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Abstract

In this paper we study the limiting behavior of sums of extreme
values of long range dependent sequences defined as functionals of lin-
ear processes with finite variance. If the number of extremes in a sum
is large enough, we obtain asymptotic normality, however, the scal-
ing factor is relatively bigger than in the i.i.d case, meaning that the
maximal terms have relatively smaller contribution to the whole sum.
Also, it is possible for a particular choice of a model, that the scal-
ing need not to depend on the tail index of the underlying marginal
distribution, as it is well-known to be so in the i.i.d. situation. Further-
more, subordination may change the asymptotic properties of sums of
extremes.
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1 Introduction

Let {εi,−∞ < i < ∞} be a centered sequence of i.i.d. random variables.
Consider the class of stationary linear processes

Xi =
∞∑

k=0

ckεi−k, i ≥ 1. (1)

We assume that the sequence ck, k ≥ 0, is regularly varying with index
−β, β ∈ (1/2, 1). This means that ck ∼ k−βL0(k) as k → ∞, where
L0 is slowly varying at infinity. We shall refer to all such models as long
range dependent (LRD) linear processes. In particular, if the variance of
ε1 exists (which is assumed throughout the whole paper), then the covari-
ances ρk := EX0Xk decay at the hyperbolic rate, ρk = k−(2β−1)L(k), where
limk→∞ L(k)/L2

0(k) = B(2β−1, 1−β) and B(·, ·) is the beta-function. Con-
sequently, the covariances are not summable (cf. [11]).

Assume that X1 has a continuous distribution function F . For y ∈ (0, 1)
define Q(y) = inf{x : F (x) ≥ y} = inf{x : F (x) = y}, the corresponding
quantile function, which is assumed to be differentiable. Given the ordered
sample X1:n ≤ · · · ≤ Xn:n of X1, . . . , Xn, let Fn(x) = n−1

∑n
i=1 1{Xi≤x}

be the empirical distribution function and Qn(·) be the corresponding left-
continuous sample quantile function, i.e. Qn(y) = Xk:n for k−1

n < y ≤ k
n .

Define Ui = F (Xi) and En(x) = n−1
∑n

i=1 1{Ui≤x}, the associated uniform
empirical distribution function. Denote by Un(·) the corresponding uniform
sample quantile function.

Assume that Eε21 <∞. Let r be a positive integer and define

Yn,r =
n∑

i=1

∑
1≤j1<···≤jr<∞

r∏
s=1

cjsεi−js , n ≥ 1,

so that Yn,0 = n, and Yn,1 =
∑n

i=1Xi. If p < (2β − 1)−1, then

σ2
n,p := Var(Yn,p) ∼ n2−p(2β−1)L2p

0 (n). (2)

Define now the general empirical, the uniform empirical, the general quantile
and the uniform quantile processes respectively as follows:

βn(x) = σ−1
n,1n(Fn(x)− F (x)), x ∈ IR,

αn(y) = σ−1
n,1n(En(y)− y), y ∈ (0, 1),
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qn(y) = σ−1
n,1n(Q(y)−Qn(y)), y ∈ (0, 1),

un(y) = σ−1
n,1n(y − Un(y)), y ∈ (0, 1).

The aim of this paper is to study the asymptotic behavior of trimmed sums
based on the ordered sample X1:n ≤ · · · ≤ Xn:n coming from the long range
dependent sequence defined by (1).

Let Tn(m, k) =
∑n−k

j=m+1Xj:n and note that (see below for a convention
concerning integrals)

Tn(m, k) = n

∫ 1−k/n

m/n
Qn(y)dy. (3)

Ho and Hsing observed in [13] that, under appropriate conditions on F , as
n→∞,

sup
y∈[y0,y1]

∣∣∣∣∣qn(y) + σ−1
n,1

n∑
i=1

Xi

∣∣∣∣∣ = oP (1), (4)

where 0 < y0 < y1 < 1. Equation (4) means that, in principle, the quantile
process can be approximated by partial sums, independently of y. This ob-
servation, together with (3), yields the asymptotic normality of the trimmed
sums in case of heavy trimming m = mn = [δ1n], k = kn = [δ2n], where
0 < δ1 < δ2 < 1 and [·] is the integer part (see [13, Corollary 5.2] and [25]).
This agrees with the i.i.d. situation (see [23]).

However, the representation (3) requires some additional assumptions on
F . In order to avoid them, we may study asymptotics for the trimmed sums
via the integrals of the form

∫
αn(y)dQ(y). This approach was initiated in

two beautiful papers by M. Csörgő, S. Csörgő, Horváth and Mason, [2], [3].
Then, S. Csörgő, Haeusler, Horváth and Mason took this route to provide
the full description of the weak asymptotic behavior of the trimmed sums
in the i.i.d. case. The list of the papers written by these authors on this
particular topic is just about as long as this introduction. Therefore we refer
to [7] for an extensive up-to-date discussion and a survey of results.

