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1 Introduction

We initiate our discussion by a brief review of the Vervaat (1972a,b) contributions to limit theorems
for processes with positive drift and their inverses. Accordingly, along the lines of Vervaat (1972b), let
Y be a non-negative stochastic process on [0,∞) such that almost all realizations Y (·, ω) : [0,∞) →
[0,∞) are non-decreasing unbounded functions and Y −1 be the generalized inverse of Y (·, ω), i.e.,
Y −1(t, ω) := inf{u : Y (u, ω) > t}. Let D0[0,∞) be the subset of non-decreasing, non-negative
unbounded functions of D[0,∞), and let C[0,∞) be the subset of continuous functions of D[0,∞).
For further use later on, we summarize Theorems 1 and 3 of Vervaat (1972b) for our convenience as
follows (cf. also Theorems 3.2.3 and 3.2.4 of Vervaat (1972a)). Here and throughout d→ stands for
convergence in distribution, while D→ indicates weak convergence in an appropriate context. Also, P→
designates convergence in probability.

Theorem A Let Y1, Y2, . . . be random elements in D0[0,∞), Ỹ a random element in C[0,∞) and
ζ1, ζ2, . . . be positive random variables such that ζn

P→ 0 as n → ∞. Then, as n → ∞, the following
two weak convergence statements are equivalent in D[0,∞) (endowed with the uniform topology on
compact sets):

Yn − I

ζn

D→ Ỹ ,(1.1)

Y −1
n − I

ζn

D→ −Ỹ ,(1.2)

where I denotes the identity map on [0,∞). Moreover, if any one of (1.1) and (1.2) holds, then

V (· ;Yn) D→ 1
2
Ỹ 2,(1.3)

in C[0,∞) (endowed with the uniform topology on compact sets), where

V (t;Yn) =
1
ζ2
n

∫ t

0
(Yn(u) + Y −1

n (u)− 2u) du, 0 ≤ t < ∞.(1.4)

In Theorem A it is assumed that Y1, Y2, . . . are random elements in D0[0,∞). However, a con-
venient version of Theorem 2 of Vervaat (1972b) (cf. also Theorem 3.3.2 of Vervaat (1972a)) for
Y1, Y2, . . . not necessarily in D0[0,∞) reads as follows.

Theorem A∗ Let Y1, Y2, . . . be random elements in D[0,∞), Ỹ a random element in C[0,∞) and
ζ1, ζ2, . . . be positive random variables as in Theorem A. If, as n →∞, we have

Yn − I

ζn

D→ Ỹ ,(1.5)
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then
Y ↑

n − I

ζn

D→ Ỹ ,(1.6)

where
Y ↑

n (t) = sup
0≤u≤t

Yn(u), t ≥ 0.(1.7)

Consequently, if we also assume that Y ↑
n are random elements in D0[0,∞), then Theorem A is

applicable to Y ↑
n , and hence we have also

Y −1
n − I

ζn

D→ −Ỹ(1.8)

in D[0,∞), and

V (· ;Y ↑
n ) D→ 1

2
Ỹ 2(1.9)

as well, in C[0,∞).
In this paper we investigate these properties for partial sums of weakly dependent random vari-

ables and their inverses via strong invariance, including also the case of partial sums of i.i.d. random
variables. In this context, we speak about weak dependence only if the partial sums in hand can be
strongly approximated by a standard Wiener process (Brownian motion).

Let X1, X2, . . . be a sequence of random variables, not necessarily independent. Define the partial
sum process by

S(t) :=
[t]∑

i=1

Xi,

and the renewal counting process by

N(t) := inf {s : S(s) > t}.

Define also
M(t) := sup

0≤s≤t
S(s).

Our main result is as follows.

Theorem 1.1 Let µ > 0, and let r(·) be a positive non-decreasing function, regularly varying at
infinity, for which r(t) ≥ t1/4 and

r(t) = O((t log log t)1/2), t →∞.
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Assume that the following strong approximation holds:

sup
0≤t≤T

|S(t)− µt−W (t)| = o(r(T )) a.s.,(1.10)

Then we have also
sup

0≤t≤T
|M(t)− µt−W (t)| = o(r(T )) a.s.,(1.11)

and
sup

0≤t≤T
|µ−1t−N(t)− µ−1W (µ−1t)| = o(r(T )) a.s.,(1.12)

where {W (t); t ≥ 0} is a standard Wiener process on the line.
If, moreover, Xi ≥ 0, i = 1, 2, . . ., and r(n) ≥ n1/4(log log n)3/4, then (1.10) and (1.12) are

equivalent and any of them implies

sup
0≤t≤1

∣∣∣∣µ2n2Vn(t)− 1
2
W 2(nt)

∣∣∣∣ = O(r(n)
√

n log log n) a.s.,(1.13)

as n →∞.

