.3)

and Kb(·) = K(·/b), K(·) being a kernel function. Having done this we compute
the residuals Yi − m̂b(Xi) and estimate σ2(x) by

σ̂2(x) = σ̂2
h(x) =

1

nhf̂h(x)

n∑

i=1

(Yi − m̂(Xi))
2Kh(x−Xi). (1.4)

Second, we are interested in estimating fε(·) in a nonparametric way in the
model (1.1). To simplify the exposition, in this case we assume that σ(·) ≡ 1
and compute the residuals as ε̂i = (Yi− m̂b(Xi)). The error density is estimated
by the standard Parzen-Rosenblatt estimator

f̂h,∆(x) =
1

nh

n∑

i=1

Kh(x− ε̂i). (1.5)

The problem of nonparametric estimation of the conditional variance received
a lot of attention in the past decade. Most of the work focuses on a fixed design
regression model Yi = m(xi) + σ(xi)εi, i ≥ 1, where xi = i/n and εi, i ≥ 1, are
independent and identically distributed (i.i.d.) random variables. In this set-up
it is shown in [3] and [35] that if m(·) is differentiable, then there is no influence
of the estimation of m(·) on the minimax rates of convergence for the estimation
of σ(·). In case of random design regression, a similar lack of influence was proven
in [10] for weakly dependent data; see also [37], where the authors considered
dependent predictors and i.i.d. errors.

However, very little is known in case of long memory errors and/or predictors.
In the statistical literature, long range dependence (LRD) is modeled typically
by linear processes with slowly decaying coefficients. To be more specific, the
predictors and the errors will be described as

Xi = µ+

∞∑

k=0

akζi−k, εi =

∞∑

k=0

ckηi−k, (1.6)

where ζi, ηi, −∞ < i < ∞, are mutually independent sequences of centered
i.i.d. random variables, and the coefficients ak, ck behave like ak ∼ k−(αX+1)/2,
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ck ∼ k−(αε+1)/2 for some αX , αε ∈ (0, 1). In particular, the covariances are
non-summable. If the predictors are LRD and the errors are i.i.d., it is shown
in [37] that there is no influence of estimating the conditional mean. However,
this is basically due to their imposed conditions on the bandwidth choice: for a
small bandwidth the nonparametric kernel estimation behaves as if data were
independent. On the other hand, in [15] the authors studied a model with a
parametric conditional mean and established a large bandwidth behaviour. We
are not aware of any further results regarding conditional variance estimation
in random design regression with LRD.

As for the error density estimation, let us note first that there is a number
of results describing the behaviour of the empirical process of residuals and
different estimators of the error distribution under weak dependence. The reader
is referred to [20, 30, 31, 32] and references therein. As for the empirical processes
of residuals in long memory regression models, the reader is referred to [4]
(together with a correction note), [21] or [24].

On the other hand, if the error density is considered in the nonparametric
case, let us start with a quote from [9]: Surprisingly, despite the widespread use
of residuals as proxies for unobserved errors, to the best of the author’s knowl-
edge, no results about optimal (in any sense) estimation of a nonparametric
error density is known. In fact, in the aforementioned paper the author shows
that in case of independent errors and predictors, estimation of the conditional
mean does not influence the rates of convergence for an estimator of fε. One
has to point out here, that Efromovich does not consider kernel estimators and
a lot of technical problems come from the fact the he considers a data-based
adaptive estimator. Moreover, there are very few results describing the asymp-
totic behaviour of the much simpler Parzen-Rosenblatt or a histogram-type error
density estimator, even if errors and predictors are independent or weakly de-
pendent, see e.g. [6] or [28]. Finally, we are not aware of any single result which
describes the asymptotic behaviour of any error density estimator in the model
(1.1) with LRD.

The goal of this paper is to present the full asymptotic theory for the condi-
tional variance and the error density estimation in the model (1.1), when errors
and/or predictors have long memory. Such situations are very often encountered
in, especially, financial time series. We will distinguish between the oracle and
the non-oracle case. In the first situation, we assume that m(·) is known, which
amounts to estimation of σ(·) or fε(·) from the direct observations σ2(Xi)ε

2
i .

By applying a log-transformation, we may see that the first problem is similar
to nonparametric estimation of the conditional mean. Therefore, one can link
our results to the existing literature, e.g. [7, 8] and [29]. One has to mention
though that the rates of convergence for the conditional variance are different
than those for the conditional mean. This is due to the fact that for long mem-
ory the sequences

∑n
i=1 εi (the conditional mean case) and

∑n
i=1(ε

2
i − E[ε2i ])

(the conditional variance case) show a different limiting behaviour.
For the conditional variance estimation the results for the oracle case are given

in Proposition 3.1. In the non-oracle situation we have to estimate m(·) first. In
Theorem 3.5 we state the results which show the influence of estimating m(·) on
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the estimation of σ(·). If the errors εi, i ≥ 1, are i.i.d., there is no influence, i.e.
the oracle and non-oracle case are the same, regardless whether the predictors
are LRD or not. This agrees with the findings in [10] and [37]. However, if
the errors are LRD, there is an additional term which may contribute to the
limiting behavior of the conditional variance estimator. Our results extend the
findings in [15], where the case of a parametric mean and Gaussian predictors
was considered.

In case of the density estimation in Theorem 3.10 it turned out that the
limiting behaviour in the oracle case (for this, the reader is referred to [5, 36])
is also different as compared to the non-oracle case.

Finally, we discuss the bandwidth choice. There are many solutions for this
problem in the i.i.d. setting, however, there are very few results in the LRD case.
Let us note that from a practical point of view, the large bandwidth asymptotics
(see (3.5), (3.6) and (3.8) and [15, Theorem 3.1]) are of a very limited use: one
has to estimate the long memory parameter of the errors and one has to estimate
several other parameters.

As for the first problem, in the model (1.1), we are not aware of any results
regarding consistency of the long memory parameter. Such results, with log(n)-
rate of convergence, are known in case of a parametric regression; see [15]. The
second problem is very difficult, for example LRD-based bootstrap typically
fails (see [27]). Therefore, in Section 3.3 we discuss how to use a plug-in method
in order to justify that the chosen bandwidth guarantees the small bandwidth
asymptotics.

From the technical point of view, this paper can be viewed as a generaliza-
tion of [37, 15] (in the conditional variance case only). In the first paper, the
authors considered dependent predictors and i.i.d. errors. The latter assump-
tion greatly simplifies computations and suppresses a possible additional effect
coming from the non-oracle parts. Furthermore, the authors considered small
bandwidth asymptotics, which suppress a possible LRD effect of the predictors
on the convergence rates of the oracle part. In the second paper, the authors
considered a parametric mean and Gaussian LRD predictors. Furthermore, they
focused on large bandwidth asymptotics. Here, we consider LRD errors and pre-
dictors modeled by infinite order moving averages (1.6). Consequently, we have
to develop some new results on multivariate density expansions and new limit
theorems for weighted quadratic forms (for some results in the latter the reader
may also be referred to the unpublished manuscript [13]). Needless to mention,
the proofs, as usual in the long memory case, are very technical, so that very
often we present additionally some heuristic. Furthermore, our theoretical re-
sults may be potentially used to establish asymptotics in such problems like
cross-validation ([25]), nonparametric goodness-of-fit ([13]) or asymptotics of
weighted quadratic forms.

Our theoretical findings are verified by extensive simulations in Section 4.
Finally, we apply the estimation procedures to some real data in Section 5.

We would also like to mention, that there is a parallel paper, [26]. There, the
authors deal with the parametric mean case, m(x) = β0 + β1x, but predictors
are allowed to form different long memory sequences, including linear processes
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and stochastic volatility models. The latter are important especially in modeling
financial time series, which are typically uncorrelated, but have long memory in
squares.

2. Preliminaries

For any random variable Z, we denote by Z̄ = Z − E[Z]. Also, fZ(·) denotes
the density of a given random variable Z.

2.1. Predictors and the error sequence

We consider the following assumptions on the predictors Xi, i ≥ 1:

(P1) Xi, i ≥ 1, is a sequence of i.i.d. random variables with EX1 = µ <
∞ and Var(X1) = 1. In this case we write Xi = X∗

i and denote Xi =
σ(X∗

1 , . . . , X
∗
i ).

(P2) Xi, i ≥ 1, is the infinite order moving average given by

Xi = µ+

∞∑

k=0

akζi−k, with a0 = 1 and µ < ∞,

where ζi, −∞ < i < ∞, is a sequence of centered, i.i.d. random variables.
Furthermore, as k → ∞, ak ∼ A0k

−(αX+1)/2 for some αX ∈ (0, 1) and
0 < A0 < ∞. In this case we denote Xi = σ(ζi, ζi−1, . . .) and assume that
fζ , f

′
ζ are bounded and integrable.

Consequently, under (P2), σ2
n,X = Var (

∑n
i=1 Xi) ∼ A2

1n
2−αX , where (see e.g.

[18, Lemma 6.1])

A2
1 =

2A2
0

(2 − αX)(1− αX)

[∫ ∞

0

(x+ x2)−(αε+1)/2dx

]

.

Similarly, we shall consider the corresponding assumptions on the error se-
quence:

(E1) εi, i ≥ 1, is a sequence of centered i.i.d. random variables with finite fourth
moment and Eε21 = 1.

(E2) εi, i ≥ 1, is an infinite order moving average

εi =

∞∑

k=0

ckηi−k, with c0 = 1,

where ηi, −∞ < i < ∞, is a sequence of centered i.i.d. random vari-
ables with finite fourth moment, E[ε21] = 1, and for some αε ∈ (0, 1)
and 0 < C0 < ∞ we have ck ∼ C0k

−(αε+1)/2 as k → ∞. Denote
Hi = σ(ηi, ηi−1, . . .) and assume that fη, f

′
η are bounded and integrable.
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Under (E2), σ2
n,ε = Var (

∑n
i=1 εi) ∼ C2

1n
2−αε , where

C2
1 =

2C2
0

(2− αε)(1− αε)

∫ ∞

0

(x + x2)−(αε+1)/2 dx. (2.1)

Remark 2.1. Our results are in principle extendable to the case of weakly
dependent (e.g. mixing) innovations ηi. In [25] the authors considered estima-
tion of the conditional mean for a very general class of errors. In particular, it
was assumed that the random variables ηi, −∞ < i < ∞, are modeled by a
FARIMA-GARCH process introduced in [2]. However, such extension requires
precise results on the limiting behaviour of, for example,

∑n
i,j=1 εiεj . We are

not aware of such results in case of dependent innovations ηi.
On the other hand, the methods used in our paper rely strongly on the

innovations ζi, −∞ < i < ∞, being independent.

2.2. Assumptions on bandwidths and functions

Let κi =
∫
uiK(u)du. It is assumed that K(·) is symmetric and positive, and

has a bounded support [−T, T ] with K(T ) = 0. Also, we assume that κ0 = 1,
κ2 6= 0 and that K(·) is bounded and continuous. Denote for future use Kh(·) :=
K(·/h).

The limit theorems in this paper are obtained for a fixed, but arbitrary,
point x. Accordingly, consider the following assumptions on f = fX , σ and the
bandwidth h. Let I be a compact interval such that x ∈ I.
(D1) f, σ are defined on the set R of real numbers with f, σ ∈ C2(I), where C2

is the class of twice-differentiable functions, with bounded and continuous
second order derivatives.