For the i.i.d. random variables the above mentioned authors approxi-
mated the uniform empirical process by an appropriately constructed Brow-
nian bridge B0(·) and then concluded asymptotic results for the integrals via
those for

∫
B0(y)dQ(y). In the LRD case, we will use the reduction principle

for empirical processes as studied in [11], [13], [15] or [24] (see Lemma 10
below). We can then use an approach that is similar to that of the above
mentioned authors to establish asymptotic normality in case of moderate
and heavy trimming with the scaling factor σ−1

n,1, which is the same as for
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the whole partial sum. So, in this context the situation is similar to the i.i.d.
case and for details we refer the reader to [16].

The most interesting phenomena, however, occur when one deals with
the kn-extreme sums,

∑n
j=n−kn+1Xj:n. If F (0) = 0 and 1 − F (x) = x−α,

α > 2, then in the i.i.d situation we have

an

n∑
j=n−kn+1

Xj:n − cn
d→ Z,

where the scaling factor is an =
(
nk−1

n

)1/2−1/α
n−1/2, cn is a centering se-

quence and Z is a standard normal random variable (see [9]). In the LRD
case we still obtain asymptotic normality. However, although the Ho and
Hsing result (4) does not say anything about the behavior of the quantile
process in the neighborhood of 0 and 1, the somewhat imprecise statement
that the quantile process can be approximated by partial sums, independently
of y suggests that

• a required scaling factor would not depend on the tail index α.

Indeed, we will show in Theorem 1 that, under some conditions on kn, the
appropriate scaling in case 1 − F (x) = x−α is (nk−1

n )σ−1
n,1. Removing the

scaling for the whole sums (n−1/2 and σ−1
n,1 in the i.i.d. and LRD cases,

respectively), we also see that

• the scaling in the LRD situation is greater, meaning that the kn-
extreme sums contribute relatively less to the whole sum compared to
the i.i.d situation. This also is quite intuitive. Since the dependence
is very strong, it is very unlikely that we have few big observations,
which is a typical case in the i.i.d. situation. Rather, if we have one
big value, we have a lot of them.

One may ask, whether such phenomena are typical for all LRD sequences.
Not likely. Define Yi = G(Xi), i ≥ 1, with some real-valued measurable
function G. In particular, taking G = F−1

Y F we may obtain a LRD se-
quence with the arbitrary marginal distribution function FY . Assume for a
while that F , the distribution of X1, is standard normal and that qn(·) is
the quantile process associated with the sequence {Yi, i ≥ 1}. Following [6]
we observed in [4, Section 2.2] and [5] that qn(·) is, up to a constant, approx-
imated by φ(Φ−1(y))/fY (F−1

Y (y))σ−1
n,1

∑n
i=1Xi. Here, fY is the density of

FY and φ, Φ are the standard normal density and distribution, respectively.
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In the non-subordinated case, Yi = Xi, the factor φ(Φ−1(y))/fY (F−1
Y (y))

disappears. Nevertheless, from this discussion it should be clear that the
limiting behavior of the extreme sums in the subordinated case Yi = G(Xi)
is different, namely (see Theorem 1)

• the scaling depends on the marginal distributions of both Xi and Yi.

In particular, if the distribution F of X1 belongs to the maximal domain of
attraction of the Fréchet distribution Φα, then though the distribution FY of
Y1 belongs to the maximal domain of attraction of the Gumbel distribution,
the scaling factor depends on α. This cannot happen in the i.i.d. situation
and, intuitively, it means that in the subordinated case the long range de-
pendent sequence {Xi, i ≥ 1} also contributes information to the asymptotic
behavior of extreme sums.

Moreover, we may have two LRD sequences {Xi, i ≥ 1}, {Yi, i ≥ 1},
the first one as in (1), the second one defined by Yi = G(X ′

i) with a se-
quence {X ′

i, i ≥ 1} defined as in (1), with the same covariance, with the
same marginals, but different behavior (i.e., the different scaling) of ex-
tremal terms.

It should be pointed out that the above mentioned phenomena for ex-
tremal sums of LRD sequences are valid if the number of extremes, kn, is
big enough. In Theorem 1 we have assumed, in particular, that kn = [nξ],
ξ > β. A natural question arises, what happens if ξ < β. To answer this
partially, we assume that {εi,−∞ < i < ∞} is an i.i.d. sequence of stan-
dard normal random variables. We observe that if kn = [nξ], ξ < 2β − 1,
the sums of extremes grow at the same rate as in the corresponding i.i.d.
case. However, we are not able to prove the asymptotic normality. We refer
to Remark 4 for further discussion.

Of course, it would be desirable to obtain some information about lim-
iting behavior not only of extreme sums, but for sample maxima as well. It
should be pointed out that our method is not appropriate. This is still an
open problem to derive limiting behavior of maxima in the model (1). A
Gaussian case is covered in [17, Chapter 4]. In a different setting, the case
of stationary stable processes generated by conservative flow, the problem
is treated in [21].

We will use the following convention concerning integrals. If −∞ <
a < b < ∞ and h, g are left-continuous and right-continuous functions,
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respectively, then∫ b

a
gdh =

∫
[a,b)

gdh and
∫ b

a
hdg =

∫
(a,b]

hdg,

whenever these integrals make sense as Lebesgue-Stjeltjes integrals. The
integration by parts formula yields∫ b

a
gdh+

∫ b

a
hdg = h(b)g(b)− h(a)g(a).