As a consequence of (1.13), we conclude the weak convergence

2µ2nVn
D→ W 2

in C[0, 1]. Since W 2 is not differentiable, Rn, as the derivative of Vn, cannot converge weakly in
D[0, 1] with any normalization. Further consequences are strong limit theorems, like the law of the
iterated logarithm, Chung’s law, etc.

lim sup
n→∞

nµ2 sup0≤t≤1 |Vn(t)|
log log n

= 1 a.s.

lim inf
n→∞

nµ2 log log n sup
0≤t≤1

|Vn(t)| = π2

8
a.s.

In Section 2 we present the proof of Theorem 1.1, while in Section 3 some typical examples will
be given.
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2 Proof of Theorem 1.1

First we show that (1.10) implies (1.11). Since M(t) ≥ S(t), obviously

inf
0≤t≤T

(M(t)− µt−W (t)) ≥ −o(r(T )) a.s.,(2.1)

as T →∞. On the other hand, for 0 ≤ s ≤ t ≤ T , (1.10) implies

S(s) ≤ µs + W (s) + o(r(T )) ≤ sup
s≤t

(µs + W (s)) + o(r(T )),

and hence

M(t) ≤ sup
0≤s≤t

(µs + W (s)) + o(r(T )) = µt + W (t) + sup
0≤s≤t

(µ(s− t) + W (s)−W (t)) + o(r(T )) a.s.

On denoting t − s = u, W (s) − W (t) + µ(s − t) = W1(u) − µu, where W1(·) is a standard Wiener
process. Hence

sup
0≤s≤t

(µ(s− t) + W (s)−W (t)) = sup
0≤u≤t

(W1(u)− µu) ≤ sup
0≤u<∞

(W1(u)− µu),

that is an almost surely finite random variable, we have also

M(t) ≤ µt + W (t) + o(r(T )) a.s.,

i.e.,
sup

0≤t≤T
(M(t)− µt−W (t)) ≤ o(r(T )) a.s.,(2.2)

as T →∞. Now (2.1) and (2.2) together imply (1.11).

The statement that (1.10) implies (1.12) follows from Theorem 2.1 of Horváth [15] (see also
Theorem 1.3 in [8]).

In the rest of the proof we assume that Xi ≥ 0, i = 1, 2, . . . Next we prove that in this case (1.12)
implies (1.10). Let n be an integer and put u = S(n), i.e., N(u) = n. Applying (1.12), we get

S(n)− µn = u− µN(u) = W

(
u

µ

)
+ o(r(u)) a.s.

It follows that
lim

n→∞

S(n)
n

= lim
u→∞

u

N(u)
= µ a.s.,
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and
u

µ
− n =

u

µ
−N(u) = O((u log log u)1/2) = O((n log log n)1/2) a.s.,

hence
S(n)− µn = W (n + O((n log log n)1/2) + o(r(n)) a.s.

From large increments results for the Wiener process (cf. Csörgő and Révész [9]), we arrive at

W (n + O((n log log n)1/2)) = W (n) + O(n1/4(log log n)3/4), a.s.,

consequently,
S(n)− µn = W (n) + O(n1/4(log log n)3/4) + o(r(n)) a.s.

Interpolating between n and n + 1, we get also

S(t)− µt = W (t) + O(t1/4(log log t)3/4) + o(r(t)) a.s.,

implying (1.10).
Finally, we prove that (1.10) implies (1.13).
In [7] the following identity was shown:

Vn(t) =
1
2

(
S(nt)− µnt

µn

)2

+ An(t)− 1
2
M2

n(t),(2.3)

where

An(t) = −N̄n(t)
∫ 1

0
(S̄n(t + uN̄n(t))− S̄n(t)) du

and
Mn(t) =

Rn(t)
µ
√

n
,

S̄n(t) =
S(nt)− µnt

µn
, N̄n(t) =

N(µnt)− nt

n
t ≥ 0.

This, in fact, is an algebraic identity, and no properties of the random variables Xi were used in
the proof. Hence we also have this identity in the present case.

Now we have to estimate An(t) and Mn(t). Obviously, it follows from (1.10) and (1.12) that, as
n →∞,

Mn(t) =
S(nt) + N(µnt)− 2µnt

µ
√

n
= o

(
r(n)
n

)
a.s.,
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S̄n(t) =
W (nt)

µn
+ o

(
r(n)
n

)
, N̄n(t) = O

(√
log log n√

n

)
a.s.,

uniformly in t ∈ [0, 1]. Hence

An(t) = −N̄n(t)
(∫ 1

0

W (nt + nuN̄n(t))−W (nt)
n

du + O

(
r(n)
n

))
.