(D2) infx∈I f(x) > 0.
(D3) σ(x) > 0 for all x ∈ R.
(H0) nh5 + log n√

nh
→ 0.

Condition (H0) is standard also in i.i.d. or weakly dependent situations. In
particular, when one considers CLT for σ̂2(x) − σ2(x), the condition nh5 → 0
makes the bias negligible.

3. Results and discussion

3.1. Conditional variance estimation

The first lemma describes the behaviour of σ̂2
h(·) in case of known m(·).

To state our result, we denote by H2 a Hermite-Rosenblatt random variable.
If αε < 1/2 it is defined as a multiple Wiener-Itô integral (see e.g. [34]),

H2 = C−1
2

∫

J

∫ 1

0

s∏

j=1

[max(v − uj, 0)]
−(αε+1)/2dvdB(u1)dB(u2) , (3.1)
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where J = {(u1, u2) : −∞ < u1 < u2 < 1}, {B(t), t ∈ R} is a two-sided
standard Brownian motion and

C2
2 = {2[1− αε][1− 2αε]}−1

[∫ ∞

0

(x+ x2)−(αε+1)/2dx

]2

. (3.2)

The random variable H2 is non-Gaussian and the constant C2 assures that
E[H2

2 ] = 1.

Proposition 3.1. Assume (P2) and (E2) and that the conditions (D1)-(D3)
and (H0) hold.

• If
hn(1−2αε) → 0, (3.3)

then

√

nhf(x)
(
σ̂2(x)− σ2(x)

)
d→ N

(

0, σ4(x)E[(ε1 − 1)2]

∫

K2(u) du

)

.

(3.4)
• If hn(1−2αε) → ∞, then

nαε
(
σ̂2(x)− σ2(x)

)
d→ C2σ

2(x)H2 . (3.5)

Remark 3.2. In the above lemma, in the borderline case hn(1−2αε) → 1, say,
we clearly have

√

nhf(x)
(
σ̂2(x) − σ2(x)

)
d→ N + C2

√

f(x)σ2(x)H2 ,

where N is the normal random variable with variance as in (3.4). It can be
proven that the random variables N and H2 are independent; see e.g. comments
following Theorem 2 in [36].

Remark 3.3. Consider the case αX = 1, so that the predictors are weakly
dependent. Then, we are automatically in scenario 2 of Proposition 3.1. If αε ∈
(1/2, 1) there is no influence of LRD of the errors on the rates of convergence.
If αε ∈ (0, 1/2) and h is small, then there is still no influence of LRD of errors.
However, if h is big, LRD of errors influences the limit. Note further that the
meaning of small and big bandwidth is different than in case of estimating the
conditional mean. Namely, in the model Yi = m(Xi)+σ(Xi)εi, for the standard
kernel estimator m̂b(·) of m(·), we have

√
nb or nαε/2 rate of convergence if,

respectively, bn(1−αε) → 0 or bn(1−αε) → ∞. We refer to [29] for more details.

Remark 3.4. In [15] it was established (see Theorem 3.1(a) with Assump-
tion 5) that the scaling in the oracle case is nαX/2, given that, in particular,
hn1−αX → ∞. The reason for this discrepancy is that the normalization in [15,

(1.4)] is 1/(nhfn(x)), instead of 1/(nhf̂h(x)), where fn is the normal density
with estimated mean and variance. (This effect was also mentioned in [29]).

To deal with the non-oracle case, let us consider the following set of additional
conditions:
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(H1)
√
nh(b4 + 1/nb) → 0.

(H1a) nαε(b4 + 1/nb) → 0.
(H2)

√
nh(b2 + bh)n−αε/2 → 0.

(H2a) nαε(b2 + bh)n−αε/2 → 0.

Theorem 3.5. Assume (P2) and (E2) and that the conditions (D1)-(D3) and
(H0) hold.

• If (3.3) and (H1)+(H2) hold, then (3.4) holds.
• If hn(1−2αε) → ∞ and (H1a)+(H2a), then

nαε
(
σ̂2(x) − σ2(x)

)
d→ C2σ

2(x)H2 − C2
1σ

2(x)χ2(1), (3.6)

where χ2(1) is χ2 random variable with 1 degree of freedom, H2 is the
Hermite-Rosenblatt random variable defined in (3.1) and C1 is defined in
(2.1).

Remark 3.6. In Theorem 3.5 as well as in Proposition 3.1, the results under
(P1) and/or (E1) can be concluded by plug-ing in αX = 1 and/or αε = 1,
respectively.

Remark 3.7. The results of Proposition 3.1 and Theorem 3.5 can be formulated
in a multivariate set-up. In case of (3.4) the limiting distribution of (σ̂2(xi) −
σ2(xi), i = 1, . . . ,m) is asymptotically multivariate normal with independent
components (this follows from the Cramer-Wold device). In case of (3.5) the
limiting distribution is degenerate,

C2(σ
2(xi), i = 1, . . . ,m)H2.

In case of (3.6) the limiting distribution is also degenerate.

Remark 3.8. Condition (H1) is the standard condition in the weakly dependent
situation, see e.g. the proof of Theorem 8.5 in [11]. Without (H1), the estimator
becomes inconsistent. This is intuitively clear: since the bias of m̂b(x)−m(x) is

O(b2), its contribution to σ̂2
h(x) is O(b4)(nhf̂h(x))

−1
∑n

i=1 Kh(x−Xi) which is

of order b4. Since the term is scaled by
√
nh, the condition is sharp. Conditions

(H1a) and (H1b) are versions of (H1), when a different scaling is applied. In fact,
they are used in Theorem 3.5 in conjunction with hn1−2αε → ∞ and h5n1−αX →
∞, respectively, so that they become weaker than (H1). Note further, that if
h = b and hn1−2αε → ∞, the condition h4nαε → 0 is automatically fulfilled.

Furthermore, under (P1), the condition (H2) may be replaced with the weaker
one:

(H3)
√
nh(b3 + b2h)n−αε/2 → 0.

Also, let us note that in the conditions above b2 may be replaced with b4, if we
adopt the following jackknife-type bias correction (see e.g. [37]):

m̂∗
b(x) = 2m̂b(x) − m̂√

2b(x).
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Remark 3.9. We compare our results with [15]. First, the authors consid-
ered the parametric mean case with Gaussian predictors. Second, the authors
assumed that n1−αXh(lnn)−1 → ∞ if αX ∈ (1/2, 1) and nαXh → ∞ when
αX ∈ (0, 1/2). Furthermore, they assumed αε > αX/2 in conjunction with
nαX/2h2 → 0 to get nαX/2 rates of convergence. This rate of convergence does
not appear in our context, since we estimate the density of the predictors in a
nonparametric way. On the other hand, if αε < αX/2 and nαε/2h → 0, then
the authors obtained nαε rate of convergence, the same as in our case. Let
us further note, that if αX = 1, then they automatically assume in the latter
case that αε < 1/2, so that they exclude a wide range of memory parameters.
In particular, they cannot obtain the small bandwidth asymptotics using their
method.

3.2. Error density estimation

In this section we assume for simplicity that σ(·) ≡ 1.

Theorem 3.10. Consider the model (1.1). Assume (P2) and (E2) and that
conditions (D1)-(D2) hold. Let f ′

ε(x) 6= 0.

• If hn1−αε → 0, nαεh → ∞, nh5 → 0, then

(nh)1/2
(

f̂h,∆(x)− fε(x)
)

d→ N
(

0, fε(x)

∫

K2(u)du

)

. (3.7)

• If hn1−αε → ∞, nh3 → ∞, nh5 → 0, then

nαε/2
(

f̂h,∆(x) − fε(x)
)

p→ 0. (3.8)

Let f̂h,ε(x) =
1
nh

∑n
i=1 Kh(x−εi) be the standard Parzen-Rosenblatt estima-

tor based on εi, i = 1, . . . , n. Then, assuming nh5 → 0 (i.e. imposing negligibility
of the bias), we have the following smoothing dichotomy (see [36]):

• If hn1−αε → 0, then

(nh)1/2
(

f̂h,ε(x) − fε(x)
)

d→ N
(

0, fε(x)

∫

K2(u)du

)

. (3.9)

• If hn1−αε → ∞, then

nαε/2
(

f̂h,ε(x)− fε(x)
)

d→ N
(
0, C2

1 (f
′
ε(x))

2
)
. (3.10)

Combining (6.39) with (3.9), yields (3.7). Now, let us note that the conclusion
(3.10) is obtained by approximating

(

f̂h,ε(x)− fε(x)
)

≈ −f ′
ε(x)

1

n

n∑

j=1

εj ,
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see [36, p.1454]. Combining this with (6.39) we obtain (3.8). In particular, the
residual-based estimator converges faster than the errors-based one. We conjec-
ture that for αε < 1/2,

nαε

(

f̂h,∆(x)− fε(x)
)

d→ CH2,

where C is a constant and H2 is the Hermite-Rosenblatt distribution.
Such behaviour is somehow counterintuitive. However, a similar phenomenon

occurs for empirical processes of residuals or empirical processes with estimated
parameters, see [4] and [23].

Remark 3.11. In the situation of (3.7) besides the condition hn1−αε → 0,
coming from the oracle behaviour of the kernel estimator (3.9), we have the
additional constraint hnαε → ∞. This additional constraint comes from (6.39).
In particular, these two conditions cannot be fulfilled simultaneously if αε <
1/2. In other words, unlike in the oracle case, if αε < 1/2 then we cannot
conclude

√
nh-type behaviour of the kernel density estimator. This is confirmed

by simulations below.

3.3. How to avoid LRD behaviour: Bandwidth choice

To apply the theoretical results for the estimation of the conditional variance,
one has to choose bandwidths b and h, as well as to verify if the chosen band-
width h is small (i.e. (3.3) holds), or large (i.e. (3.5), (3.6), (3.8) hold).

1. Choice of b: There is little available on theoretical and practical properties
of different bandwidth selectors under long memory. In case of regression
with fixed-design and density estimation the reader is referred to [16] and
[17], respectively. In [25] the authors studied the problem in the model
(1.1) with σ(·) ≡ 1. In particular, it was established in the latter article
that for

MISEf (b) :=

∫

E
[
(m̂b(x)−m(x))2

]
f(x) dx

we have

MISEf (b) ∼ C
1

nb
+ Cb4 + Cn−αε + Cb2n−αε , (3.11)

where C is a generic constant, different at each appearance. Therefore, the
optimal bandwidth choice (according to the quadratic loss function) for
the kernel estimation of m(·) is

bopt ∼
{

Cn−1/5 if αε > 2/5;
Cn−(1−αε)/3 if αε < 2/5.