We shall write g ∈ RVα (g ∈ SV ) if g is regularly varying at infinity with
index α (slowly varying at infinity).

In what follows C will denote a generic constant which may be different at
each of its appearances. Also, for any sequences an and bn, we write an ∼ bn
if limn→∞ an/bn = 1. Further, let `(n) be a slowly varying function, possibly
different at each place it appears. On the other hand, L(·), L0(·), L1(·),
L∗1(·), etc., are slowly varying functions of fixed form wherever they appear.
Moreover, g(k) denotes the kth order derivative of a function g and Z is a
standard normal random variable. For any stationary sequence {Vi, i ≥ 1},
we will denote by V the random variable with the same distribution as V1.

2 Statement of results

Let Fε be the marginal distribution function of the centered i.i.d. se-
quence {εi,−∞ < i < ∞}. Also, for a given integer p, the derivatives
F

(1)
ε , . . . , F

(p+3)
ε of Fε are assumed to be bounded and integrable. Note that

these properties are inherited by the distribution function F of X1 as well
(cf. [13] or [24]). Furthermore, assume that Eε41 <∞. These conditions are
needed to establish the reduction principle for the empirical process and will
be assumed throughout the paper.

To study sums of kn largest observations, we shall consider the following
forms of F . For the statements below concerning regular variation and
domain of attractions we refer to [10, Chapter 3], [12] or [14].

The first assumption is that the distribution F satisfies the following
Von-Mises condition:

lim
x→∞

xf(x)
1− F (x)

= α > 0. (5)

Using notation from [10], the condition (5) will be referred asX ∈MDA(Φα),
since (5) implies that X belongs to the maximal domain of attraction of the
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Fréchet distribution with index α. Then

Q(1− y) = y−1/αL1(y−1), as y → 0, (6)

and the density-quantile function fQ(y) = f(Q(y)) satisfies

fQ(1− y) = y1+1/αL2(y−1), as y → 0, (7)

where L2(u) = α(L1(u))−1.

The second type of assumption is that F belongs to the maximal domain
of attraction of the double exponential Gumbel distribution, written as X ∈
MDA(Λ). Then the corresponding Von-Mises condition implies

lim
y→0

fQ(1− y)
∫ 1
1−y(1− u)/fQ(u)du

y2
= 1. (8)

Thus, with L3(y−1) =
(
y−1

∫ 1
1−y(1− u)/fQ(u)du

)−1
one has

fQ(1− y) = yL3(y−1),

and L3 is slowly varying at infinity.

We note in passing that the conditions on f can be expressed (in certain
cases) in terms of those for fε (see Remark 9).

To study the effect of subordination, we will consider the corresponding
assumptions on FY and QY = F−1

Y , referred to later as Y ∈MDA(Φα0) and
Y ∈MDA(Λ), respectively:

QY (1− y) = y−1/α0L∗1(y
−1) and fYQY (1− y) = y1+1/α0L∗2(y

−1), as y → 0,
(9)

with L∗2(u) = α0(L∗1(u))
−1, and

fYQY (1− y) = yL∗3(y
−1),

where L∗3 is defined in the corresponding way as L3.

Recall that Qn(y) = inf{x : Fn(x) ≥ y} = Xk:n if k−1
n < y ≤ k

n . Let
Tn(m, k) =

∑n−k
j=m+1 Yj:n and

µn(m, k) = n

∫ 1−k/n

m/n
QY (y)dy.

The main result of this paper is the following theorem.
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Theorem 1 Let G(x) = QY (F (x)). Let kn = [nξ], where ξ ∈ (0, 1) is such
that

ξ >


β+1/α

1+1/α−1/α0
, if X ∈MDA(Φα), Y ∈MDA(Φα0), (∗)

β+1/α
1+1/α , if X ∈MDA(Φα), Y ∈MDA(Λ), (∗∗)

β
1−1/α0

, if X ∈MDA(Λ), Y ∈MDA(Φα0), (∗ ∗ ∗)
β, if X ∈MDA(Λ), Y ∈MDA(Λ), (∗ ∗ ∗∗).

Assume that EY < ∞. Let p be the smallest positive integer such that
(p+ 1)(2β − 1) > 1 and assume that for r = 1, . . . , p,∫ 1

1/2
F (r)(Q(y))dQY (y) =

∫ 1

1/2

F (r)(Q(y))
fYQY (y)

dy <∞. (10)

Let

An =



(
n
kn

)1+1/α−1/α0

L21

(
n
kn

)
, if X ∈MDA(Φα), Y ∈MDA(Φα0),(

n
kn

)1+1/α
L22

(
n
kn

)
, if X ∈MDA(Φα), Y ∈MDA(Λ),(

n
kn

)1−1/α0

L23

(
n
kn

)
, if X ∈MDA(Λ), Y ∈MDA(Φα0),(

n
kn

)
L24

(
n
kn

)
, if X ∈MDA(Λ), Y ∈MDA(Λ).

where L21, L22, L23, L24 are slowly varying functions to be specified later on.
Then

Anσ
−1
n,1

 n∑
j=n−kn+1

Yj:n − n

∫ 1

1−kn/n
QY (y)dy

 d→ Z.

The corresponding cases concerning assumptions onX and Y will be referred
as Case 1, Case 2, Case 3 and Case 4.