Since nN̄n(t) = O(
√

n log log n), for the integrand we have, as before,

W (nt + nuN̄n(t))−W (nt)
n

=
O(n1/4(log log n)3/4)

n
= O(n−3/4(log log n)3/4),

consequently,

An(t) = O

(√
log log n√

n

)(
O

(
(log log n)3/4

n3/4

)
+ O

(
r(n)
n

))

= O

(
log log n)5/4

n5/4
+

r(n)(log log n)1/2

n3/2

)
.

Moreover,

(S(nt)− µnt)2 = (W (nt) + 0(r(n)))2 ≤ W 2(nt) + |W (n)|o(r(n)) + o(r2(n))

= W 2(nt) + o(r(n)
√

n log log n),

from which (1.13) follows.
The proof of Theorem 1.1 is now complete. �

3 Applications

In this Section we give some examples for the application of Theorem 1.1. There is a huge literature
dealing with strong approximations of partial sums by a Wiener process both in the independent
and dependent cases. For our present purpose, we restrict ourselves to the case when µ > 0, or even
when the summands themselves can only be non-negative, and the approximation is in terms of a
standard Wiener process at time n, i.e., W (n). In the case when the latter approximation takes place
via W (an), then we choose an = n, whenever possible. Note that if an = cn with some constant
c > 0, then, without loss of generality, it is possible to choose c = 1, by dividing Xi by

√
c.

Not aiming at completeness, we now give some typical examples. For further strong approximation
results in the weakly dependent case, in addition to the works cited below, we refer to Eberlein [13],
Philipp [20], Lin and Lu [18], Wu [31], and papers cited in these works.
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3.1 i.i.d. sequences

Now assume that {Xi, i = 1, 2, . . .} is an i.i.d. sequence, EXi = µ > 0. The classical result of
Strassen [25] gives r(t) =

√
t log log t in case when EX2

i < ∞. On assuming that for a fixed α ≥ 0,

E(X2
i (log log X2

i )α) < ∞,

then it was shown by Jain et al. [16] that (1.10) holds with r(t) = t1/2(log log t)(1−α)/2. We note
that with α = 0 this rate reduces to the just mentioned classical one in Strassen [25], and, for α = 2,
it yields that of Breiman [6]. In the case when E|Xi|γ < ∞ with 2 < γ ≤ 4, Komlós et al. [17]
combined with Major [19] yield r(t) = t1/γ . In [7] the case γ = 4 is treated. In this case, for the
Bahadur-Kiefer type process Rn(·), Deheuvels and Mason [11] proved

lim
n→∞

n1/2 sup0≤t≤1 |Rn(t)|
(log n)1/2(sup0≤t≤1 |N(µnt)− nt|)1/2

= µ a.s.,

while Csörgő and Horváth [8] established

Rn(t) = n−1/4

(
W (nt)−W

(
nt− W (nt)

µ

))
+ o(n−1/4) a.s.

and for fixed t > 0
n1/4Rn(t) d→ t1/4µ−1/2N1

√
|N2|,

where N1 and N2 are independent standard normal random variables.
For further results for Bahadur-Kiefer type process when the 4-th moment does not exist, we

refer to Deheuvels and Steinebach [12].

3.2 Martingales

Let {Xi − µ, i = 1, 2, . . .}, µ > 0, be a stationary ergodic sequence of martingale differences, i.e.,
E(Xi − µ | X1, . . . , Xi−1) = 0 almost surely, for each i ≥ 2. Assume that EX2

i = 1 and put

Vn =
n∑

i=1

E((Xi − µ)2 | X1, . . . , Xi−1).

On assuming that, as n →∞,
|Vn − n| = o(n(log log n)−α),
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almost surely for some α ≥ 0, and

E(X2
i (log X2

i )(log log X2
i )α) < ∞,

then Theorem 4.3 of Jain et al. [16] yields (1.10) with r(t) = t1/2(log log t)(1−α)/2. The latter result
amounts to spelling out a specific rate in the stationary case for Strassen’s classical approximation
theorem in [26] for sums of martingale differences.

For further results for martingales along similar lines, we refer to Philipp and Stout [22].

3.3 Mixing sequences

There are several types and results for mixing sequences. Define the following mixing coefficients:

• (1) φ-mixing:

φ(n) := sup
|P (AB)− P (A)P (B)

P (A)|
→ 0, n →∞,

where sup is taken for A ∈ Fk
1 , B ∈ F∞k+n, k ≥ 1, P (A) > 0, where F `

j is the sigma algebra
generated by (Xj , . . . , X`).

• (2) α-mixing:
α(n) := sup |P (AB)− P (A)P (B)| → 0, n →∞,

where sup is taken as in (1).