Also, it is proven there that the cross validation (CV) produces a valid
approximation to bopt, however, the mean squared error computed with the
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cross validation bandwidth provides a valid approximation to the optimal
MISE only if αε > 4/5. Indeed, let

CV(h) :=
1

n

n∑

i=1

(Yi − m̂i,b(Xi))
2,

wheremi,b(·) is the kernel estimator ofm(·), where the summation is taken
over j 6= i (summation over different sets does not influence the asymptotic
results). It was proven in [25] that uniformly over [B1bopt, B2bopt] (with
some B1 < B2),

CV(b)−MISEf (b)−
1

n

n∑

i=1

ε2i ≈ 1

n2

n∑

j,j′=1

j 6=j′

εjεj′ . (3.12)

Combining this with (3.11) and noting that
∑n

j,j′=1

j 6=j′
εjεj′ = OP (n

2−αε)

we have

CV(b) ≈ E[ε21] + C
1

nb
+ Cb4 + Cn−αε . (3.13)

Thus, if 1/(nb) = o(n−αε), then the cross-validation curve should not de-
pend on b and becomes “flat”. The latter condition means that bn1−αε →
∞ and as indicated in Remark 3.3, this is exactly the large bandwidth
condition for m̂b(·). In other words, from the CV curve we should be able
to read out whether a particular bandwidth is small or large.
However, our numerical studies indicate terrible performance of the CV
procedure. In other words, the theoretical approximation (3.13) has very
poor finite sample properties. Therefore, we shall choose b by using the
plug-in method as described in [33]. Note that the method is based on the
approximation bopt ≈ Cn−1/5 which is not correct in the LRD setting for
αε < 2/5.

2. Choice of h: From (3.11) it is easy to conclude that in the oracle case the
following asymptotic formula holds:

M̃ISEf (h) ∼ C
1

nh
+ Ch4 + Cn−2αε + Ch2n−2αε , (3.14)

where now M̃ISEf (h) is defined in terms of σ2
h(·) and σ2(·). Therefore,

we have the standard bandwidth choice hopt ∼ Cn−1/5 if αε > 1/5. This
means that the plug-in procedure is still applicable and our numerical
studies in Section 4.1 indicate little influence of LRD on the plug-in selec-
tor.

3. LRD or i.i.d. zone: Let us note first that from the practical point of view
“large” bandwidths are not desirable. Indeed, in the context of (3.6) it
is completely not clear how to estimate percentiles of the limiting distri-
bution, since e.g. bootstrap does not work (see [27, Chapter 10]). Also,
our simulation studies suggest that the LRD parameter αε tends to be
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overestimated, which may lead to confidence intervals with incorrect cov-
erage probabilities. For example, in our simulation in Section 4.1 we find
out that for αε = 0.4 (dε = (1 − αε)/2 = 0.3 there), the median of an
errors-based estimator is 0.4118, whereas for the residuals-based we have
0.4512. In other words, recalling the scaling nαε in (3.6), the resulting
residuals-based CI will be about 20% shorter than the errors-based one.
Therefore, large-bandwidths asymptotics are not practical and may serve
as a warning against inappropriate choice of h. In our implementation in
Section 5 we apply the following procedure:

• Estimate h using the plug-in method. Solve n−δ = h. Compare the
obtained δ with 1− 2αε. Verify if (3.3) holds.

In this way neither the estimator of αε nor αX is used to construct the
confidence intervals, rather to justify the i.i.d.-type behaviour only.

4. Numerical studies

We illustrate our theoretical results by some numerical experiments. All codes
and data sets are available from the authors.

Simulation procedure:

• We simulate n = 1000 observations from the models Yi = 0 + 2Xi +
σ(Xi)εi, and Yi = sin(2πXi/3)+ σ(Xi)εi, where σ(x) = 1 (homoscedastic
case) or σ(x) =

√
x2 + 1 (heteroscedastic case), the predictors Xi are i.i.d.

Gaussian and the errors εi are Gaussian FARIMA(0,dε,0). Here, dε =
(1− αε)/2 ∈ (0, 1/2). We use the fracdiff R-package [12].

• We estimate β0 and β1 by LSE estimators. We estimate m(·) using the
Nadaraya-Watson estimator with b selected by the plug-in method de-
scribed in Section 3.3 (We have used the package locpoly). Also, we
compute m̂b(·) using b = 0.3 (i.e. oversmoothing).

• We compute residuals. In the heteroscedastic case we compute the Nadaraya-
Watson estimator σ̂2

ĥ
(·) with ĥ selected by the plug-in method.

• We estimate the LRD parameter based on the errors εi and the residuals.
We use the fracdiff package, which implements the maximal likelihood
method.

• We estimate the residual density using (1.5), for different choices of h.
• This procedure is repeated M = 500 times.

4.1. Bandwidth choice

• Table 1 contains statistics for the bandwidth b selected by the plug-in
method in the model Yi = sin(2πXi/3) + σ(Xi)εi in both, homoscedastic
and heteroscedastic case. Plug-in tends to select slightly larger bandwidths
if the memory grows.

• Table 2 contains statistics for the bandwidth h selected by the plug-in
method in the models Yi = 2Xi +

√

X2
i + 1εi (ĥ1), Yi = sin(2πXi/3) +
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Table 1

Bandwidth choice for m(·)

Homoscedastic Heteroscedastic
dε q0.05 q0.25 q0.5 q0.75 q0.95 q0.05 q0.25 q0.5 q0.75 q0.95

0 0.1196 0.1596 0.1664 0.1739 0.1829 0.1223 0.1656 0.1790 0.1915 0.2073
0.1 0.1293 0.1620 0.1687 0.1741 0.1839 0.1270 0.1650 0.1779 0.1898 0.2076
0.2 0.1212 0.1623 0.1692 0.1767 0.1877 0.1347 0.1672 0.1808 0.1918 0.2135
0.3 0.1221 0.1656 0.1748 0.1828 0.1939 0.1276 0.1672 0.1824 0.1970 0.2182
0.4 0.1203 0.1719 0.1827 0.1918 0.2068 0.1270 0.1735 0.1909 0.2054 0.2319

Table 2

Bandwidth choice for σ(·)

dε q0.05 q0.25 q0.5 q0.75 q0.95

ĥ1 0.1108 0.1725 0.2346 0.2639 0.2960

0 ĥ2 0.1105 0.1749 0.2352 0.2653 0.3000

ĥ3 0.1153 0.1757 0.2347 0.2673 0.3029

ĥ1 0.1124 0.1725 0.2336 0.2660 0.2990

0.1 ĥ2 0.1095 0.1738 0.2367 0.2683 0.3016

ĥ3 0.1072 0.1712 0.2368 0.2699 0.3042

ĥ1 0.1014 0.1828 0.2332 0.2666 0.3037

0.2 ĥ2 0.1112 0.1909 0.2392 0.2689 0.3060

ĥ3 0.1101 0.1823 0.2368 0.2688 0.3081

ĥ1 0.1141 0.1750 0.2318 0.2633 0.2980

0.3 ĥ2 0.1176 0.1842 0.2344 0.2664 0.3013

ĥ3 0.1153 0.1801 0.2340 0.2641 0.2998

ĥ1 0.1025 0.1754 0.2307 0.2613 0.2952

0.4 ĥ2 0.1115 0.1807 0.2378 0.2656 0.3002

ĥ3 0.1149 0.1772 0.2370 0.2663 0.2970

√

X2
i + 1εi with m̂b̂(·), where b̂ is the plug-in bandwidth (ĥ2), and the

latter model with m̂0.3(·) (ĥ3). There is little influence of the memory
parameter as well as the type of the conditional mean.

4.2. Estimation of LRD parameter

• Table 3 contains statistics for the memory parameter dε. The estimator d̂0
is based on the errors σ(Xi)εi for σ(·) ≡ 1 and σ(x) =

√
x2 + 1. Note the

little difference between the homoscedastic and heteroscedastic case. Also,
the variability remains the same as the memory increases. The remaining
estimators are residuals-based: d̂1 in the model Yi = 2Xi +

√

X2
i + 1εi;

d̂2 in the model Yi = sin(2πXi/3) +
√

X2
i + 1εi with m̂b̂(·), where b̂ is

the plug-in bandwidth; and (d̂3) in the latter model with m̂0.3(·). Note
that the variability is similar across different LRD parameters and differ-
ent estimators. However, in the heteroscedastic case, the residuals-based
estimator tends to underestimate dε, especially if the conditional mean is
oversmoothed.
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Table 3

Estimation of LRD parameter

Homoscedastic Heteroscedastic
dε q0.05 q0.25 q0.5 q0.75 q0.95 q0.05 q0.25 q0.5 q0.75 q0.95

d̂0 0.0505 0.0770 0.0944 0.1096 0.1365 0.0551 0.0755 0.0941 0.1104 0.1351

0.1 d̂1 0.0514 0.0774 0.0942 0.1098 0.1362 0.0482 0.0698 0.0870 0.1040 0.1278

d̂2 0.0498 0.0767 0.0921 0.1081 0.1351 0.0468 0.0702 0.0868 0.1037 0.1289

d̂3 0.0480 0.0756 0.0914 0.1075 0.1321 0.0478 0.0699 0.0862 0.1021 0.1279

d̂0 0.1554 0.1785 0.1935 0.2122 0.2373 0.1567 0.1773 0.1958 0.2121 0.2387

0.2 d̂1 0.1554 0.1784 0.1936 0.2119 0.2377 0.1447 0.1639 0.1802 0.1980 0.2240

d̂2 0.1541 0.1753 0.1921 0.2089 0.2356 0.1441 0.1643 0.1806 0.1977 0.2224

d̂3 0.1503 0.1726 0.1891 0.2084 0.2313 0.1444 0.1630 0.1783 0.1965 0.2211

d̂0 0.2522 0.2767 0.2957 0.3130 0.3347 0.2495 0.2775 0.2941 0.3127 0.3357

0.3 d̂1 0.2523 0.2765 0.2956 0.3125 0.3342 0.2281 0.2568 0.2729 0.2901 0.3124

d̂2 0.2508 0.2747 0.2928 0.3094 0.3325 0.2282 0.2573 0.2739 0.2903 0.3127

d̂3 0.2482 0.2708 0.2905 0.3056 0.3292 0.2270 0.2562 0.2725 0.2889 0.3116

d̂0 0.3508 0.3775 0.3950 0.4096 0.4288 0.3499 0.3761 0.3938 0.4098 0.4316

0.4 d̂1 0.3508 0.3771 0.3948 0.4094 0.4284 0.3075 0.3356 0.3549 0.3721 0.3931

d̂2 0.3461 0.3729 0.3896 0.4050 0.4246 0.3203 0.3453 0.3618 0.3767 0.4015

d̂3 0.3427 0.3696 0.3863 0.4010 0.4220 0.3199 0.3426 0.3610 0.3754 0.3992

4.3. Error density

Here, we compare the mean square error (MSE) of the kernel estimators f̂h,ε and

f̂h,∆. We consider the homoscedastic model only with the parametric mean, i.e.

Yi = 2Xi + εi. We evaluate the squared errors SE(errors) = 1
n

∑n
i=1(f̂h,ε(ui)−

f(ui))
2 and SE(residuals) = 1

n

∑n
i=1(f̂h,∆(ui)− f(ui))

2, where ui, i = 1, . . . , n,
is an appropriately chosen deterministic grid. The estimator is evaluated for
different values of h.

We note that if dε = 0.1, there is little difference between the errors-based and
the residuals-based estimators if m(x) = β0 + β1x, which is in line with results
for weakly dependent random variables. The improvement is clearly visible for
dε = 0.4.

4.4. Pathwise interpretation

Here, we explain heuristically why the estimation of the density may lead to
better results when we use residuals instead of errors. We simulate just one
sample from the parametric model Yi = 0+2 ·Xi+εi and plot the corresponding
graphs for dε = 0.4, h = 0.15 and h = 0.35. According to Table 4, the latter
bandwidth is close to optimal.