In the non-subordinated case we have the following result.

Corollary 2 Under the conditions of Theorem 1, if either X ∈MDA(Φα)
or X ∈MDA(Λ), then

(
n

kn

)
σ−1

n,1

 n∑
j=n−kn+1

Xj:n − n

∫ 1

1−kn/n
Q(y)dy

 d→ Z.

In the subordinated case we have chosen to work with G = QY F to
illustrate phenomena rather then deal with technicalities. One could work
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with general functions G, but then one would need to assume that G has
the power rank 1 (see [13] for the definition). Otherwise the scaling σ−1

n,1 is
not correct. To see that G(·) = QY F (·) has the power rank 1, note that for
G∞(x) :=

∫∞
−∞G(x+ t)dF (t) we have

d

dx
G∞(x) =

∫ ∞

−∞

f(x+ t)
fYQY F (x+ t)

dF (t).

Substituting x = 0 and changing variables y = F (t) we obtain

d

dx
G∞(x)|x=0 =

∫ 1

0

fQ(y)
fYQY (y)

dy 6= 0.

Furthermore, we must assume that the distribution of Y = G(X) belongs
to the appropriate domain of attraction. For example, if X ∈ MDA(Φα)
and Yi = Xρ

i , ρ being a positive integer, then Y ∈ MDA(Φα/ρ), provided
that the map x → xρ is increasing on IR. Otherwise, if for example ρ = 2,
one needs to impose conditions not only on the right tail of X, but on the
left one as well.

Nevertheless, to illustrate flexibility for the choice of G, let G(x) =
log(x+)α, α > 0. If X ∈ MDA(Φα), then Y = G(X) belongs to MDA(Λ).
Further, since EX = 0, the quantile function Q(u) of X must be positive
for u > u0 with some u0 ∈ (0, 1). Since the map x → log(x+)α is increas-
ing, QY (u) = Qα log(X+)(u) = α logQ(u) for u > u0. Consequently, from
Theorem 1 we obtain the following corollary.

Corollary 3 If (**) holds and X ∈MDA(Φα), then

Anσ
−1
n,1

 n∑
j=n−kn+1

log(X+
j:n)α − n

∫ 1

1−kn/n
logQ(y)dy

 d→ Z,

where An =
(

n
kn

)1+1/α
L22

(
n
kn

)
.

2.1 Remarks

Remark 4 To see what happens if the number of extremes is small, let us
assume that {εi,−∞ < i < ∞} is an i.i.d. sequence of standard normal
random variables,

∑∞
k=0 c

2
k = 1 and supk≥1 |ρk| < 1. Let G(x) = QY (Φ(x))

and kn = [nξ], where ξ ∈ (0, 1) is such that ξ < 2β − 1. Let

Bn =


(

n
kn

)1/2−1/α0
(
L∗1

(
n
kn

))−1
c−1
α0
, if Y ∈MDA(Φα0),(

n
kn

)1/2
, if Y ∈MDA(Λ),
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where c2α0
= 2(1/α0)2

(1−1/α0)(1−2/α0) . Then

Bnn
−1/2

 n∑
j=n−kn+1

Yj:n − n

∫ 1

1−kn/n
QY (y)dy

 = OP (1).

The meaning of this is that for small ξ extremal sums grow at the same
rate as in the corresponding i.i.d. situation. It follows from the Normal
Comparison Lemma, see e.g. [17, p. 81].

This is not quite unexpected. In view of Theorem 4.3.3 in [17], asymp-
totic distribution of properly normalized maxima of LRD Gaussian sequences
(with a covariance ρk decaying faster than (log k)−1) is the same as for
the corresponding i.i.d. sequences (i.e., Gaussian sequences with the same
marginals as Xi). In particular, large values of the sequence {Xi, i ≥ 1}
do not cluster. We conjecture that OP (1) above can be replaced with an
asymptotic normality. On the other hand, however, it is not clear if the sim-
ilar statement will be valid if we assume that ε ∈MDA(Φα) (which implies
that X ∈MDA(Φα), see Remark 9 below). It is well known that if

∞∑
k=0

|ck|min(α,1) <∞, (11)

then large values cluster and the asymptotic distribution of max(X1, . . . , Xn)
is different from the corresponding i.i.d. sequence (see [10] for more details).
Thus, clustering of extremes should influence the asymptotic behavior of
sums of extremes even in the short range dependent case (11).

Remark 5 Wu in his paper [24] considered a weighted approximation of
empirical processes. In principle, using a weighted version of Lemma 10
below, one could expect to have weaker constraints on ξ in Theorem 1.
However, this is not the case and with this method we cannot go beyond
ξ > β. See Remark 14 below for more details.

Remark 6 From the beginning we assumed that Eε41 <∞, thus, in Cases 1
and 2 we have the requirement α ≥ 4 and this is the only constraint on this
parameter. Condition EY <∞ requires α0 > 1 in case of Y ∈MDA(Φα0).
In view of (*), to be able to choose ξ < 1 we need to have α0 > (1−β)−1 > 2.
The same restriction appears in Case 3.