• (3) ρ-mixing
ρ(n) := sup |ρ(X, Y )| → 0, n →∞,

where ρ(X, Y ) is the correlation coefficient of X and Y and sup is taken for X and Y , measurable
with respect to Fk

1 and F∞k+n, resp., k ≥ 1.

For the stationary φ-mixing case, a result of Philipp and Stout [21] implies that under the con-
ditions ∑

n

φ1/2(n) < ∞, lim
n→∞

V ar(S(n))
n

= 1,

E|Xk|2+δ < ∞, E(Xk) = µ > 0, we have (1.10) with r(t) = t1/2−λ, λ < δ/(24 + 12δ).
Again, for the stationary φ-mixing case, it follows from Berkes and Philipp [3] and Dabrowski

[10] that under the conditions

φ(n) = O((log n)−(1+ε)(1+2/δ)), lim
n→∞

V ar(S(n))
n

= 1,

9



E|Xk|2+δ < ∞, E(Xk) = µ > 0, we have (1.10) with r(t) = t1/2(log t)−1/4.
Further results in the φ-mixing case can be found in Shao and Lu [24]. In particular, if E(S2(n)) =

n, supk E|Xk|4 < ∞, φ(n) = O(1/n) , then (1.10) is true with r(t) = t1/4(log t)9/4+δ, δ > 0.
In the stationary α-mixing case a result of Bradley [5] implies that under

sup
n

E|S(n)|2+δ

(V arS(n))(2+δ)/2
< ∞, α(n) = O((log n)−λ),

δ > 0, λ > 1 + 3/δ, EXk = µ > 0 we have (1.10) with r(t) = t1/2(log log t)−1/2.
A further result of Shao and Lu [24] for the α-mixing case implies that under the conditions

sup
n

E|Xk|β < ∞,
∑

n

(α(n))1/2+δ−1/β < ∞,

for some 0 < δ ≤ 2, β > 2 + δ, (1.10) holds with r(t) = t1/(2+δ)(log t)1+(1+λ)/(2+δ).
For the stationary ρ-mixing case the results of Shao [23] imply that under the conditions ρ(n) =

O((log n)−γ), γ > 1, E(S2(n)) = n, we have (1.10) with r(t) = (t log log t)1/2 if EX2
k < ∞ and

r(t) = t1/2(log n)−δ, 0 < δ < γ/2− 1/4, if E|Xk|2+δ < ∞.

3.4 Associated sequences

A sequence X1, X2, . . . of random variables is called associated if

Cov(f(X1, . . . , Xn), g(X1, . . . , Xn)) ≥ 0, n ≥ 1

for coordinatewise non-decreasing functions f, g. It follows from the result of Yu [29] that under the
assumptions

sup
n≥1

E|Xn|2+γ < ∞, inf
n≥1,k≥0

E(Sn+k − Sk)2

n
> 0,

u(n) = sup
k≥1

∑
|j−k|≥n

Cov(Xj , Xk) = O(e−λn), EX2
1 + 2

∞∑
i=2

E(X1Xi) < ∞,

E(Xk) = µ > 0, ES2(n) = n, (1.10) holds with r(t) = t1/2−δ.
Wang [30] treated the quasi-associated case when

Cov(f(X1, . . . , Xi), g(Xi+1, . . . , Xn)) ≥ 0,

for 1 ≤ i ≤ n− 1, and coordinatewise non-decreasing functions f, g. It follows that under the above
conditions, with the modified assumption u(n) = O(n−γ), (1.10) holds with r(t) = t(log t)−d and any
d > 0.
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3.5 Lacunary series

For lacunary Walsh series it follows from the result proved by Berkes [1] that, if {wn(x), n = 1, 2, . . .}
is the series of Walsh functions, then (1.10) is true for Xk = wnk

(ω) + µ with nk+1/nk ≥ 1 + ck−α,
0 ≤ α < 1/2, r(t) = t1/2−δ, some δ > 0, where ω is a uniform (0,1) random variable.

For lacunary trigonometric series, a consequence of a result of Philipp and Stout [21] reads as
follows. (1.10) is true for Xk =

√
2 cos(2πnkω) + µ, where µ > 0, ω is a uniform (0,1) random

variable, and nk+1/nk > q > 1, with r(t) = t5/12+δ, any δ > 0. A related result of Berkes [2] for
lacunary trigonometric series implies that (1.10) holds for the above Xk under the gap condition
nk+1/nk ≥ 1 + k−α, 0 ≤ α < 1/2 with r(t) = t1/2−δ, some δ > 0.

For results along these lines for general lacunary series, we refer to Berkes and Philipp [4].
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[14] Horváth, L. (1984). Strong approximations of renewal processes. Stoch. Process. Appl. 18 127–
138.
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