The results are displayed on Figure 1. We observe a big difference between
errors-based and residuals-based density estimators. In fact, the errors-based es-
timator looks like shifted to the left. The reason for this is that LRD behaviour
of errors leads to a poor performance of f̂h,ε. At the same time this LRD be-

haviour leads to a poor estimation of the intercept (β̂0 = −0.6053 in this case).
However, when computing the residuals these two effects cancel out.
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Table 4

MSE for kernel density estimator: dX = 0

h MSE(errors) MSE(res) MSE(errors) MSE(res)
dε = 0.1 dε = 0.1 dε = 0.4 dε = 0.4

0.05 0.0014 0.0013 0.0081 0.0024
0.10 0.0007 0.0006 0.0074 0.0017
0.20 0.0003 0.0003 0.0071 0.0014
0.30 0.0003 0.0002 0.0070 0.0015
0.40 0.0003 0.0002 0.0070 0.0016
0.50 0.0005 0.0004 0.0070 0.0019
0.60 0.0007 0.0006 0.0070 0.0022
0.70 0.0011 0.0010 0.0071 0.0026
0.80 0.0015 0.0014 0.0073 0.0031
0.90 0.0021 0.0020 0.0076 0.0037
1.00 0.0027 0.0026 0.0079 0.0043

Table 5

Memory parameters for electricity prices

Data d

log(NSW ) 0.38
log(NSWpeak) 0.34

log(QLD) 0.32
log(QLDpeak) 0.30

5. Data analysis

We consider electricity prices in Australia, from two states: NSW (New South
Wales) and QLD (Queensland). The data are available at

http://www.aemo.org.au/data/avg_price/avgp_month2009.shtm.

They describe average regional reference prices per region for each month (0000-
2400) and average peak prices (peak period covers 7:00am to 10:00pm EST
weekdays excluding holidays) over the financial year.

Let us note first that these data have a completely different pattern than
typical (i.e. stock prices, stock indices, exchange rates) financial data. Those
financial time series have two patterns: they are uncorrelated, but squares have
long memory, or they follow the unit root model, so that they are weakly de-
pendent after differentiation.

In case of energy prices data several authors argued that differentiation leads
to antipersistence. In particular, the original data are not stationary.

In our situation the raw data seem to follow a stationary model, see Figure 2.
We estimate the memory parameter as indicated in Table 5.

To exclude a possible spikes effect on the long memory behaviour, we have
considered the first 95 observations in each data set and computed log-prices. In
fact, the memory parameters of NSW and QLD data remain almost the same.

• We set Xi = logNSWi, Yi = logQLDi, i = 1, . . . , 95. The estimated
memory parameters for Xi and Yi are, respectively, αX = 0.36 and αε =
0.26.

http://www.aemo.org.au/data/avg_price/avgp_month2009.shtm
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Fig 1. Top line: simulated LRD errors (left panel; dε = 0.4) and corresponding residuals
obtained by fitting the conditional mean. The dependence parameter for predictors is dX = 0.
Kernel estimators: middle line - h = 0.15, bottom line - h = 0.35; the solid line - true density,
the dashed line - the kernel estimator; left panel - the kernel estimator based on errors, right
panel - the kernel estimator based on residuals.

• The histogram of log-prices indicates that the predictors are non-normal,
i.e. results of [15] are not applicable (see Figure 3).

• We fitted both, the linear and the non-linear model.
• Following our discussion in Section 3.3, the plug-in method yields b = 0.17.
A scatter plot (Figure 4) indicates that there is not too much difference
between the linear and the non-linear model.

• We have computed two sets residuals for both models and estimated h
using the plug-in method. We obtain h = 0.18 (linear case) and h = 0.17
(nonparametric one).
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Fig 2. Energy prices in NSW and QLD

• The estimated LRD parameters of the residuals are, respectively, αε = 0.5
and αε = 0.52.

• We solve n−δ = 0.18 to get δ = 0.37. We verify that hn1−2αε → 0. Also,
with δ = 0.37, αX = 0.26 and αε = 0.5 we verify that h2n−αX/2 =
o(1/

√
nh+n−αε). In other words, i.i.d.-type asymptotics (3.6) for σ2(·) is

permitted.
• The normal reference rule bandwidth for the error density estimation
yields h = 0.14. Thus, δ = 0.43 and with αε ≈ 0.5 the condition hn1−αε →
0 does not hold, i.e. i.i.d.-type asymptotics (3.7) is not permitted.

6. Technical details

We refer to the Appendices for technical results involving partial sums of LRD
random variables, covariance bounds for long memory linear sequences and some
asymptotic expressions for kernel functions.

Let

∆i = ∆i,b = m̂b(Xi)−m(Xi) = Rb(Xi) +
1

nbf̂b(Xi)

n∑

j=1

σ(Xj)Kb(Xi −Xj)εj ,

(6.1)
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Fig 3. Kernel estimate of the density of predictors with the plug-in bandwidth b=0.17 and
QQ plot of log(NSW). Normality of predictors is rejected.
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Fig 4. Conditional mean fitting: dashed curve - nonparametric fitting with b=0.17; solid curve
- parametric fitting.

where Rb(y) := Rb(y;m(·)) and for a given function g,

Rb(y; g(·)) =
1

nbf̂b(y)

n∑

j=1

(g(Xj)− g(y))Kb (y −Xj) . (6.2)
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Fig 5. Conditional standard deviation fitting: with h=0.2 (parametric case) and h=0.3 (non-
parametric case).

Denote ρ(y; g(·)) = (gf)′′(y) − g(y)f ′′(y), ρ(y) := ρ(y; f(·)). Then uniformly
over {y : f(y) > 0},

Rb(y) = Rb(y;m(·)) − b2κ2

2

ρ(y)

f(y)
= O(b4(1 + oP (1))). (6.3)

6.1. Decomposition of the conditional variance estimator

We have

{
σ̂2(x) − σ2(x)

}
=

(

1

nhf̂h(x)

n∑

i=1

σ2(Xi)Kh(x −Xi)− σ2(x)

)

+
1

nhf̂h(x)

n∑

i=1

σ2(Xi)Kh(x−Xi)
(
ε2i − 1

)

− 2

nhf̂h(x)

n∑

i=1

∆iσ(Xi)Kh(x −Xi)εi

+
1

nhf̂h(x)

n∑

i=1

∆2
iKh(x−Xi) =: J1 + J2 − J3 + J4. (6.4)

For these four terms we obtain the following asymptotic behaviour. For the
proofs of the lemmas see below.
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Lemma 6.1. Under the conditions of Proposition 3.1 we have
√
nhJ1 = oP (1) . (6.5)

Lemma 6.2. Suppose the assumptions of Proposition 3.1 hold.

• If hn(1−2αε) → 0 then

√

nhf̂h(x)J2
d→ N

(

0, σ4(x)E[(ε21 − 1)2]

∫

K2(u) du

)

. (6.6)

• If hn(1−2αε) → ∞ then

nαεJ2
d→ C2σ

2(x)H2. (6.7)

Note that if m(·) is known, then ∆i ≡ 0, so that the limiting behavior of
the oracle estimator of σ2(·) is determined by that of J1 and J2. Therefore,
Proposition 3.1 follows directly from Lemmas 6.1 and 6.2.

The next two lemmas are needed in the non-oracle case only.

Lemma 6.3. Under the conditions of Theorem 3.5 we have

nαεJ3
d→ 2C2

1σ
2(x)× χ2(1). (6.8)

Lemma 6.4. Under the conditions of Theorem 3.5 we have

nαεJ4
d→ C2

1σ
2(x)× χ2(1). (6.9)

However, from Lemmas 6.3 and 6.4 one cannot conclude yet the asymptotics
of Theorem 3.5. One needs a precise expansions for the terms J3 and J4, as
presented in (6.17) and (6.18).

6.2. Proof of Proposition 3.1

Proposition 3.1 will be justified if we prove Lemmas 6.1 and 6.2.

6.2.1. Proof of Lemma 6.1

Write J1 as

J1 =

(

1

f̂h(x)
− 1

f(x)

)

1

nh

n∑

i=1

(
σ2(Xi)− σ2(x)

)
Kh(x−Xi)

+
1

nhf(x)

n∑

i=1

(
σ2(Xi)− σ2(x)

)
Kh(x−Xi) :=

(

1

f̂h(x)
− 1

f(x)

)

J11 + J11.

By Lemma [37, Lemma 2(i)], f̂h is the consistent estimator of f . Therefore, the
first part in the expression above is dominated by the second one. Since (D1)
holds, we have E|J11| = O(h2). Therefore,

√
nhJ1 = oP (1) by (H0).
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6.2.2. Proof of Lemma 6.2

Since f̂h is a consistent estimator of f , to deal with J2, we just consider f̂h
replaced by f .

Let Fi =: Hi ∨ Xi. Let ξi = ε2i − 1, and decompose

1

nhf(x)

n∑

i=1

{
σ2(Xi)Kh(x−Xi)ξi − E[σ2(Xi)Kh(x−Xi)ξi|Fi−1]

}

+
1

nhf(x)

n∑

i=1

E[σ2(Xi)Kh(x−Xi)|Xi−1]E[ξi|Hi−1] =: J21 + J22.(6.10)

It is shown below, that either J21 or J22 dominates, according to different as-
sumptions on h and αε, however, long memory of the predictors does not play
any role.

Furthermore, using the martingale CLT, we can easily check (see Appendix C)
that

√

nhf(x)J21
d→ N

(

0, σ4(x)E[(ε21 − 1)2]

∫

K2(u) du

)

. (6.11)

Moreover, under (P1)

J22 =
E[σ2(X1)Kh(x−X1)]

nhf(x)

n∑

i=1

E[ξi|Hi−1] = σ2(x)
σn,ε

n

1

σn,ε

n∑

i=1

E[ξi|Hi−1]

+O(h)
σn,ε

n
σ−1
n,ε

n∑

i=1

E[ξi|Hi−1] =: J221 +O(h)J221.

Recall that for any random variable V with a finite mean, we write V̄ = V −E[V ].
Under (P2) we write

J22 =
E[σ2(X1)Kh(x−X1)]

nhf(x)

n∑

i=1

E[ξi|Hi−1]

+
1

nhf(x)

n∑

i=1

E[ξi|Hi−1]E[σ2(Xi)Kh(x−Xi)|Xi−1]

=: J221 +O(h)J221 + J222.

Remark 6.5. In both representations for J22, all the terms will be negligible
w.r.t. J221. Furthermore, in the latter term only LRD of the errors plays a role.
This will be a common feature of the decompositions for J3 and J4 below. We
will call this LE/N decomposition (LRD of errors part + negligible part).
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We can easily verify that for a fixed x,

E[σ2(X1)Kh(x−X1)|X0] = E[σ2(X1,0 + ζ1)Kh(x− (X1,0 + ζ1))|X0]

=

∫

σ2(X1,0 + u)Kh(x− (X1,0 + u))fζ(u) du

= h

∫

σ2(x− vh)K(v)fζ(x− vh−X1,0)dv

≤ ‖fζ‖∞h

∫

σ2(x− vh)K(v)dv = O
(
hσ2(x)

)
= O(h),

so that Var
(
E[σ2(X1)Kh(x−X1)|X0]

)
= O(h2). Therefore, via (B.1) and (A.8)

in the Appendix,

Var(J222) = O(1)
nh2

(nh)2f2(x)
+O(1)

h2σ4(x)

(nh)2f2(x)

n∑

i,j=1

i6=j

|j − i|−αX/2Cov2(εi, εj)

=
O(1)

n
+

O(1)

n2f2(x)
σ4(x)

n∑

i,j=1

i6=j

|j − i|−(αX/2+2αε) = O(n−(αX/2+2αε) ∨ n−1).