Remark 7 The conditions Dr :=
∫ 1
1/2 F

(r)(Q(y))/fYQY (y)dy <∞ are not
restrictive at all, since they are fulfilled for most distributions with a reg-
ularly varying density-quantile function fQ(1 − y), for those we refer to
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[20]. Consider for example Case 1, and assume that the density f is non-
increasing on some interval [x0,∞). Then F (r) is regularly varying at infinity
with index r + α. Thus, for some x1 > x0∫ 1

1/2∨x1

F (r)(Q(y))/fYQY (y)dy =
∫ 1

1/2∨x1

(1− y)r/α−1/α0`(y)dy <∞

for all r ≥ 1 provided α0 > 1. If, additionally, we impose the following
Csörgő-Révész-type conditions (cf. [1, Theorem 3.2.1]):

(CsR1): fY exists on (a, b), where−∞ ≤ a < b ≤ ∞, a = sup{x : F (x) = 0},
b = inf{x : F (x) = 1},

(CsR2): fY (x) > 0 for x ∈ (a, b),

then in view of (CsR2) and the assumed boundness of derivatives F (r)(·),
the integral Dr is finite.

Remark 8 In the proof of Theorem 1 we have to work with both Q(·) and
fQ(·). Therefore, we assumed the Von-Mises condition (5) since it implies
both (6) and (7). If one assumes only (6), then (5) and, consequently,
(7) hold, provided a monotonicity of f is assumed. Moreover, the von-
Mises condition is natural, since the existence of the density f is explicitly
assumed.

Remark 9 In some applications one knows the properties of fε, rather than
of f .

Assume that Fε ∈MDA(Φα). Then also F ∈MDA(Φα) since

lim
x→∞

P (X1 > x)
P (|ε| > x)

= const. ∈ (0,∞).

For α > 2 the above result is valid as long as
∑∞

j=0 c
2
j < ∞, in particular,

in case of long range dependence (see [19] for details).
If ε1 is normally distributed, then X too, thus in this special case both

Fε and F belong to MDA(Λ).
Furthermore, as for the condition

∫ 1
0 F

(r)(Q(y))dQ(y) <∞. Once again,
if Fε ∈MDA(Φα) then the latter condition is fulfilled for both Fε and F in
view of the discussion in the previous remark.
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3 Proofs

3.1 Consequences of the reduction principle

Let p be a positive integer and let

Sn,p(x) =
n∑

i=1

(1{Xi≤x} − F (x)) +
p∑

r=1

(−1)r−1F (r)(x)Yn,r

=:
n∑

i=1

(1{Xi≤x} − F (x)) + Vn,p(x),

where F (r) is the rth order derivative of F . Setting Ui = F (Xi) and x = Q(y)
in the definition of Sn(·), we arrive at its uniform version,

S̃n,p(y) =
n∑

i=1

(1{Ui≤y} − y) +
p∑

r=1

(−1)r−1F (r)(Q(y))Yn,r

=:
n∑

i=1

(1{Ui≤y} − y) + Ṽn,p(y).

Denote

dn,p =

{
n−(1−β)L−1

0 (n)(log n)5/2(log log n)3/4, (p+ 1)(2β − 1) ≥ 1
n−p(β− 1

2
)Lp

0(n)(log n)1/2(log log n)3/4, (p+ 1)(2β − 1) < 1
.

We shall need the following lemma, referred to as the reduction principle.

Lemma 10 ([24]) Let p be a positive integer. Then, as n→∞,

E sup
x∈IR

∣∣∣∣∣
n∑

i=1

(1{Xi≤x} − F (x)) +
p∑

r=1

(−1)r−1F (r)(x)Yn,r

∣∣∣∣∣
2

= O(Ξn +n(log n)2),

where

Ξn =

{
O(n), (p+ 1)(2β − 1) > 1
O(n2−(p+1)(2β−1)L

2(p+1)
0 (n)), (p+ 1)(2β − 1) < 1

.

Using Lemma 10 we obtain (cf. [4])

σ−1
n,p sup

x∈IR
|Sn(x)|

=

{
Oa.s(n−( 1

2
−p(β− 1

2
))L−p

0 (n)(log n)5/2(log log n)3/4), (p+ 1)(2β − 1) > 1
Oa.s(n−(β− 1

2
)L0(n)(log n)1/2(log log n)3/4), (p+ 1)(2β − 1) < 1

.
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Since (see (2))
σn,p

σn,1
∼ n−(β− 1

2
)(p−1)Lp−1

0 (n)

we obtain

sup
x∈IR

|βn(x) + σ−1
n,1Vn,p(x)| =

=
σn,p

σn,1
sup
x∈IR

∣∣∣∣∣σ−1
n,p

n∑
i=1

(1{Xi≤x} − F (x)) + σ−1
n,pVn,p(x)

∣∣∣∣∣ = oa.s(dn,p).

Consequently, via {αn(y), y ∈ (0, 1)} = {βn(Q(y)), y ∈ (0, 1)},

sup
y∈(0,1)

|αn(y) + σ−1
n,1Ṽn,p(y)| = Oa.s(dn,p). (12)

We have for any an → 0 and by (10),

Anσ
−1
n,1

∫ 1−1/n

1−an/n
Ṽn,p(y)dQY (y) = Anσ

−1
n,1

∫ 1−1/n

1−an/n

Ṽn,p(y)
fYQY (y)

dy (13)

= −

(
An

∫ 1−1/n

1−an/n

fQ(y)
fYQY (y)

dy

)[(
σ−1

n,1

n∑
i=1

Xi

)
+ oP (σ−1

n,1)

]
.

Let

L11(u) = L∗2(u)/L2(u), L21(u) = (1/α− 1/α0 + 1)L11(u),

L12(u) = L∗3(u)/L2(u), L22(u) = (1/α+ 1)L12(u),

L13(u) = L∗2(u)/L3(u), L23(u) = (−1/α+ 1)L13(u),

L14(u) = L∗3(u)/L3(u), L24(u) = L14(u).

Lemma 11 Let p be a positive integer. Assume that (10) holds for r =
1, . . . , p. Then

Anσ
−1
n,1

∫ 1−1/n

1−kn/n
Ṽn,p(y)dQY (y) d→ Z.

Proof. In view of (13), we need only to study the asymptotic behavior, as
n→∞, of An

∫ 1−1/n
1−kn/n

fQ(y)
fY QY (y)dy =: AnKn and to show that AnKn ∼ 1.

We have by Karamata’s Theorem:

13



In Case 1,

Kn =
∫ 1−1/n

1−kn/n
(1− y)1/α−1/α0

(
L11((1− y)−1)

)−1
dy

∼ (1/α− 1/α0 + 1)−1

(
kn

n

)1+1/α−1/α0
(
L11

(
n

kn

))−1

∼
(
kn

n

)1+1/α−1/α0
(
L21

(
n

kn

))−1

.

In Case 2,

Kn =
∫ 1−1/n

1−kn/n
(1− y)1/α

(
L12((1− y)−1)

)−1
dy

∼ (1/α+ 1)−1

(
kn

n

)1+1/α(
L12

(
n

kn

))−1

∼
(
kn

n

)1+1/α(
L22

(
n

kn

))−1

.

In Case 3,

Kn =
∫ 1−1/n

1−kn/n
(1− y)−1/α0

(
L13((1− y)−1)

)−1
dy

∼ 1
−1/α0 + 1

(
kn

n

)1−1/α0
(
L13

(
n

kn

))−1

∼
(
kn

n

)1−1/α0
(
L23

(
n

kn

))−1

.

In Case 4,

Kn =
∫ 1−1/n

1−kn/n

(
L14((1− y)−1)

)−1
dy

∼
(
kn

n

)(
L14

(
n

kn

))−1

∼
(
kn

n

)(
L14

(
n

kn

))−1

.

Thus, in either case, AnKn ∼ 1.
�

Lemma 12 For any kn →∞, kn = o(n)

Un−kn:n

1− kn/n

p→ 1.

Proof. In view of (12) one obtains

sup
y∈(0,1)

|un(y)| = sup
y∈(0,1)

|αn(y)| = OP (1).

14



Consequently,

sup
y∈(0,1)

|y − Un(y)| = sup
y∈(0,1)

σn,1n
−1|un(y)| = sup

y∈(0,1)
σn,1n

−1|αn(y)|

= OP (σn,1n
−1).

Thus, the result follows by noting that Un(1− kn/n) = Un−kn:n.
�

An easy consequence of (12) is the following result.

Lemma 13 For any kn → 0,

sup
y∈(1−kn/n,1)

|αn(y)| = Oa.s.(dn,p) +OP (f(Q(1− kn/n))).

3.2 Proof of Theorem 1

To obtain the limiting behavior of sums of extremes, we shall use the
following decomposition: Since En(·) has no jumps after Un:n and Yj =
QY F (Xj) = QY (Uj), we have

Anσ
−1
n,1

 n∑
j=n−kn+1

Yj:n − n

∫ 1

1−kn/n
QY (y)dy


= Anσ

−1
n,1

 n∑
j=n−kn+1

QY (Uj:n)− n

∫ 1

1−kn/n
QY (y)dy


= Anσ

−1
n,1

(
n

∫ Un:n

Un−kn:n

QY (y)dEn(y)− n

∫ 1

1−kn/n
QY (y)dy

)

= Anσ
−1
n,1

(
n

∫ 1

Un−kn:n

QY (y)dEn(y)− n

∫ 1

1−kn/n
QY (y)dy

)

= Anσ
−1
n,1n

{∫ 1− 1
n

1− kn
n

(y − En(y))dQY (y)

+
∫ 1

1− 1
n

(y − En(y))dQY (y) +
∫ 1−kn/n

Un−kn:n

(1− kn

n
− En(y))dQY (y)

}

= −An

∫ 1− 1
n

1− kn
n

αn(y)dQY (y)−An

∫ 1

1−1/n
αn(y)dQY (y)

+Anσ
−1
n,1n

∫ 1−kn/n

Un−kn:n

(1− kn

n
− En(y))dQY (y) =: I1 + I2 + I3.
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We will show that I1 yields the asymptotic normality. Further, we will show
that the latter two integrals are asymptotically negligible.

Each term will be treated in a separate section. Let p be the smallest
integer such that (p+ 1)(2β − 1) > 1, so that dn,p = n−(1−β)`(n).