Using (A.11) we obtain that (6.7) holds for J221 given that αε < 1/2 and
J221 = OP (n

−1/2) if αε > 1/2. Furthermore, J222 is either OP (n
−1/2) or of a

smaller order than J221.
Now, in (6.10), either J21 or J22 dominates, according to the respective as-

sumptions on h.

6.3. Hoeffding decomposition of weighted quadratic forms under
(P1) and its consequences

In this section we will work under the condition (P1), so that Xi = X∗
i , i ≥ 1,

are i.i.d. Let T (X∗
i , X

∗
j ) be a measurable, real-valued function defined onX∗

i , X
∗
j

such that appropriate moment conditions are satisfied. Recall that T (X∗
i , X

∗
j ) =

T (X∗
i , X

∗
j )− E[T (X∗

j , X
∗
j )] and define for i 6= k,

Z1,i = E
[

T (X∗
i , Xk)|X∗

i

]

, Z2,i = E
[

T (Xk, X∗
i )|X∗

i

]

.

Note that Z1,i and Z2,i do not depend on k and Z1,i, i ≥ 1, are uncorrelated
and centered. The same applies to Z2,i, i ≥ 1. Furthermore, denote

Zi,j = T (X∗
i , X

∗
j )− Z1,i − Z2,j.

Let G1 and G2 be two measurable functions and consider

1

tn

n∑

i,j=1

T (X∗
i , X

∗
j )G1(εi)G2(εj),
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where tn is a sequence of real numbers. To this term we apply the following
Hoeffding-type decomposition:

1

tn

n∑

i=1

G1(εi)G2(εi)T (X
∗
i , X

∗
i ) +

1

tn

n∑

i,j=1

i6=j

G1(εi)G2(εj)E
[
T (X∗

i , X
∗
j )
]
+

+
1

tn

n∑

i,j=1

i6=j

G1(εi)G2(εj)(Z1,i + Z2,j) +
1

tn

n∑

i,j=1

i6=j

G1(εi)G2(εj)Zi,j

=: B1 +B2 +B3 +B4. (6.12)

We have

B1 = OP

(
1

tn
nE[T (X∗

1 , X
∗
1 )]E[G1(ε1)G2(ε1)]

)

, (6.13)

B2 =
1

tn
E[T (X∗

1 , X
∗
2 )]







n∑

i=1

G1(εi)

n∑

j=1

G2(εj)−
n∑

i=1

G1(εi)G2(εi)






. (6.14)

Next, since Z1,i, i ≥ 1, are uncorrelated and centered, we compute

Var

( n∑

j,i=1

j 6=i

G1(εi)G2(εj)Z1,i

)

=
n∑

i,j=1

j 6=i

E[G2
1(εi)G

2
2(εj)]E[Z

2
1,i] +

n∑

i=1

n∑

j,j′=1

j′ 6=j,j 6=i,j′ 6=i

E[G2
1(εi)G2(εj)G2(εj′)]E[Z

2
1,i]

= E[Z2
1,1]

( n∑

i,j=1

i6=j

E[G2
1(εi)G

2
2(εj)] +

n∑

i=1

n∑

j,j′=1

j′ 6=j,j 6=i,j′ 6=i

E[G2
1(εi)G2(εj)G2(εj′ )]

)

.

(6.15)

A similar computation is valid if Z1,i are replaced with Z2,j .
Finally, we deal with B4. Define

Z#
j = G2(εj)

j−1
∑

i=1

G1(εi)Zi,j , j ≥ 2.

Then
n∑

i,j=1

i<j

G1(εi)G2(εj)Zi,j =
n∑

j=2

Z#
j ,

and note that to show negligibility of B4, it suffices to consider the term above.
We will show that Z#

j , j ≥ 2, are uncorrelated. To do this, recall that Fj =

Hj ∨ Xj . Clearly, Z
#
j is Fj-measurable. Recall that for i 6= j,

Z2,j = E[T (X∗
i , X

∗
j )|X∗

j ] = φ(X∗
j )
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is independent of i. Here, φ is a measurable function such that E[φ(X∗
j )] = 0.

Since X∗
j , j ≥ 1, are independent, we also have E[φ(X∗

j )|Fj−1] = 0. Thus,

E[Z#
j |Fj−1] =

j−1
∑

i=1

E
[

T (X∗
i , X

∗
j )G1(εi)G2(εj)|Fj−1

]

−
j−1
∑

i=1

E
[

E[T (X∗
i , X

∗
j )|X∗

i ]G1(εi)G2(εj)|Fj−1

]

−
j−1
∑

i=1

E
[

E[T (X∗
i , X

∗
j )|X∗

j ]G1(εi)G2(εj)|Fj−1

]

=

j−1
∑

i=1

E [G1(εi)G2(εj)|Fj−1]
{

E
[

T (X∗
i , X

∗
j )|X∗

i

]

− E
[

T (X∗
i , X

∗
j )|X∗

i

]}

−
j−1
∑

i=1

E [G1(εi)G2(εj)|Fj−1] E
[
φ(X∗

j )|Fj−1

]
= 0.

In fact we showed that (Z#
j ,Fj), j ≥ 2, is a martingale difference sequence. In

particular,

Var





n∑

j=2

Z#
j



 =

n∑

j=2

Var
(

Z#
j

)

=

n∑

j=2

Var

(

G2(εj)

j−1
∑

i=1

G1(εi)Zi,j

)

=

n∑

j=2







j−1
∑

i=1

E
[
G2

1(εi)G
2
2(εj)

]
E[Z2

i,j ]

+

j−1
∑

i,i′=1

i6=i′

E[G2
2(εj)G1(εi)G1(εi′)]E[Zi,jZi′,j ]







. (6.16)

6.4. Proof of Theorem 3.5

Let us start with some heuristic for J3 and J4. Assume for a moment that (P1)
holds, so that Xi = X∗

i . Combining the definition of J3 (see (6.4)) with the
formula for ∆i (cf. (6.1)) we may write

J3 =
2

nhf̂h(x)

n∑

i,j=1

2

nbf̂b(X∗
i )

σ(X∗
i )σ(X

∗
j )Kh(x−X∗

i )Kb(X
∗
i −X∗

j )εiεj .

We will apply the Hoeffding decomposition and we will conclude that

J3 ≈ 2E [Th,b(x,X
∗
1 , X

∗
2 )]σ

2
n,ε

n2hbf(x)









σ−1
n,ε

n∑

j=1

εj





2

− σ−2
n,ε

n∑

j=1

ε2j







, (6.17)
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where T (·, ·) is a deterministic function defined in (6.22) below, such that
E [Th,b(x,X

∗
1 , X

∗
2 )] ∼ σ2(x)f(x)hb. Therefore, the asymptotics for J3 will fol-

low from (A.10).
Likewise, again under (P1),

J4 ≈ E [Sh,b(x,X
∗
1 , X

∗
2 )]σ

2
n,ε

n3hb2f(x)









σ−1
n,ε

n∑

j=1

εj





2

− σ−2
n,ε

n∑

j=1

ε2j







, (6.18)

where S is a deterministic function defined in (6.37) below, such that E[Sh,b(x,
X∗

1 , X
∗
2 )] ∼ σ2(x)f(x)nhb2. Thus, the asymptotics for J4 will also follow

from (A.10).
Similar approximations to (6.17) and (6.18) are valid under (P2) as well. The

asymptotics for −J3 + J4 in the decomposition (6.4) will follow.

6.5. Proof of Lemma 6.3

Define
Kh,b(x,Xi, Xj) = Kh(x−Xi)Kb(Xi −Xj). (6.19)

Then

J3 =
2

nhf̂h(x)

n∑

i=1

Rb(Xi)σ(Xi)Kh(x −Xi)εi

+
2

nhf̂h(x)

n∑

i,j=1

1

nbf̂b(Xi)
σ(Xi)σ(Xj)Kh,b(x,Xi, Xj)εiεj =: J31 + J32.

In what follows, we will show that J32 can be written as J322+remainder, where

nαεJ322
d→
(
2C2

1σ
2(x)

)
× χ2(1), (6.20)

and the remainder is oP (1/
√
nh) + OP (1/(nb)). This will be done in Sections

6.5.1, 6.5.2 under (P1) and (P2), respectively.
Furthermore, for the term J31 we will show (see Section 6.5.3)

J31 =
κ2ρ(x)σ(x)

f(x)

b2

n

n∑

i=1

εi+OP

(
b2h2

nαε/2

)

+OP

(
b2√
nh

)

+OP

(
b2

nαε/2+αX/4

)

,

(6.21)
where the last term is present under (P2) only.

6.5.1. Behaviour of J32 under (P1)

Recall that under (P1) we denote Xi = X∗
i . To deal with J32, we replace f̂b(Xi)

with f(Xi). This is allowed in view of the consistency of f̂b and the finite support
of K(·).
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The term is dealt with the help of the Hoeffding decomposition (6.12), by
setting

T (X∗
i , X

∗
j ) = Th,b(x,X

∗
i , X

∗
j ) :=

σ(X∗
i )σ(X

∗
j )

f(X∗
i )

Kh,b(x,X
∗
i , X

∗
j ), (6.22)

tn = n2hb, and G1(u) = G2(u) = u (Recall the definition of Kh,b in (6.19)).
Denote by J321, J322, J323 and J324 the terms in the decomposition (6.12), which
correspond to B1, B2, B3 and B4, respectively.

By (6.13) and (B.3) below, E [|J321|] = O(1/(nb)). On account of (6.15),
(B.4), (A.3),

Var

( n∑

j,i=1

j 6=i

εiεjZ1,i

)

= O(hb2)
(
n2 + n3−αε

)
.

A similar computation is valid if Z1,i is replaced with Z2,j. Therefore,

Var(J323) = O(h−1n−(1+αε)), (6.23)

and thus J323 = oP (1/
√
nh).

Now, in order to deal with J324, we refer to (6.16). Recalling the defini-
tion of Zi,j , in order to evaluate E[Zi,j ] we have to bound E[Z2

1,i], E[Z
2
2,j ] and

Var[Th,b(x,X∗
i , X

∗
j )]. For the latter in fact it suffices to bound E[T 2

h,b(x,X
∗
i , X

∗
j )].

By (B.2) with l = 2, (B.4), (B.5) we conclude that the first term in (6.16) is

n∑

j=2

j−1
∑

i=1

E[ε2i ε
2
j ]E[Z

2
i,j ] = O(hbn2).

Similarly, we bound E[Zi,jZi′,j ] as follows:

E[Zi,jZi′,j ] = E[Th,b(x,X∗
i , X

∗
j ) Th,b(x,X∗

i′ , X
∗
j )] + E[(Z1,i + Z2,j)(Z1,i′ + Z2,j)]

−E
[

Th,b(x,X∗
i , X

∗
j )(Z1,i′ + Z2,j)

]

− E
[

Th,b(x,X∗
i′ , X

∗
j )(Z1,i + Z2,j)

]

.