3.2.1 First term

Let ψµ(y) = (y(1− y))µ, y ∈ [0, 1], µ > 0.

For kn = [nξ] and arbitrary small δ > 0 one has by (12),

An sup
y∈(0,1)

∣∣∣αn(y) + σ−1
n,1Ṽn,p(y)

∣∣∣ = Oa.s (Andn,p)

=


n−(ξ+ξ/α−ξ/α0−1/α+1/α0−β−δ), if X ∈MDA(Φα), Y ∈MDA(Φα0),
n−(ξ+ξ/α−1/α−β−δ), if X ∈MDA(Φα), Y ∈MDA(Λ),
n−(ξ−ξ/α0+1/α0−β−δ), if X ∈MDA(Λ), Y ∈MDA(Φα0),
n−(ξ−β−δ), if X ∈MDA(Λ), Y ∈MDA(Λ).

Let

Jn = An

∣∣∣∣∣∣
∫ 1− 1

n

1− kn
n

∣∣∣αn(y) + σ−1
n,1Ṽn,p(y)

∣∣∣
ψµ(y)

ψµ(y)dQY (y)

∣∣∣∣∣∣ .
Case 1: Since condition (*) on ξ holds,

1/α0 < ξ + ξ(1/α− 1/α0)− 1/α+ 1/α0 − β.

Set µ = (α0 − δ)−1 with δ > 0 so small that

µ < ξ + ξ(1/α− 1/α0)− 1/α+ 1/α0 − β − δ.

Then, we have E(Y +)1/µ+δ/2 < ∞. The latter condition is sufficient for
the finiteness of

∫ 1
x1
ψµ(y)dQY (y), where x1 = inf{y : QY (y) ≥ 0}, (see [22,

Remark 2.4]). Thus,

Jn = oa.s(Andn,pn
µ)
∫ 1

x1

ψµ(y)dQY (y) = oa.s(1)O(1).

Since in Case 3, (***) holds, a similar approach yields that in this case
Jn = oa.s(1).
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Case 2: If Y ∈MDA(Λ) then E(Y +)α0 <∞ for all α > 0 (see [10, Corollary
3.3.32]). Thus, in view of (**), choose arbitrary small δ > 0 and α0 so big
that E(Y +)α0 <∞ and

1
α0 − δ

< ξ + ξ/α− 1/α− β − δ.

Set µ = (α0−δ)−1 and continue as in the Case 1. A similar reasoning applies
to Case 4, provided ξ > β. Thus, in either case

An

∣∣∣∣∣
∫ 1− 1

n

1− kn
n

(
αn(y) + σ−1

n,1Ṽn,p(y)
)
dQY (y)

∣∣∣∣∣ = oa.s(1).

Now, the asymptotic normality of I1 follows from Lemma 11.

3.2.2 Second term

We have

An

∫ 1

1−1/n
αn(y)dQY (y)

= −Anσ
−1
n,1n

∫ 1

1−1/n
(1− En(y))dQY (y) +Anσ

−1
n,1n

∫ 1

1−1/n
(1− y)dQY (y)

:= J1 + J2.

Since EJ1 = J2, it suffices to show that J2 = o(1).

Case 1: We have by Karamata’s Theorem

J2 = Anσ
−1
n,1n

∫ 1

1−1/n

(1− y)
(1− y)1+1/α0L∗2(y−1)

dy

∼
(
n

kn

)1+1/α−1/α0

nβ−3/2n(
1
n

)1−1/α0`(n)`(n/kn)

which converges to 0 using the assumption (*).

Likewise, in Case 3,

J2 ∼
(
n

kn

)1−1/α0

nβ−3/2n(
1
n

)1−1/α0`(n)`(n/kn)

which converges to 0 using the assumption (***).
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Case 2: We have,

J2 = Anσ
−1
n,1n

∫ 1

1−1/n

1− y

fYQY (y)
dy ∼ Anσ

−1
n,1`(n)`(n/kn)

which converges to 0, using the assumption (**). The same argument applies
to Case 4. Therefore, in either case, I2 = oP (1).

3.2.3 Third term

To prove that I3 = oP (1), let y be in the interval with the endpoints Un−kn:n

and 1− kn/n. Then∣∣∣∣1− En(y)− kn

n

∣∣∣∣ ≤ |En(1− kn/n)− (1− kn/n)|.

Case 1: By Lemma 12 and Y ∈MDA(Φα0), we have

QY (1− kn/n)/QY (Un−kn:n)
p→ 1. (14)

Hence, by condition (*),(
n

kn

)1+1/α−1/α0

`(n/kn)QY (1− kn/n)dn,p

= n1+1/α`(n)`(n/kn)n−ξ(1+1/α)dn,p → 0. (15)

Also, by (7) and (9),

AnQY (1− kn/n)fQ(1− kn/n) ∼ CL21

(
n

kn

)
L∗1(n/kn)
L1(n/kn)

∼ C (16)

Thus, by (14), (15), (16) and Lemma 13

I3 ≤ AnQY (1− kn/n)|αn(1− kn/n)| |QY (1− kn/n)−QY (Un−kn:n)|
QY (1− kn/n)

= AnQY (1− kn/n)αn(1− kn/n)op(1)
= op (AnQY (1− kn/n)fQ(1− kn/n)) + op (AnQ(1− kn/n)dn,p) = oP (1).

Case 3: By Lemma 12 and Y ∈ MDA(Φα0) we have (14). Since ξ > β >
β/(1− 1/α0),(

n

kn

)1−1/α0

`(n/kn)QY (1− kn/n)dn,p = nβ−ξ → 0. (17)
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Also, by (8) and (9),(
n

kn

)1−1/α0

L23

(
n

kn

)
QY (1− kn/n)fQ(1− kn/n)

∼ CL23

(
n

kn

)
L3(n/kn)
L∗2(n/kn)

∼ C. (18)

Thus, by (17), (18), we conclude as above that I3 = oP (1).

Cases 2 and 4:

Tn(λ) = An|αn(1− kn/n)|
∣∣QY (r+n (λ))−QY (r−n (λ))

∣∣ ,
where r+n (λ) = 1 − kn

λn , r−n (λ) = 1 − λkn
n and 1 < λ < ∞ is arbitrary.

Applying an argument as in the proof of Theorem 1 in [8], we have

lim inf
n→∞

P (|I3| < |Tn(λ)|) ≥ lim inf
n→∞

P (r−n (λ) ≤ Un−kn:n ≤ r+n (λ)).

In view of Lemma 12, the lower bound is 1. Thus, limn→∞ P (|I3| < |Tn(λ)|) =
1. Further, by Lemma 4 in [18],

lim
n→∞

(QY (r+n (λ))−QY (r−n (λ)))L∗3(n/kn) = − log λ.

Thus, for large n,

Tn(λ) = An|αn(1− kn/n)|(L∗3(n/kn))−1|QY (r+n (λ))−QY (r−n (λ))|L∗3(n/kn)

≤ C1
An

L∗3(n/kn)
fQ(1− kn/n)(log λ) + C2

An

L∗3(n/kn)
dn,p log λ

almost surely with some constants C1, C2. The second term, for arbitrary
λ, converges to 0 by the choice of ξ. Also,

An
fQ(1− kn/n)
L∗3(n/kn)

≤


(

n
kn

)1+1/α
L22

(
n
kn

) ( kn
n )1+1/α

L2

(
n

kn

)
L∗3

(
n

kn

) , in Case 2,(
n
kn

)
L24

(
n
kn

) ( kn
n )L3

(
n

kn

)
L∗3

(
n

kn

) , in Case 4.

In either case, the above expressions are asymptotically equal to 1. Thus,
we have for sufficiently large n, Tn(λ) ≤ C1 log λ almost surely. Thus,
limn→∞ P (|Tn(λ)| ≤ C1 log λ) = 1. Consequently,

lim
n→∞

P (|I3| > C1 log λ) =

≤ lim
n→∞

P (|I3| > C1 log λ, |Tn(λ)| ≤ C1 log λ) + lim
n→∞

P (|Tn(λ)| > C1 log λ)

≤ lim
n→∞

P (|I3| > |Tn(λ)|) + 0 = 0
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and thus I3 = oP (1) by taking λ→ 1.
�

Remark 14 Wu [24] proved a stronger version of Lemma 10 above:

E sup
x∈IR

(1 + |x|)γ

∣∣∣∣∣
n∑

i=1

(1{Xi≤x} − F (x)) +
p∑

r=1

(−1)r−1F (r)(x)Yn,r

∣∣∣∣∣
2

= O(Ξn + n(log n)2),

where γ > 0 is such that E|ε1|4+γ <∞. Applying it to the uniform random
variables Ui = F (Xi),

E sup
y∈(0,1)

(1 + |Q(y)|)γ

∣∣∣∣∣
n∑

i=1

(1{Ui≤y} − y) +
p∑

r=1

(−1)r−1F (r)(Q(y))Yn,r

∣∣∣∣∣
2

= O(Ξn + n(log n)2).

Now, let’s look at Case 4. The constraint ξ > β comes from the estimation
of the third term: we need to control Anαn(1− kn/n) and thus, in view of
Lemma 13, we have to estimate Andn,p. This converges to 0 if ξ > β.

Using the weighted version of Lemma 10, we would have obtained in
Lemma 13:

sup
y∈(1−kn/n,1)

(1 +Q(y))γ/2|αn(y)| = Oa.s.(dn,p) +OP (fQ(1− kn/n)).

However, in Case 4, Q(·) is slowly varying at 1. Consequently, the approach
via weighted approximation does not improve constraints on ξ. (A slight
improvement can be achieved in Cases 1 and 2, where Q(·) is regularly
varying at 1).
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[1] Csörgő, M. (1983). Quantile Processes with Statistical Applications.
CBMS-NSF Regional Conference Series in Applied Mathematics.

[2] Csörgő, M., Csörgő, S., Horváth, L., Mason, D. M. (1986). Weighted
empirical and quantile processes. Ann. Probab. 14, 31–85.
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[5] Csörgő, M. and Kulik, R. (2008). Weak convergence of Vervaat and
Vervaat Error processes of long-range dependent Gaussian sequences.
J. Theoret. Probab. DOI: 10.1007/s10959-007-0124-8.
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