Via (B.9), the first part is of order O(hb2). To the second part we apply the
Cauchy-Schwartz inequality, so that it is bounded by CE[Z2

1,i] + CE[Z2
2,i] =

O(hb2) (we use (B.4) and (B.5)). The third and the fourth part are also O(hb2)
by applying (B.6), (B.7). This together with (A.3) yields that the second part
in (6.16) is of the order O(hb2n3−αε).

Consequently, Var(J324) = O(1/(n2hb) + 1/(n1+αεh)). This yields J324 =
oP (1/

√
nh).

Finally, recalling (6.14), the part J322 is written as

2E [Th,b(x,X
∗
1 , X

∗
2 )]σ

2
n,ε

n2hbf(x)









σ−1
n,ε

n∑

j=1

εj





2

− σ−2
n,ε

n∑

j=1

ε2j







.

The second part in the brackets is negligible. Consequently, via (B.2) below, we
obtain (6.20) for this term.
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6.5.2. Behaviour of J32 under (P2)

The goal of this section is to show that (6.20) is still valid when (P1) is replaced
with (P2). Let X∗

i , i ≥ 1, be an independent version of Xi, i ≥ 1. Recall Lemma
A.3 and its consequence for fj|i(·|xi), the conditional expectation of Xj given
Xi = xi. For i < j, write

E[Th,b(x,Xi, Xj)|Xi] =
σ(Xi)

f(Xi)
Kh(x−Xi)E[σ(Xj)Kb(Xi −Xj)|Xi]

=
σ(Xi)

f(Xi)
Kh(x−Xi)

∫

Kb(Xi − u)σ(u)fj|i(u|Xi) du

=
σ(Xi)

f(Xi)
Kh(x−Xi)

∫

σ(u)Kb(Xi − u)f(u) du

+O
(

γ
1/2
X (j − i)

) σ(Xi)

f2(Xi)
Kh(x−Xi)

∫

σ(u)Kb(Xi − u) du

= E[Th,b(x,X
∗
i , X

∗
j )|X∗

i ] +O
(

γ
1/2
X (j − i)b

) σ(Xi)

f2(Xi)
Kh(x−Xi)

= E[Th,b(x,X
∗
i , X

∗
j )|X∗

i ] +O
(

γ
1/2
X (j − i)b

)

OP (h),

where OP (·) is uniform in i 6= j. Likewise,

E[Th,b(x,Xi, Xj)] =E[Th,b(x,X
∗
i , X

∗
j )] +O

(

γ
1/2
X (j − i)b

)

E

[
σ(Xi)

f2(Xi)
Kh(x−Xi)

]

= E[Th,b(x,X
∗
i , X

∗
j )] +O

(

γ
1/2
X (j − i)hb

)

.

Combining the two expressions,

E[Th,b(x,Xi, Xj)|Xi] = E[Th,b(x,X∗
i , X

∗
j )|X∗

i ] +O
(

γ
1/2
X (j − i)

)

OP (hb).

Therefore, under (P2), J322 can be written as

J322 =
2E [Th,b(x,X

∗
1 , X

∗
2 )]

n2hbf(x)

n∑

i,j=1

i6=j

εiεj +
O(hb)

n2hbf(x)

n∑

i,j=1

i6=j

εiεjγ
1/2
X (j − i).

The expected value of the second part is O(n−(αε+αX/2) ∨ n−1), so that it is
negligible w.r.t. the first part.

Now, for J323 we proceed in the same way. Recall (6.23). Thus,

2

n2hbf(x)

n∑

i,j=1

i6=j

εiεjZ1,i =

=
2E[Th,b(x,X

∗
1 , X

∗
2 )|X∗

1 ]

n2hbf(x)

n∑

i,j=1

i6=j

εiεj +OP (hb)
2

n2hbf(x)

n∑

i,j=1

i6=j

εiεjγ
1/2
X (j − i),

and once again the second part is of a smaller order than the first one.
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From the above computations for J322 and J323 it is also clear that J324 has
the same asymptotic behaviour under (P1) and (P2), and thus it is negligible.

6.5.3. Behaviour of J31

Recall (6.2) and denote

Lh(Xi) =
ρ(Xi)

f(Xi)
σ(Xi)Kh(x−Xi).

Using (6.3), LE/N decomposition (see Remark 6.5) and since f̂h(·) is a weakly
consistent estimator of f ,

J31 =
2

nhf̂h(x)

n∑

i=1

Rb(Xi)σ(Xi)Kh(x −Xi)εi

=
b2κ2

nhf̂h(x)

n∑

i=1

ρ(Xi)

f(Xi)
σ(Xi)Kh(x−Xi)εi(1 + oP (1))

=
b2κ2

nhf(x)

n∑

i=1

Lh(Xi)εi(1 + oP (1))

=
b2κ2

nhf(x)
E [Lh(X1)]

n∑

i=1

εi(1 + oP (1)) +
b2κ2

nhf(x)

n∑

i=1

Lh(Xi)εi(1 + oP (1))

=: J311(1 + oP (1)) + J312(1 + oP (1)).

Since

E[Lh(X1)] = hρ(x)σ(x) +
h3

2
κ2(ρσ)

′′(x) + o(h3),

we get

J311 =
κ2ρ(x)σ(x)

f(x)

b2

n

n∑

i=1

εi +OP

(
b2h2

nαε/2

)

. (6.24)

It remains to deal with J312. We have

Var(J312) = O

(
b4

n2h2

) n∑

i,i′=1

Eεiεi′E
[

Lh(Xi) Lh(Xi′)
]

= O

(
b4

n2h2

)







nE[ε21]E
[
L2
h(X1)

]
+

n∑

i,i′=1

i6=i′

Eεiεi′E
[

Lh(Xi) Lh(Xi′)
]







.

Under (P1), the second part vanishes and the above variance is of order

O

(
b4

n2h2

)

nh = O

(
b4

nh

)

. (6.25)
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Under (P2) we do the same trick as in case of J321:

E
[

Lh(Xi) Lh(Xi′)
]

=

= E
[

Lh(X∗
i ) Lh(X∗

i′)
]

+ γ1/2(|i− i′|)
(∫

ρ(u)σ(u)

f(u)
Kh(x − u) du

)2

= 0 + γ1/2(|i − i′|)O(h2).

Consequently,

Var(J312) = O

(
b4

n2h2

)




nh+ h2Var






n∑

i,i′=1

i6=i′

Cov(εiεi′)γ
1/2(|i − i′|)











= O(b4n−(αε+αX/2)),

which means that this term is of a smaller order than J311. This together with
(6.24) and (6.25) yields (6.21).

6.6. Proof of Lemma 6.4

We work simulateneously under (P1) and (P2). As for J4, the general idea is
similar to J3. Using the previous notation (cf. (6.1), (6.2), (6.19)), and intro-
ducing

Kh,b,b(x,Xi, Xj , Xl) = Kh(x −Xi)Kb(Xi −Xj)Kb(Xi −Xl), (6.26)

we have

J4 =
1

nhf̂h(x)

n∑

i=1

R2
b(Xi)Kh(x−Xi)

+
2

nhf̂h(x)

n∑

i=1

1

nbf̂b(Xi)
Rb(Xi)

n∑

j=1

σ(Xj)Kh,b(x,Xi, Xj)εj

+
1

n3hb2f̂h(x)

n∑

i=1

1

f̂2
b (Xi)

n∑

j,j′=1

Kh,b,b(x,Xi, Xj, Xj′)εjεj′ =: J41 + J42 + J43.

Using (6.2), (6.3) and the weak consistency of f̂h we write

J41 =
b4κ2

2

4nhf(x)

n∑

i=1

ρ(Xi)

f(Xi)
Kh(x−Xi)(1 + oP (1)) = OP (b

4). (6.27)

Furthermore, we show below (see Section 6.6.1) that

J42 =
κ2ρ(x)σ(x)

f(x)

b2

n

n∑

i=1

εi +OP

(
b2 + bh

nαε/2

)

, (6.28)



Conditional variance and error density estimation 885

and

J42 =
κ2ρ(x)σ(x)

f(x)

b2

n

n∑

i=1

εi +OP

(
b2(h2 + b2)

nαε

)

, (6.29)

under (P2) and (P1), respectively. Furthermore (see Section 6.6.2),

J43 = J4341 +OP (1/(nb)) + oP (n
−αε + 1/

√
nh), (6.30)

where
nαεJ4341

d→ C2
1σ

2(x) × χ2(1). (6.31)

Combining (6.21) and (6.28), we find out that under (P2) we see that the term
−J31 + J42 is negligible if either (H2), (H2a) or (H2b) hold. Under (P1), com-
bining (6.21) and (6.29) we see that the leading term in −J31 + J42 is of order

OP

(
b3 + b2h

nαε/2
+

b2

nh

)

.

6.6.1. Behaviour of J42

The term J42 is treated in a similar way to J31:

J42 =
2

nhf(x)

n∑

i=1

Rb(Xi)

nbf̂(Xi)

n∑

j=1

σ(Xj)Kh,b(x,Xi, Xj)εj(1 + oP (1))

=
b2κ2

nhf(x)

n∑

i=1

ρ(Xi)

nbf2(Xi)

n∑

j=1

σ(Xj)Kh,b(x,Xi, Xj)εj(1 + oP (1))

LE/N
=

bκ2

n2hf(x)

n∑

j=1

E[L̃h,b(Xj)]εj(1 + oP (1))

+
bκ2

n2hf(x)

n∑

j=1

L̃h,b(Xj)εj(1 + oP (1))

=: J421(1 + oP (1)) + J422(1 + oP (1)),

where (recall (6.19))

L̃h,b(Xj) = σ(Xj)
n∑

i=1

ρ(Xi)

f2(Xi)
Kh,b(x,Xi, Xj). (6.32)

Under (P1), we use (B.11) to get

J421 =
κ2σ(x)ρ(x)

f(x)

b2

n

n∑

j=1

εj +OP

(

b2(h2 + b2)n−αε/2
)

. (6.33)

Under (P2), using the trick as for J312,

E[L̃h,b(Xj)] = E[L̃h,b(X
∗
j )] +

n∑

i=1

γ1/2(|j − i|)O(hb).
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Now,

Var





n∑

j=1

εj

n∑

i=1

γ1/2(|j − i|)



 = O(n1−αX + n2−(αX+αε)) = o(n2−αε).

Consequently, the behaviour of J421 is the same under (P1) and (P2).
Finally, using (B.12) and (B.10) we have:

Var(J422) = O

(
b2

n4h2

) n∑

j,j′=1

E[εjεj′ ]E
[

L̃h,b(Xj) L̃h,b(Xj′ )
]

= O

(
b2

n4h2

)


n2h2b2n2−αε + nhb2n2−αε

︸ ︷︷ ︸

j 6=j′

+nhbn+ n2h2bn
︸ ︷︷ ︸

j=j′





= O

(
b4 + b2h2

nαε
+

b4

hn1+αε
+

b3

n2h
+

b3

n

)

.

(6.34)

Combining (6.33) and (6.34), we get (6.28). Under (P1), we use (B.13) instead
of (B.12) to get (6.29).

6.6.2. Behaviour of J43

Recall (6.26). Using the weak consistency of f̂h and the finite support of K(·),
we may write J43 as

1

n3hb2f(x)

n∑

i,j,l=1

1

f2(Xi)
σ(Xj)σ(Xl)Kh,b,b(x,Xi, Xj , Xl)εjεl(1 + oP (1)).

(6.35)
The expression (6.35) can be decomposed as

1

n3f(x)hb2
K2(0)

n∑

i=1

σ2(Xi)

f2(Xi)
Kh(x−Xi)ε

2
i

+
1

n3f(x)hb2

n∑

i,j=1

i6=j

σ2(Xj)

f2(Xi)
Kh(x −Xi)K

2
b (Xi −Xj)ε

2
j

+
2

n3f(x)hb2
K(0)

n∑

i,j=1

i6=j

σ(Xi)σ(Xj)

f2(Xi)
Kh(x−Xi)Kb(Xi −Xj)εiεj

+
1

n3hb2f(x)

n∑

i,j,l=1:

all different

1

f2(Xi)
σ(Xj)σ(Xl)Kh,b,b(x,Xi, Xj , Xl)εjεl

=: J431 + J432 + J433 + J434.
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Under (P1), E[|J433|] = O(1/(nb)). The latter is also valid under (P2) by pro-
ceeding in the very same way as in case of J3. Using this we get

E[|J431|+ |J432|+ |J433|] = O(1/(nb)2) +O(1/(nb)) +O(1/(nb)) = O(1/(nb)).
(6.36)

We deal with J434. Let

Sh,b(x,Xj , Xl) := σ(Xj)σ(Xl)

n∑

i=1

i6=j, i6=l

1

f2(Xi)
Kh,b,b(x,Xi, Xj , Xl). (6.37)

We use again LE/N decomposition:

J434 =
1

n3hb2f(x)

n∑

j,l=1

j 6=l

εjεlE[Sh,b(x,Xj , Xl)]

+
1

n3hb2f(x)

n∑

j,l=1

j 6=l

εjεl

{

Sh,b(x,Xj , Xl)
}

=: J4341 + J4342.

Assume (P1). One can verify that for j 6= l,

an := E[Sh,b(x,Xj , Xl)] ∼ nhb2f(x)σ2(x)

we have

an
n3hb2f(x)

n∑

j,l=1

j 6=l

εjεl =
anσ

2
n,ε

n3hb2f(x)









σ−1
n,ε

n∑

j=1

εj





2

− σ−2
n,ε

n∑

j=1

ε2j







,

so that (6.31) holds. The same is valid under (P2), using Lemma A.3 and the
same trick as for L̃h,b(Xj).

Now, using the covariance bound (A.4), (B.14) and Lemma A.1 (for all dif-
ferent indices),

Var(J4342) = O

(
1

n6h2b4

) n∑

j,l,j′,l′=1

j 6=l,j′ 6=l′

E[εjεlεj′εl′ ]E[Sh,b(x,Xj , Xl) Sh,b(x,Xj′ , Xl′)]

= O

(
1

n6h2b4

)







o(n2
h
2
b
4)n4−2αε +O(n2

h
2
b
4)o(n4−2αε )

︸ ︷︷ ︸

all indices different

+(n2
hb

4 + nhb
3)n3−αε

︸ ︷︷ ︸

two indices agree







.

The contribution from all indices different is o(n−2αε), so that this contribu-
tion is smaller than of J4341. The estimates coming from two indices agree are
o(1/(nh)). From this and (6.36), we obtain (6.35).
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6.7. Proof of Theorem 3.10

The proofs are sketched here, since most of the steps are similar to the proof
for the conditional variance estimation. The proof is conducted for (P1) only.
Recall the definition of ∆i in (6.1). We write the two term Taylor expansion

1

nh

n∑

i=1

Kh(x− ε̂i)−
1

nh

n∑

i=1

Kh(x− εi) =

=
1

nh2

n∑

i=1

K ′
(
x− εi

h

)

∆i +
1

2nh3

n∑

i=1

K ′′
(

x− ε#i
h

)

∆2
i

=: I1 + I2, (6.38)

where ε#i is a random term which lies between εi and ε̂i.
In what follows, we will show that

1

nh

n∑

i=1

Kh(x− ε̂i)−
1

nh

n∑

i=1

Kh(x− εi) = f ′
ε(x)

1

n

n∑

j=1

εj

+oP (n
−αε/2) +OP

(
1

nh3/2b1/2
+

1

n(1+αε)/2h3/2
+ b4 +

1

nb

)

. (6.39)

Since we assumed here σ(·) ≡ 1, we have uniformly in i, ∆i = OP (b
2) +

OP (n
−αε/2), see (6.3) together with estimations for J31 in Section 6.5.3. Also,

it is easy to verify that

EK ′′((x− ε#i )/h) = O(h3). (6.40)

Therefore,
I2 = OP (b

4 + n−αε + b2n−αε/2).

In fact, in this situation it will be seen that the first term I1 is of higher order
than the second one.

We write the first term as (recall that we may replace f̂h(Xi) with f(Xi)),

I1 =
1

nh2

n∑

i=1

K ′
(
x− εi

h

)

Rb(Xi)

+
1

n2h2b

n∑

i,j=1

1

f(Xi)
Kb(Xi −Xj)K

′
(
x− εi

h

)

εj =: OP (b
2) + I12,

where the latter follows from (6.3) and

EK ′
(
x− εi

h

)

= −h2f ′
ε(x)

∫

vK ′(v)dv + o(h2) = h2f ′
ε(x) + o(h2). (6.41)

For I12 we apply the Hoeffding decomposition (6.12) with

T (Xi, Xj) = Tb(Xi, Xj) =
1

f(Xi)
Kb(Xi −Xj),
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tn = n2h2b and G1(u) = K ′((x − u)/h), G2(u) = u. Denote the terms in the
decomposition by I121, I122, I123 and I124. Via (6.13),

I121 = OP

(
1

n2h2b
nE[K ′

(
x− ε1

h

)

ε1]

)

= OP (1/(nb)).

For I123, I124 we use (6.15), (6.16), respectively. We note that E[Z2
1,i + Z2

2,j] =

O(b2). Furthermore, E[T 2(Xi, Xj)] = O(b). Also,

E[K ′2((x − εi)/h)ε
2
j ] = O(h), E[K ′2((x− εi)/h)εjεj′ ] = O(1)E[εjεj′ ].

where in the second we used that K ′(·) is bounded, with finite support. We
conclude that the term I123 is of order

OP

(
1

n4h4b2
(
n2hb+ n3−αεb2

)
)

.

A similar estimation is valid for I124.
Finally, for the second term I122, via (6.41) and E[T (X1, X2)] = b+ o(b), we

conclude that the asymptotic behaviour of I1 + I2 is

f ′
ε(x)

1

n

n∑

j=1

εj + oP (n
−αε/2) +OP

(
1

nh3/2b1/2
+

1

n(1+αε)/2h2
+ b4 + 1/(nb)

)

.

Appendix A: LRD processes

Moment bounds

Recall that under (E2) we have

σ2
n,ε := Var

(
n∑

i=1

εi

)

∼ C2
1n

2−αε , αε ∈ (0, 1), (A.1)

with C1 defined in (2.1). Furthermore, one can verify that with some C > 0 (see
e.g. [15, Lemma 4.1, Appendix A]),

Cov(ε2i , ε
2
j) ∼ C2γ2

ε (|i − j|), (A.2)

E[ε2i εjεj′ ] = O (γε(|i− j|) + γε(|i − j′|) + γε(|j − j′|)) , (A.3)

E[εiεjεi′εj′ ] = O
(
γε(|i− j|)γε(|i′ − j′|) + γε(|i − j′|)γε(|i′ − j|)

+ γε(|i− i′|)γε(|j − j′|)
)
, (A.4)

if the differences |i− j|, |i− j′|, |i′ − j|, |i′− j′| are large. From (A.2), (A.3) and
(A.4) we obtain, in particular,

d2n,ε := Var

(
n∑

i=1

ε2i

)

∼
{

C2
2n

2(1−αε), if αε < 1/2,
C2

3n, if αε > 1/2,
(A.5)
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n∑

i,j,j′

all indices different

E[εiεjε
2
j′ ] = O(n3−αε ),

n∑

i,j,i′,j′=1

all indices different

E[εjεjεi′εj′ ] = O(n4−2αε).

(A.6)
where C2 is defined in (3.2) and C3 is a finite and positive constant. Moreover:

Lemma A.1. Assume (E2) and (P2). Let

c(i, i′, j, j′) = (max(|i − j|, |i− j′|, |i− i′|, |i′ − j|, |i′ − j′|, |j′ − j|))−αX/2).

Then
n∑

i,i′,j,j′=1

all indices different

E[εiεjεi′εj′ ]c(i, i
′, j, j′) = o(n4−2αε).

Projections

Recall that under (E2) we have the following σ-field: Hi = σ(ηi, ηi−1, . . .). Define

εi,i−1 := E[εi|Hi−1] =

∞∑

k=1

ckηi−k, i ≥ 1. (A.7)

This linear process has the same memory parameter as εi, i ≥ 1, and is intro-
duced for technical reasons. In particular, (A.1) is also valid for Var (

∑n
i=1 εi,i−1).

Let ξi = ε2i − E[ε2i ] = ε2i − 1. Also, in the same spirit as in (A.7), we obtain

E[ξi|Hi−1] = ε2i,i−1 − E[ε2i,i−1],

The sequence E[ξi|Hi−1], i ≥ 1, is defined in terms of squares of the linear
process. Therefore (cf. (A.2))

Cov (E[ξi|Hi−1],E[ξj |Hj−1]) ∼ C2γ2
ε (|i − j|), (A.8)

so that

Var

(
n∑

i=1

E[ξi|Hi−1]

)

∼
{

C2
2n

2(1−αε), if αε < 1/2,
C2

4n, if αε > 1/2,
(A.9)

with a possibly different constant C4.

Limit theorems

We have (see e.g. [1, Theorem 2])

σ−1
n,ε

n∑

i=1

εi
d→ N (0, 1), σ−1

n,ε

n∑

i=1

εi,i−1
d→ N (0, 1), (A.10)

d−1
n,ε

n∑

i=1

ξi
d→ H2, d−1

n,ε

n∑

i=1

E[ξi|Hi−1]
d→ H2, if αε < 1/2, (A.11)

where H2 is the Hermite-Rosenblatt random variable defined in (3.1). If αε >
1/2, then

∑n
i=1 ξi converges to a normal random variable with

√
n-normalization.
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Remark A.2. If αε = 1/2, then the expressions for the variances in (A.5) or
(A.9) involve slowly varying functions. Furthermore, the limiting results like in
(A.11) would involve a linear combination of H2 and a standard normal random
variable. For simplicity, we do not include this case in our computations.

For more details on limit theorems for linear processes and its functionals we
refer to [19].

Density expansions

Lemma A.3. Assume (P2) and that ‖fζ + f ′
ζ‖ < ∞. Let im = i = (i1, . . . , im)

and let fi be the joint density of Xi = (Xi1 , . . . , Xim). Then

sup
xi

∣
∣
∣
∣
∣
fi(xi)−

m∏

l=1

f(xil)

∣
∣
∣
∣
∣
= O

(

max
l,l′=1,...,m

|l − l′|−αX/2

)

. (A.12)

Remark A.4. Let fj|i be the conditional density of Xj given Xi. Let γX(i) =
Cov(X0, Xi). As a consequence, we obtain that for a given x such that f(x) 6= 0

sup
y

|fj|i(y|x)− f(y)| = O(|j − i|−αX/2/f(x)) = O(γ
1/2
X (|i − j|)/f(x)).

Remark A.5. Furthermore, let ir = (i1, . . . , ir), ir,m = (ir+1, . . . , im). From
(A.12) we can also conclude

sup
xi

∣
∣fim(xim)− fir(xir )fir,m(xir,m)

∣
∣ = O

(

max
l,l′=1,...,m

|l − l′|−αX/2

)

.

Remark A.6. In [14] the authors established

sup
x,y

|fi,j(x, y)− f(x)f(y)− γ(|j − i|)f ′(x)f ′(y)| = o(|j − i|−αX ),

if there exist δ > 0 and C < ∞ such that |E exp(iuζ0)| ≤ C/(1 + |u|)δ. If
‖f ′‖∞ < ∞, then the bound leads to

sup
x,y

|fi,j(x, y)− f(x)f(y)| = O(|j − i|−αX ).

Therefore, our Lemma A.3 yields a less precise bound, which is though appro-
priate for our purposes. On the other hand, the method in [14] does not seem
to be suitable for multivariate densities.

Proof of Lemma A.3. Let us start with m = 2 and set (i1, i2) = (i, j). W.l.o.g.
assume that i < j. Split

Xj =

∞∑

k=0

akζj−k =

j−i−1
∑

k=0

akζi−k +

∞∑

k=j−i

akζi−k =: X̃j,i +Xj,i
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and note that Xj,i is Xi = σ(ζi, ζi−1, . . .)-measurable, whereas X̃j,i is indepen-
dent of Xi. Note further that

F (y) = P (Xj ≤ y) = EP (Xj ≤ y|Xi) = FX̃j,i
(y −Xj,i),

so that f(y) = fX̃j,i
(y − Xj,i), where FX̃j,i

and fX̃j,i
are the distribution and

density of X̃j,i. We claim that if fζ and f ′
ζ are bounded, then, respectively, fX̃j,i

and f ′
X̃j,i

are bounded as well. Indeed,

fX̃j,i
(x) =

∫

· · ·
∫

fζj

(

x−∑j−i−1
k=1 akuj−k

a0

)
j−i−1
∏

l=1

fζl(uj−l) duj−1 · · · dui+1,

and clearly ‖fX̃j,i
‖∞ ≤ ‖fζj‖∞ = ‖fζ‖∞. A similar argument works for the

derivative.
Bearing this in mind,

P (Xi ≤ x,Xj ≤ y) = E[1{Xi≤x}FX̃j,i
(y −Xj,i)]

= FX̃j,i
(y)E[1{Xi≤x}]− E[1{Xi≤x}fX̃j,i

(θ)Xj,i]

where |θ − y| ≤ Xi,j . By the Cauchy-Schwartz inequality, the second term is
bounded by

‖f‖∞F 1/2(x)
(
EX2

i,j

)1/2
= O(1)





∞∑

k=j−i

a2k





1/2

= O(|j − i|−αX/2).

Furthermore, by the Markov inequality

|FX̃j,i
(y)− F (y)| = |FX̃j,i

(y)− EFX̃j,i
(y −Xj,i)|

= |EfX̃j,i
(θ)Xj,i| ≤ ‖f2‖1/2∞

(
EX2

j,i

)1/2
= O(|j − i|−αX/2).

We conclude that

P (Xi ≤ x,Xj ≤ y) = F (x)F (y) +O(|j − i|−αX/2).

The same argument applies to the joint density, given that ‖f ′
ζ‖∞ < ∞. Thus,

the Lemma is valid for m = 2.
Now, we show the induction step, from m = 2 to m = 3. Of course, the same

holds from arbitrary m − 1 to m. Assume that i < j < l. Repeating the same
argument as above

P (Xi ≤ x,Xj ≤ y,Xl ≤ z) = E[1{Xi≤x,Xj≤y}F̃Xl,j
(z −Xl,j)]

= F̃Xl,j
(z)E[1{Xi≤x,Xj≤y}]− E[1{Xi≤x,Xj≤y}f̃Xl,j

(ξ)Xl,j ]

induction
= F̃Xl,j

(z)F (x)F (y) + F̃Xl,j
(y)O(|j − i|−αX/2) + ‖f‖∞

(
EX2

j,i

)1/2

= F (x)F (y)F (z) + F (x)F (y)(F̃Xl,j
(z)− F (z)) +O(|j − i|−αX/2)

= F (x)F (y)F (z) +O(|l − j|−αX/2) +O(|j − i|−αX/2).
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Appendix B: Integrals

Covariance bound

Assume that (P2) holds. Recall that γX(i) = Cov(X0, Xi) and Xi,i−1 = Xi−ζi.

Note that Lemma A.3 is applicable to f̃i,j, the joint density of Xi,i−1, Xj,j−1;
we have to replace f(·) there with f1,0(·), the density of Xi,i−1, i ≥ 1. Let
r(s, u) = σ2(s)fζ(s− u). For i 6= j,

Cov
(
E[σ2(Xi)Kh(x−Xi)|Xi−1],E[σ

2(Xj)Kh(x−Xj)|Xj−1]
)

= h2Cov

(∫

K(s)r(x − sh,Xi,i−1) ds,

∫

K(t)r(x − th,Xj,j−1) dt

)

= h2O
(

γ
1/2
X (|j − i|)

)∫∫∫∫

K(s)K(t)r(x − sh, u)r(x− th, v) du dv ds dt.

= h2O
(

γ
1/2
X (|j − i|)

)

. (B.1)

Bounds on Th,b

For appropriately smooth functions r1(·), r2(·), let
Vh,b(x,Xi, Xj) := r1(Xi)r2(Xj)Kh(x −Xi)Kb(Xi −Xj).

Note that Th,b in (6.22), when multiplied by n2hb, is the special case of Vh,b.
For Vh,b we have the following bounds which are valid under (P2) - below,

it is assumed that all indices are different. Also, recall from Lemma A.3 that
fi,j,i′,j′ is the joint density of (Xi, Xj , Xi′ , Xj′ ).

E
[
V l
h,b(x,Xi, Xj)

]
∼ hbrl1(x)r

l
2(x)fi,j(x, x)

(∫

K l(s) ds

)2

, l = 1, 2. (B.2)

E [Vh,b(x,Xi, Xi)] ∼ hK(0)r1(x)r2(x)f(x). (B.3)

E
[

(E [Vh,b(x,Xi, Xj)|Xi])
2
]

= O(hb2). (B.4)

E
[

(E [Vh,b(x,Xi, Xj)|Xj ])
2
]

= O(h2b2). (B.5)

E [Vh,b(x,Xi, Xj)E[Vh,b(x,Xi′ , Xk)|Xi′ ]] = O(h2b2). (B.6)

E [Vh,b(x,Xi, Xj)E[Vh,b(x,Xk, Xj)|Xj ]] = O(hb2). (B.7)

E[Vh,b(x,Xi, Xj)Vh,b(x,Xi′ , Xj′)] =

= h2b2r21(x)r
2
2(x)fi,j,i′,j′(x, x, x, x) + h2b2O(h2 + b2). (B.8)

E[Vh,b(x,Xi, Xj)Vh,b(x,Xi′ , Xj)] = O(hb2). (B.9)
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Bounds on L̃h,b

Recall the definitions of L̃h,b(Xj) and Kh,b(Xi, Xj) in (6.32) and (6.19), respec-
tively. Let

r0(xi, xj) :=
σ(xj)ρ(xi)

f2(xi)
.

If j = j′ we have

E[L̃2
h,b(Xj)] = O(n2h2b+ nhb), (B.10)

and

E[L̃h,b(Xj)] = hbr0(x, x)

n∑

i=1

fi,j(x, x) +O(nhb(b2 + h2)). (B.11)

Likewise, assuming (P2) we obtain for j 6= j′,

E[L̃h,b(Xj) L̃h,b(Xj′)] = O(n2h2b2) +O(n2h2b2c(j, j′)) +O(n2−αX/2h2b2).
(B.12)

Under (P1), for j 6= j′,

E[L̃h,b(Xj) L̃h,b(Xj′)] = O(n2h2b2(h2 + b2)), (B.13)

where c(j, j′) = |j − j′|−αX/2 (cf. Lemma A.1).

Bounds on Sh,b

Recall the definition of Sh,b(x,Xj , Xl) in (6.37). Let

r1(xi, xj , xl) :=
σ(xj)σ(xl)

f2(xi)
.

Let fi,j,l,i′,j′,l′ be the joint density of (Xi, Xj , Xl, Xi′ , Xj′ , Xl′).
If all indices j, j′, l, l′ are different, then recalling the notation from Lemma

A.1 and using Lemma A.3 we have,

Cov (Sh,b(x,Xj , Xl), Sh,b(x,Xj′ , Xl′)) = o(n2h2b4) +O(n2h2b4c(j, l, j′, l′)).
(B.14)

Appendix C: Martingale CLT

Here, we prove (6.11). Note that

Var(J21) ∼
1

nhf(x)
σ4(x)E[ξ21 ]

∫

K2(u) du.
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The proof is similar to [36, Lemma 2] and [22, Lemma 3.1]. Let Ri =
(nh)−1/2σ2(Xi)Kh(x−Xi)ξi/

√

f(x) and R̄i = Ri−E[Ri|Fi−1]. From the mar-
tingale central limit theorem it suffices to show the Lindeberg condition

n∑

i=1

E
[
R̄2

i 1{|R̄i|>δ}
]
→ 0 for each δ > 0

and the convergence of the conditional variances

n∑

i=1

E[R̄2
i |Fi−1]

P→ 1.

Let fX and gξ be the density of X1 and ξ1, respectively. As for the Lindeberg
condition we have

n∑

i=1

E
[
R̄2

i 1{|R̄i|>δ}
]
≤ 4

n∑

i=1

E
[
R2

i 1{|Ri|>δ}
]

= C0
1

nh

n∑

i=1

∫∫

σ2(u)K2
h(x− u)fX(u)v2gε1(v)1{|v|>C1δ

√
nh}

≤ C2
1

n

n∑

i=1

E
[

ξ2i 1{|ξi|>C1δ
√
nh}

]

→ 0,

where C0 = 1/(f(x)), C1 =
(√

C0 supK(x)
)−1

and C2 = C0

∫
K2.

As for the conditional variances note first that

E[R̄2
i |Fi−1] = E[R2

i |Fi−1]− E
[

(E[Ri|Fi−1])
2
]

and note that the second term is of a smaller order than the first one. Now,

n∑

i=1

{
E[R2

i |Fi−1]− E[R2
i ]
}

=
1

nhf(x)
E[σ2(X1)K

2
h(x−X1)]

n∑

i=1

{
E[ξ2i |Fi−1]− E[ξ2i ]

}

=

(
1

f(x)

∫

σ2(v)K2(v)f(x− vh)dv

)
1

n

n∑

i=1

{
E[ξ2i |Fi−1]− E[ξ2i ]

}
.

Now, the deterministic term in the bracket is asymptotically equal to 1. The
second part converges to 0 in probability from ergodicity. Consequently, the
second Lindeberg condition is proven.
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